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Preface

“Based on this century of experience, it is gen-
erally supposed that a final theory will rest on
principles of symmetry.”

Dreams of a Final Theory
Steven Weinberg
1979 Nobel Prize winner

This book introduces homogeneous balls as a new mathematical model for
several areas of physics. It is widely known the the set of all relativistically
admissible velocities is a ball in R3 of radius c, the speed of light. It is also
well known that the state space of a quantum system can be represented by
positive trace-class operators on a Hilbert space that belong to the unit ball
in the trace norm. In relativistic quantum mechanics, the Dirac bispinors
belong to a ball in the space C*. Is their something in common among these
balls? At first glance, they look very different. Certainly, they do not repre-
sent commutative objects, for which the unit ball is a simplex. They cannot
represent a binary algebraic operation, since for such an operation, we need
an order on the space, and there is no order for the first and third examples.
But as we will show, in all of the above situations, either the ball in ques-
tion or its dual is homogeneous. Moreover, there is a triple structure which
is uniquely constructed from either the homogeneity of the domain or the
geometry of the dual ball.

Homogeneous balls could serve as a unifying language for different areas
in physics. For instance, both the ball of relativistically admissible velocities
in Special Relativity and the unit ball of operators on a Hilbert space, which
is the dual of the state space in Quantum Mechanics, are homogeneous balls.
In Special Relativity, the homogeneity of the velocity ball is an expression of
the principle of Special Relativity and not artificially imposed. The surpris-
ing fact that the unit ball of the space of operators is a homogeneous ball
was first discovered and utilized in solving the engineering problems involved
in transatlantic telephone communication. But not much has been done in
physics to take advantage of this structure.

In addition, some aspects of General Relativity may be described be the
methods presented in the book. But in order to describe General Relativity
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efficiently, our model must be generalized. This generalization is obtained by
weakening slightly one of the axioms of the triple product algebraic structure.
At this stage, the generalized model needs to be developed further before it
will be ready for applications.

Recall the definitions of a homogeneous ball and a symmetric domain. Let
D be a domain in a real or complex Banach space. We denote by Aut(D) the
collection of all automorphisms (one-to-one smooth maps) of D. The exact
meaning of “smooth” will vary with the context, but it will always mean
either projective (preserving linear segments), conformal (preserving angles)
or complex analytic. The unit ball D in a Banach space is one example of
a bounded domain. It is called homogeneous if for any two points z,w € D,
there is an automorphism ¢ € Aut(D) such that ¢(z) = w. A domain D is
called symmetric if for any element a € D, there is a symmetry s, € Aut(D)
which fixes only the point a. Any bounded symmetric domain can be realized
as a homogeneous ball in a Banach space.

The theory of bounded symmetric domains as mathematical objects in
their own right is highly developed (see [52], [62], [68] and [69]). However,
these works are written on a high mathematical level and contain no physical
applications.

The current text completely changes this situation. Not only do we de-
velop the theory of homogeneous balls and bounded symmetric domains and
their algebraic structure informally, but also our primary goal is to show
how to construct an appropriate domain to model a given law of physics.
The research physicist and even the graduate student can walk away with
both an understanding of these domains and the ability to construct his own
homogeneous balls. After seeing our new methodology applied to Special Rel-
ativity and Quantum Mechanics, the reader should be able to extrapolate our
techniques to his own areas of interest.

In Chapter 1, we show how the principle of relativity leads to a sym-
metry on the space-time continuum. From this symmetry alone, we derive
the Lorentz transformations and show that the set D, of all relativistically
admissible velocities is a homogeneous ball and a bounded symmetric do-
main with respect to the group Aut,(D,) of projective automorphisms. We
derive the formula for Einstein velocity addition and explore its geometric
properties. We study the Lie algebra aut,(D,) and show that relativistic dy-
namics is described by elements of this algebra. This observation provides an
efficient tool for solving relativistic dynamic equations, regardless of initial
conditions. As an example, we obtain explicit solutions for the relativistic
evolution equation for a charged particle in a electric field F, a magnetic
field B and a electromagnetic field F, B in which E and B are parallel.

In Chapter 2, we show that the ball D, of all relativistically admissible
symmetric velocities is a bounded symmetric domain with respect to the
group Aut.(D;) of conformal automorphisms and is a Cartan factor of type
4, called the spin factor. This enables us to express the non-commutativity
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and the non-associativity of Einstein velocity addition as well as the non-
transitivity of parallelism among inertial frames in Special Relativity. The
Lie algebra aut.(Ds) is described in terms of the spin triple product. We
describe relativistic evolution using elements of aut.(D;). Utilizing the fact
that the evolution equation for symmetric velocities of a charged particle
in a constant, uniform electromagnetic field £, B, with £ - B = 0, becomes
a one-dimensional complex analytic differential equation, we obtain explicit
solutions for this evolution.

In Chapter 3, we study the complex spin factor, which is the complex ex-
tension of the conformal ball from the previous chapter. The natural basis in
this space satisfies a triple product analog of the Canonical Anticommutation
Relations. We derive a spectral decomposition for elements of this factor and
then represent it geometrically. The two types of tripotents (building blocks
of the triple product) determine a duality on this object. This duality is cru-
cial in obtaining different representations of the Lorentz group on the spin
factor. The three-dimensional complex spin factor efficiently represents the
electromagnetic field, and the Lorentz group acts on it by linear operators
defined directly by the triple product. We show that the properties of the
field are related to the algebraic structure of its representation.

The four-dimensional complex spin factor has several representations of
the Lorentz group. The operators representing the generators of this group
belong to a spin factor of dimension six. If we use the representation provided
by one type of tripotents, we obtain the usual representation of this group
on four-vectors. These four-vectors form the invariant subspaces of the spin
factor under this representation. If we switch the representation to the second
type, the invariant subspaces are the Dirac bispinors with the proper action
of the Lorentz group on them. This reveals the connection between the spin
1 and the spin 1/2 representations.

In Chapter 4, we study classical homogeneous unit balls of subspaces of
operators on a Hilbert space. Since these operators are not necessary self-
adjoint, we first study some relevant results for non-self-adjoint operators.
Based on ideas from Transmission Line Theory, we show that such a ball is
a symmetric domain with respect to the analytic automorphisms. Here we
study the connection between the geometric properties of such domains and
their JC*-triple structure.

Chapter 5 consists of general results about homogeneous unit balls,
bounded symmetric domains, and the Jordan triple product associated with
them. Since these domains are homogeneous with respect to the analytic
maps on a complex Banach space, we introduce and study some properties
of such maps. From the study of the Lie group of analytic automorphisms of
a bounded domain and its Lie algebra, we derive the Jordan triple product
associated to the domain. We study the Pierce decomposition (which occurs
also in earlier chapters) on JB*-triples and their duals. We explore how the
geometry inherited by the state space from the measuring process allows
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one to define grid bases on the set of observables. This justifies the use of
homogeneous balls and bounded symmetric domains in modeling quantum
mechanical phenomena.

Chapter 6 includes a complete classification of atomic JB*-triples. We
show how to build convenient bases, called grids, for such spaces. These grids
are constructed from basic elements of the triple structure which may be inter-
preted as compatible observables. These grids span the full non-commutative
object. Our methodology reveals why there are six different fundamental do-
mains (called factors) for the same algebraic structure. This explains how
apparently unrelated models in physics, corresponding to different types of
factors, can have common roots. Furthermore, the mystery of the occurrence
of two exceptional factors of dimensions 16 and 27 is explained.

In this book, the reader will find the answer to the following questions:

1. Does the principle of relativity imply the existence of an invariant speed
and the preservation of an interval? (Answer: section 1.2 )

2. Why is there time contraction in the transformations from inertial system
K to K'’, while space contraction in obtained in the transformations from
K’ to K7 (Answer: section 1.1.4)

3. The relative velocity between two inertial systems can be considered as
a linear map between time displacement and space displacement. What
is the adjoint of this map? (Answer: end of section 1.2)

4. What geometry is preserved in the transformation of the ball of relativis-
tically admissible velocities from one inertial system to another? (Answer:
section 1.4)

5. What is the connection between the relativistic dynamic equation and
the Lie algebra of the velocity transformations? (Answer: section 1.5)

6. If one has found a solution to the relativistic dynamic equation with a
given initial condition, how one obtain a solution which satisfies a different
initial condition? (Answer: section 1.5.5)

7. The relativistic evolution equation in the plane is not analytic. How can
it be made analytic? What are the analytic solutions for a constant field
in this case? (Answer: sections 2.5 and 2.6 )

8. How are the Canonical Anticommutation Relations related to the basis
in a spin factor? (Answer: section 3.1.2)

9. How can n Canonical Anticommutation Relations be represented in a
space of dimension 2n (and not the usual space of dimension 2™)? (An-
swer: section 3.1.2)

10. What is the group of automorphisms of the spin factor? (Answer: section
3.1.3)

11. Why, in quantum mechanics, do we use expressions like a = & + ip,,, and
Jy = Jp +1iJy? (Answer: section 3.3.7)

12. How can one represent the transformations of the electromagnetic field
strength as operators of the triple product in the spin factor? (Answer:
section 3.5.4)
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13. How can one represent four-vectors and Dirac bispinors on the same ob-
ject? What is the relationship between these two representations? (An-
swer: sections 3.5 and 3.6)

14. How can non-self-adjoint operators produce real numbers (similar to the
eigenvalues of self-adjoint operators) and filtering projections? (Answer:
section 4.1)

15. Most balls of spaces of operators on a Hilbert space are homogeneous with
respect to analytic maps. How can signal transformations in a lossless
transmission line be used to demonstrate this homogeneity? (Answer:
section 4.2)

16. How can one derive an algebraic product from the geometry of a bounded
homogeneous domain? (Answer: section 5.3.5)

17. What is the algebraic non-commutative structure built on geometry only?
(Answer: sections 5.3.5 and 5.4)

18. Can the homogeneity of the ball of observables be derived from the ge-
ometry of the state space induced by the measuring process? (Answer:
section 5.7)

19. Why there are exactly six different types of bounded symmetric domains,
or equivalently, JB*-triple factors. (Answer: section 6.3.1)

20. What is the principle difference between the spin domain and the domains
in spaces of operators? (Answer: section 6.3)

21. What is the bridge between the classical and the exceptional domains?
(Answer: sections 6.2.3 and 6.3.7)

For the most part, this book represents the results of more than 30 years
of the author’s research. During this period, the theory of homogeneous,
bounded and unbounded symmetric domains made very significant progress.
We do not cover here all major topics of this area, but concentrate more on
the aspects that seem currently ripe for physical applications.

I want to thank my research collaborators: Prof. Jonathan Arazy, with
whom we started this project during our Ph. D. program, Prof. Bernard Russo
with whom we worked together for more than 20 years, Prof. Thomas Barton,
Dr. Truong Dang, Dr. Ari Naimark and Dr. Yuriy Gofman. Dr. Tzvi Scarr
assisted me in writing this book. I want to thank Alexander Friedman and
Hadar Crown for technical assistance. I want to thank Prof. Uziel Sandler,
Prof. Mark Semon and Dr. Alex Gelman for helpful comments. This work
was supported in part by a research grant from the Jerusalem College of
Technology.

The book is dedicated to my wife Rachel, for without her encouragement
over the last 30 years, I would not have been able to achieve the results
presented in the book.

Jerusalem College of Technology , Yaakov Friedman
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1 Relativity based on symmetry

In this chapter, we will derive the Lorentz transformations without assuming
the constancy of the speed of light. We will use only the principle of special
relativity and the symmetry associated with it. We will see that this princi-
ple allows only Galilean or Lorentz space-time transformations between two
inertial systems. In the case of the Lorentz transformations, we obtain the
conservation of an interval and a certain speed. From known experiments,
this speed is ¢, the speed of light in a vacuum.

The Einstein velocity-addition formula is also obtained. From this, it fol-
lows that the ball of all relativistically admissible velocities is a bounded sym-
metric domain. The Lie algebra of the automorphism group of this domain
consists of the generators of boosts and rotations. The relativistic dynamics
and the dynamics of a charged particle in an electromagnetic field are given
by elements of this Lie algebra.

Our methodology in special relativity is outlined in the following steps,
which we apply to two inertial systems:

Step 1 Choice of the parameters for the purpose of obtaining simpler (ideally,
linear) transformations between the two systems

Step 2 Identification of symmetry in the basic principle of the area of appli-
cation (in this case, the principle of special relativity)

Step 3 Choice of reference frames which preserve the symmetries

Step 4 Choice of inputs and outputs which reflect the description of the sys-
tem

Step 5 Derivation of the explicit form of the symmetry operator

Step 6 Identification of invariants

Step 7 Construction of an appropriate (bounded) symmetric domain for the
area of application

Step 8 Derivation of the equation of evolution based on the algebraic struc-
ture of the Lie algebra of the domain

1.1 Space-time transformation based on relativity

In this section, we derive the space-time transformation between two inertial
systems, using only the isotropy of space and symmetry, both of which follow
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from the principle of relativity. The transformation will be defined uniquely
up to a constant e, which depends only on the process of synchronization of
clocks inside each system. If e = 0, the transformations reduce to Galilean.

1.1.1 Step 1 - Choice of the Parameters

We begin with two “systems”, for example, an airplane flying at 30,000 feet
and an observer standing on the ground. We assume that the airplane is flying
in uniform motion with constant velocity, that there is no turbulence, etc.
Passengers in the airplane feel themselves at rest. When they put their cup of
coffee on the fold-down tray in front of them, it doesn’t slide or move. When
they drop a penny, it falls “straight” to the floor. This is a manifestation
of the principle of special relativity, which states that (Pauli [59], page 4)
“there exists a triply infinite set of reference systems moving rectilinearly
and uniformly relative to one another, in which the phenomena occur in an
identical manner.”

Typically, there are events which are observable from both systems. Lake
Michigan can be observed by both Observer A who is standing on its edge and
also by Observer B who is flying over it. Certainly Observers A and B will not
observe Lake Michigan in the same way. To Observer A, Lake Michigan is next
to him and standing still, while to Observer B, it is below him and moving.
Each observer sets up a system of axes and scales in order to measure the
position in space and time of each event. Imagine a kingfisher flying above the
lake. It swoops down, snatches a fish from the lake, and takes off again. Let’s
take the snatch as our event. Each observer has a different set of four numbers
to describe the location of this event in space-time. The connection between
these two sets of four numbers is the space-time transformation between the
two systems.

Why have we chosen space and time as the parameters with which to
describe events? Why not velocity and time? Why not position and momen-
tum? Why is the space-time description more convenient for transformations
between inertial systems?

The advantage is linearity. Newton’s First Law states that an object
moves with constant velocity if there are no forces acting on it or if the
sum of all forces on it is zero. Such a motion is called free motion and is de-
scribed by straight lines in the space-time continuum, as shown in Figure 1.2.
Conversely, any line (except lines with constant ¢) in the space-time contin-
uum represents free motion. A system is called an inertial system if an object
moves with constant velocity when there are no forces acting on it. By the
definition of an inertial system, free motion will be observed as free motion
in any inertial system. This means that the space-time transformations will
map lines to lines. Thus the space-time description of events leads to linear
transformations. For an example of how the choice of parameters with which
to describe events affects the linearity of the transformations, see Figure 1.3.



1.1 Space-time transformation based on relativity 3

Fig. 1.1. The space-time transformation between two systems is the connection
between the space-time coordinates of the same event (snatches of a fish) observed
and described by two observers in the two systems. Above, Observer A is standing
(at rest) on the edge of Lake Michigan, and Observer B is flying over it with constant
velocity.

We restrict ourself to inertial systems with the same space origin at time
t = 0. By a well-known theorem in mathematics, a transformation between

Y

Fig. 1.2. Lines in space-time and free motion. Two space coordinates, x and y,
and time are displayed. The line L intersects the plane ¢ = 0 at ro, the position of
an object at time ¢ = 0. The direction of L is given by a vector u = (1,v), where
v is the constant velocity of the object. The line L = {(t,ro 4+ vt) : t € R} is the
world-line of this free motion.
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K ! K.

(b)

Fig. 1.3. Two descriptions of free motion for an inertial system K and a system K,
whose acceleration with respect to K is a. (a) In the velocity-time description, the
constant velocity vo in K is represented by a line L = {(¢,vo) : ¢t € R} in K and
also by a line L = {(¢t,vo — at) : ¢ € R} in K,. (b) In the space-time description,
the constant velocity vo in K is represented by a line L = {(t,ro + vot) : t € R}
in K, while in K,, it is represented by a parabola (t,ro + vot — 0.5at?) : t € R}.
Hence, the space-time transformation between K and K, cannot be linear.

two vector spaces which maps lines to lines and the origin to the origin is
linear. Thus, the space-time transformation between our two systems is a
linear map. After choosing space axes in each system, we can represent this
transformation by a matrix.

1.1.2 Step 2 - Identification of symmetry inherent in principle of
special relativity

Albert Einstein formulated the principle of special relativity ([21], p.25): “If
K is an inertial system, then every other system K’ which moves uniformly
and without rotation relatively to K, is also an inertial system; the laws of
nature are in concordance for all inertial systems.” Observation of the same
event from these two systems defines the space-time transformation between
the systems. By the principle of special relativity, this transformation will
depend only on the choice of the space axes, the measuring devices (consisting
of rods and clocks) and the relative position in time between these systems.
The relative position in time between two inertial systems is described by
their relative velocity. We denote by v the relative velocity of K’ with respect
to K and by v’ the relative velocity of K with respect to K’. If we choose the
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measuring devices in each system to be the same and choose the axes in such
a way that the coordinates of v are equal to the coordinates of v/, then the
space-time transformation S from K to K’ will be equal to the space-time
transformation S’ from K’ to K. Since, in general, S’ = S~!, in this case
we will have S? = I. Such an operator S is called a symmetry. Thus, the
principle of special relativity implies that with an appropriate choice of axes
and measuring devices, the space-time transformation S between two inertial
systems is a symmetry.

1.1.3 Step 3 - Choice of reference frames

Following Einstein, the space axes in special relativity are chosen as in Figure
1.4. If we assume that the interval ds> = (cdt)? — dr? is conserved, the

t
K L /

A 4

Fig. 1.4. The usual Lorentz space-time transformations between two inertial sys-
tems K and K’, moving with relative velocity v. The space axes are chosen to be
parallel. The Lorentz transformation L transforms the space-time coordinates (t,r)
in K of an event to the space-time coordinates (t',r’) in K’ of the same event.

resulting space-time transformation between systems is called the Lorentz

transformation. In the case v.= (v,0,0) the Lorentz transformation L is
given by

t = 1 _ 'uz)

V1-v2/c? c
I _ 1 _

r= \/1—v?/c? (SL’ 'Ut) (11)

y =y

2=z

Note that the assumption that the system K’ is moving with velocity v with
respect to the system K implies that system K is moving with velocity —v
with respect to K’. And this apparently minor lack of symmetry means that
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the Lorentz transformation L’ from system K’ to system K will be different
from L. In fact, we have

t=——L (¢ + )
1-v2/c? ¢
r=——(z' + ot
\//171)2/02 (12)
y=y
z=12z.

We would like to arrange things so that the two transformations L and
L' are the same! It certainly would help if K were also moving with velocity
v with respect to system K'.

We will synchronize the two systems by observing events from each system
and comparing the results. System 1 begins with the following configuration.
There is a set of three mutually orthogonal space axes and a system of rods.
In this way, each point in space is associated with a unique vector in R3.
In addition, there is a clock at each point in space, and all of the clocks are
synchronized to each other by some synchronization procedure. System 2 has
the same setup, only we do not assume that the rods of system 1 are identical
to the rods of system 2, nor do we assume that the clock synchronization
procedure in system 2 is the same as that of system 1.

First, we synchronize the origins of the frames. Produce an event Ey at
the origin O of system 1 at time ¢ = 0 on the system 1 clock positioned at O.
This event is observed at some point O’ in system 2, and the system 2 clock
at O’ shows some value ¢’ = t;. Translate the origin of system 2 to the point
O’ (without rotating). Subtract ¢, from the system 2 clock at O’. Synchronize
all of the system 2 clocks to this clock. This completes the synchronization
of the origins.

Next, we will adjust the z-axis of each system. Note that system 2 is
moving with some (perhaps unknown) constant velocity v with respect to
system 1 and that the origin O’ of system 2 was at the point O of system 1 at
time ¢ = 0. Therefore, the point O’ will always be on the line vt in system 1.
Rotate the axes in system 1 so that the new negative x-axis coincides with the
ray {vt:t > 0}. Similarly, system 1 is moving with some constant velocity
w with respect to system 2, and the origin O of system 1 was at the point
O’ of system 2 at time ¢’ = 0. Therefore, the point O will always be on the
line wt in system 2. Rotate the axes in system 2 so that the new negative
a’-axis coincides with the ray {wt : ¢t > 0}. The two z-axes now coincide as
lines and point in opposite directions. We are finished manipulating the axes
and clocks of system 1 and will henceforth refer to system 1 as the inertial
frame K. However, it still remains to manipulate system 2, as we must adjust
the 3’- and z’-axes of system 2 to be parallel and oppositely oriented to the
corresponding axes of K.

To adjust the y’-axis of system 2, produce an event F; at the point r =
(0,1,0) of K. This event is observed in system 2 at some point r’. Rotate
the space axes of system 2 around the z’-axis so that r’ will lie in the new
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a’-y’ plane and have a negative y' coordinate yj. After this rotation, the
z-axis of K and the 2’-axis of system 2 will be parallel. We need to make
sure that they have opposite orientations. Produce an event Fs at the point
r = (0,0,1) of K. This event is observed in system 2 at some point r’. If
the 2’ coordinate of r’ is positive, reverse the direction of the z’-axis. This
completes the adjustment of the space axes of the two systems. See Figure
1.5.

Fig. 1.5. Two symmetric space reference frames. The relative velocity of the inertial
system K’ with respect to K is v. The coordinates of v in K are equal to the
coordinates (in K') of the relative velocity of the system K with respect to K.

It remains to redefine the space and time units of system 2 to match those
of K. The new space unit of system 2 is defined to be yj times the previous
space unit. In order to adjust the time unit of system two, we will measure
the speed |v| of system two with respect to K and the speed |v'| of K with
respect to system two. To calculate |v|, produce an event E3 at O’ at any
time ¢’ > 0. This event is observed in K at some point r = (z¢,0,0), and
the clock at this point shows time tg. The relative speed of system two with
respect to K is [v| = |xo|/to. The calculation of |v’| is symmetric. Produce an
event F4 at O at any time ¢ > 0. This event is observed in system 2 at some
point ' = (x(,0,0), and the clock at this point shows time t{,. The relative
speed of K with respect to system 2 is |v'| = |z{|/t,. Finally, the time unit
in system two is chosen as |v’|/|v]| times the previous unit. With this choice
of units, the speeds |v| and |v’| are equal. System 2 will henceforth be called
K'.

The transformations from system K to system K’ will now be mathemat-
ically identical to the transformations from system K’ to system K. In other
words, the space-time transformation S from system K to system K’ will be
a symmetry operator.

/
The space-time coordinates of K and K’ will be denoted (ﬁ) and (ﬁ, ) ,

respectively. These coordinates will be considered as a 4 x 1 matrix. By the
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above synchronization procedure, the frames have the same origin and the
two clocks at each origin are synchronized at time ¢ = 0. Moreover, the space
axes are reversed as in Figure 1.5 . Note that with this choice of axes, the
velocity coordinates of O’ in K are equal to the velocity coordinates of O in
K'. Thus, the transformation is fully symmetric with respect to K and K’
(see Figure 1.6). We will denote the space-time transformation from K to K’

Fig. 1.6. The time ¢ and two space axes = and y of systems K and K’ are displayed.
With our choice of the axes, the space-time map S from K to K’ is identical to the
space-time map S’ from K’ to K, and, thus, S is a symmetry.

by Sy, since it is a symmetry and depends only on the velocity v between
the systems.

1.1.4 Step 4 - Choice of inputs and outputs

The space-time transformation between two inertial systems can be consid-
ered as a “two-port linear black box” transformation with two inputs and
two outputs. There are two ways to define the inputs and outputs for such a
transformation.

Cascade connection

The first one, called the cascade connection, takes time and space of one of

t . . .
the systems, say <r> of K, as input, and gives time and space of the second

/

t .
system, say (r’) of K’ as output (see Figure 1.7) !

The cascade connection is the one usually used in special relativity.

We represent the linear transformation induced by the cascade connection
by a 4 x 4 matrix E, which we decompose into four block matrix components
E;;, as follows:

"We use a circle instead of the usual box notation in order that the connection
between any two ports will be displayed inside the box (see Figure 1.8).



1.1 Space-time transformation based on relativity 9

Fig. 1.7. The cascade connection for space-time transformations. The circle rep-
resents a black box. One side has two input ports: the time ¢ and the space r
coordinates of an event in system K. The other side has two output ports: the time
t' and the space r’ coordinates of the same event in system K'. The linear operators
E;; represent the functional connections between the corresponding ports.

(£)=2()=(EnE) () 0

To understand the meaning of the blocks, assume that the system K is the
airplane. Let ¢ be the time between two events (say crossing two lighthouses)
measured by a clock at rest at r = 0 on the airplane. The time difference ¢’
of same two events measured by synchronized clocks at the two lighthouses
(in system K’, the earth) will be equal to t = Ej;t. If we denote the dis-
tance between the lighthouses by r’, then r' = F5t, and Es; is the so-called
proper velocity of the plane. Generally, the proper velocity u of an object (the
airplane) in an inertial system is the ratio of the space displacement dr in
this system (the earth) divided by the time interval, called the proper time
interval d7, measured by the clock of the object (on the plane). Thus,

_ dr

== (1.4)

u

Hybrid connection

The second type of connection, called the hybrid connection, uses time of

one of the systems, say t of K, and the space coordinates r’ of the second
!/

. . 4 .
system K’', as input, and gives < r> as output (see Figure 1.8). Usually we

use relative velocity (not relative proper velocity) to describe the relative
position between inertial systems. To define the relative position of system
K’ with respect to K, we consider an event that occurs at O’, corresponding
to r' = 0, at time ¢, and express its position r in K. If we denote by v the
uniform velocity of system K’ with respect to K, then

r = vt. (1.5)
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K K’

Fig. 1.8. The hybrid connection for space-time transformations. The circle repre-
sents a black box. The two input ports are the time ¢ of an event, as measured in
system K, and its space coordinates r’, as measured in system K’. The two output
ports are the time t' of the same event, calculated in system K’, and its space
r coordinates, calculated in K. The linear operators S;; represent the functional
connections between the corresponding ports. For instance, to define the map S21,
we consider an event that occurs at O’, corresponding to input r’ = 0, at time ¢ in
K. Then Sa1t represent the space displacement of O’ in K during time ¢, which is,
by the definition, the relative velocity v of system K’ with respect to system K.

Note our use of the hybrid connection. In this section we will use the hybrid
connection in order to be consistent with the description of relative position
between the systems and because we will be interested later in velocities
(rather than proper velocities).

Thus, for the transformation .Sy, we choose the inputs to be the scalar t,
the time of the event in K, and the three-dimensional vector r’ describing
the position of the event in K’. Then our outputs are the scalar ¢/, the time
of the event in K’, and the three-dimensional vector r describing the position
of the event in K. As above with respect to the cascade connection, here we
also decompose the 4 x 4 matrix Sy into block components:

() =s (D)= (25 (): "

(see Figure 1.8).

The transformation between cascade and hybrid connections

Note that the matrices E and Sy describing the space-time transformations
between two inertial systems using the cascade and hybrid connections, re-
spectively, are related by some transformation ¥. To define this transforma-
tion, note that equation (1.3) can be rewritten as a scalar equation

t/ = E11t+E121‘ (17)

and a vector equation
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I‘/ = Eglt + E22r. (18)

The matrix Fso is invertible, since from its physical meaning it is one-to-one
and onto. By multiplying (1.8) on the left by Eo,', we get

r = —Ey Eot + Ey'r’. (1.9)

Substituting this expression for r into (1.7), we get

t' = (F11 — B12Fyy Eoy )t + Ejo Byt (1.10)
Thus
t'\ [ Ei — E12Eyy' Eay EroEgy t (111)
r) —Eyp'Fy Byt ) \r' )’ '
implying that
S11 512 _ (Eu - E12FE5y By EioEyy' (1.12)
Sa1 S22 . i O By ' '

Define a transformation ¥ by

Ei By Ey1 — E12Fyy gy EroEqy
4 = - _ . 1.13
<E21 Ey —Es; Ea Egy (113)

This transformation is called the Potapov-Ginzburg transformation. Then,

S11 S12> <E11 E12>
=V . 1.14
(521 522 E21 E22 ( )
A symmetric argument shows that
Ei Eqo S11 Sz
=y . 1.15
(E21 E22) <521 Sao (1.15)

It is easy to check that S, is a symmetry (that is, S2 = I) if and only if
E =¢(Sy) is a symmetry.

The meaning of the operators in the hybrid connection

We explain now the meaning of the four linear maps S;;. To define the maps
So1 and S11, consider an event that occurs at O’, corresponding to r’ = 0, at
time ¢t in K. Then Sa () expresses the position of this event in K, and S11(t)
expresses the time of this event in K’. Obviously, S2; describes the relative
velocity of K’ with respect to K, and

So1(t) = vt, (1.16)
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while S1;(t) is the time shown by the clock positioned at O’ of an event
occurring at O’ at time ¢t in K and is given by

Su(t) = ot (1.17)

for some constant «.

To define the maps S12 and S32, we will consider an event occurring at
time ¢ = 0 in K in space position r’ in K’. Then Sj2(r’) will be the time of
this event in K’, and Sa2(r’) will be the position of this event in K. Note
that S12(r’) is also the time difference of two clocks, both positioned at time
t = 0 at v’ in K’, where the first one was synchronized to the clock at
the common origin of the two systems within the frame K’, and the second
one was synchronized to the clock at the origin within the frame K. Thus
S12 describes the non-simultaneity in K’ of simultaneous events in K with
respect to their space displacement in K’, following from the difference in
synchronization of clocks in K and K’. Since S5 is a linear map from R3 to
R, it is given by:

Sia(r') = eTr’, (1.18)

for some vector e € R3, where e” denotes the transpose of e. Note that e’/
is the dot product of e and r’. See Figure 1.9 for the connection between the
time of events in two inertial systems.

t

Fig. 1.9. The times ¢ and t of an event at space point r’ in system K’. The
difference in timings is caused both by the difference in the rates of clocks (time
slowdown) in each system and by the different synchronization of the clocks posi-
tioned at different space points.

Finally, the map So5 describes the transformation of the space displace-
ment in K of simultaneous events in K with respect to their space displace-
ment in K’, and it is given by

SQQ(I‘I) = AI‘/ (119)
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for some 3 x 3 matrix A.

1.1.5 Step 5 - Derivation of the explicit form of the symmetry
operator

Our black box transformation can now be described by a 4 x 4 matrix S,
with block matrix entries from (1.16), (1.17), (1.18) and (1.19):

(tr> = (rt> - <3i> (ré) (1.20)

If we now interchange the roles of systems K and K’, we will get a matrix

St
(o) =s(v)= (% AT) (%) (1.21)

But the principle of relativity implies that switching the roles of K and K’
is nonrecognizable. Hence

T
a=d, el =€, v=v/, A=A

)

By combining (1.20) and (1.21), we get S2 = I, implying that Sy is a
symmetry operator. Hence,

(V%)= (") 12

where I is the 3 x 3 identity matrix. Equation (1.22) is equivalent to the
following four equations:

o +elv=1, (1.23)
ae’ +efA =07, (1.24)
av+Av=0 (1.25)
and
vel +A?=1. (1.26)

Note that since space is isotropic and the configuration of our systems
has one unique divergent direction v, the vector e is collinear to v. Thus

e=ev (1.27)
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for some constant e. Since the choice of direction of the space coordinate
system in the frame is free, the constant e depends only on |v| and not on
v. Finally, from (1.18) and (1.27), it follows that this constant has units
(length/time)~2.

By using (1.23) and (1.27), we obtain o = £4/1 — e|v|2. To choose the
appropriate sign for a;, we use the fact that the transformation is continuous
in v and that for v =0 we have o« = 1. Thus,

a=+/1—e¢lv|?. (1.28)

Note that by use of (1.27), the operator vel acts on an arbitrary vector
u € R3 as follows:

vTu
[v|?

T T

velu=evviu=¢lv|? v = e[v]*P,u, (1.29)

where P, denotes the orthogonal projection onto the direction of v. Now
from (1.26), we get

A% =T —e|v|?P, = a?P, + (I - P,).
Using once more the continuity in v, we get
Sog =A=—aP, — (I —P,). (1.30)

Thus, the space-time transformation between the two inertial frames K and

K'is
<i> - (f> N (3 —aP, iv(TI—PV)> (f) (1.31)

with « defined by (1.28) as o = /1 — e|v|? (see Figure 1.10).
If we choose v = (v,0,0) and write r = (z,y,2) and v’ = (2/,y/,2’), then
the above matrix becomes

aev 0 0
v—a 0 0
00 —-10
00 0 -1

Sy = (1.32)

To compare this result with the usual space-time transformations in spe-

cial relativity, we have to recalculate our result for the cascade connection.
!/

To obtain (f_,) as a function of (f_), we use the map ¥ from (1.15) and

obtain

(£)=wso (D)= (4 p, ot py) (1) 0
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K K’

t m t
v ev'|

r r

Fig. 1.10. The hybrid connection for space-time transformations. The circle rep-
resents a black box. The two input ports are the time ¢ of an event, as measured in
system K, and its space coordinates r’, as measured in system K’. The two output
ports are the time ¢’ of the same event, calculated in system K’, and its space r
coordinates, calculated in K. The explicit form of the linear operators representing
the functional connections between the corresponding ports is shown.

Fig. 1.11. The cascade connection for space-time transformations. The circle rep-
resents a black box. The two input ports are the time ¢ of an event and its space
coordinates r , as measured in system K, and the two output ports are the time ¢’ of
the same event and its space r’ coordinates, calculated in system K'. The explicit
form of the linear operators representing the functional connections between the
corresponding ports is shown.

where y(v) = 1/4/1 — |v|?/c?. This defines an explicit form for the operators
of the space-time transformations using the cascade connection (see Figure
1.11). For the particular case v = (v,0,0), we get

t' =~v(v)(t — eva)
v = ’Y(V)(vt - 37) (134)
Yy =-y
2 =—z
which are the usual Lorentz transformations (with space reversal) when
e =1/c% If e = 0, then a = 1, and the transformations are the Galilean

transformations.
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1.2 Step 6 - Identification of invariants

In this section and the two which follow, we will show that the principle of
relativity alone implies that an interval is conserved, that the ball D, of all
relativistically admissible velocities is conserved and that D, is a bounded
symmetric domain with respect to the projective maps. The symmetry of
this ball, resulting from the above space-time transformations, determines
the so-called symmetric velocity.

1.2.1 Eigenvectors of S,

As mentioned above, the space-time transformation between the systems K
and K’ is a symmetry transformation. Such a symmetry is a reflection with
respect to the set of fixed points. We now want to determine the events fixed
by Sy, meaning that in both systems the event will have the same coordinates.
It follows from (1.31) that such an event must satisfy

<tfl> - (ﬁ) - (3 —aP, iV(T[_pv)> <5/> (1.35)

This can be rewritten as
t = at + e(v|r’) (1.36)
and
' =vt— (aPy + (I - R,))r'. (1.37)
By multiplying the previous equation by (I — P,), we get (I — P,)r’ = 0.

Hence, (1 4+ a)r’ = vt, implying that

r v r

—_— = = — = . 138
t d14a ¢ M (1.38)

Note that if (¢, ') satisfies (1.38), then by use of (1.28), it also satisfies (1.36).
The meaning of this is that all of the events fixed by the transformation Sy
lie on a straight world-line through the origin of both frames at time ¢ = 0,
moving with velocity wy defined by (1.38) in both frames (see Figures 1.13
and 1.14).

The velocity wy will be called the symmetric velocity between the systems
K and K’. Note that wy is equal to its hybrid velocity r’/¢, defined above as
the space displacement measured in one inertial frame divided by the time
interval measured in the second frame.

In addition to the mathematical meaning of the symmetric velocity, we
can give it the following physical interpretation. Place two objects of equal
mass (test masses) at the origin of each inertial system. The center of mass
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~U

Fig. 1.12. The symmetric velocity £w is the velocity of each system with respect
to their center, while v is the velocity of one system with respect to the other.

of the two objects will be called the center of the two inertial systems. The
symmetric velocity is the velocity of each system with respect to the center
of the systems (see Figure 1.12).

Let us now find the events represented by (ﬁ,) , with r’ in the direction

of v, which are the -1 eigenvectors of S,. By modifying equations (1.35),
(1.36) and (1.37) accordingly, we get:

r_ - =w_,. (1.39)

The relative position of the 1 and -1 eigenvectors of Sy differs for the two
cases a < 1, which by (1.28) corresponds to e > 0, and « > 1, corresponding
to e < 0. In Figure 1.13, we show the position of the eigenspaces in the case
a < 1, and in Figure 1.14, we show the position of the eigenspaces in the case
a>1.

1.2.2 Unique speed and interval conservation

The symmetry S, becomes an isometry if we introduce an appropriate inner
product. Under this inner product, the 1 and -1 eigenvectors of .S, will be or-
thogonal. Figure 1.15 shows the action of a general symmetry S in two cases:
(a) when the eigenspaces are not orthogonal and (b) when the eigenspaces
are orthogonal. Only in the second case are the lengths of intervals preserved.

The new inner product is obtained by leaving the inner product of the
space components unchanged and introducing an appropriate weight p for
the time component. This change of time scale maps t — ut and velocity
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bt
1
r=wit
r=w_it r=vt
W_1 0 W1 v r

Fig. 1.13. Eigenspaces of the symmetry if & < 1. A two-dimensional section of
space-time is presented: the time direction and one dimension of space, in the
direction of v. In this case, by changing the scale of the time t, we could make the
world-lines corresponding to velocities w1 and w_; orthogonal.

t
A
1
r = Wlt
r=vt r=w_t
0 W1 v wW_1 T

Fig. 1.14. Eigenspaces of the symmetry if & > 1. A two-dimensional section of
space-time is presented: the time direction and one dimension of space, in the
direction of v. In this case, by changing the scale of the time ¢, we cannot make
the world-lines corresponding to velocities wi and w_; orthogonal, since the angle
between them will always be less than 90°.

w — w/u. Thus wt is unchanged. The orthogonality of the eigenvectors
means that

Wlt W,1t

(1" ) =202 + i) =0, (1.40)

By use of (1.38), (1.39) and (1.28), this becomes

2 2 v[? 2 1
_ . — 1.41
K v a) e M Ta—g=r =0 (141)

If e > 0, corresponding to a < 1, the orthogonality of the 1 and -1
eigenvectors of Sy is achieved (see Figure 1.13) by setting
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Wi W

(a)

W, W

(b)

Fig. 1.15. The action of a general symmetry S for two cases. (a) the 1-eigenspace
w1 and the -1-eigenspace w_; are not orthogonal. (b) these eigenspaces are orthog-
onal. Only in the second case is the length of an interval [A,B] preserved.

_ b

In this case, Sy becomes an isometry with respect to the inner product with
weight p, implying that

(1.42)

(ut)® + |r'|* = (ut')® + |r]?, (1.43)
or, equivalently,
(ut)? = [¥'|2 = (ut)? — [e[2. (1.44)

The previous equation implies that our space-time transformation from
K to K’ conserves the relativistic interval

ds* = (pdt)* — |dr|?, (1.45)

with p defined by (1.42). See Figure 1.16 for the meaning of the interval.

In particular, the transformation S, maps zero interval world-lines to zero
interval world-lines. Since zero interval world-lines correspond to uniform
motion with unique speed u, for any relativistic space-time transformation
between two inertial systems with e > 0, there is a speed p defined by (1.42)
which is conserved. Obviously, the cone ds? > 0, corresponding to the positive
Lorentz cone, is also preserved under this transformation.



20 1 Relativity based on symmetry

Fig. 1.16. The meaning of the relativistic interval. Two events are depicted: A,
with space-time coordinates (ta,ra), and B, with space-time coordinates (tp,rg)
in system K. An inertial system K is chosen with the space origin at ra at time
t4 and at rp at time ¢p. The relative velocity of K with respect to K is v = (rp —
ra)/(tp —ta) = Ar/At. The time of event A in K is ¢4, and the time of event B is
t’5. The interval between the events A and B is ds® = (u(tz—t4))? = (uAt)*—|Ar|?.
If conservation of the speed of light is assumed, then p = c.

Let us now show that e = e, is independent of the relative velocity v
between the frames K and K'. To do this, consider Figure 1.17, in which two
intermediate inertial systems K and K’ have been added to the configuration
of Figure 1.5. B B

Note that the systems K and K’ are simply space-reversed, and thus the
transformation between them is S = Sy. The space-time transformation S,
can now be decomposed as follows:

Swl Sw1

K K K’ K’

and, hence,
Sy = Sw, SSw, - (1.46)

(From our discussion we know that the speed u = 1/,/ew, is preserved by
Sw,, and, since S preserves every speed, it follows that Sy also preserves this
speed, implying that e, = eyw,. By a standard argument, this implies that e
is independent of v.

Several experiments at end of 19th century showed that the speed of light
is the same in all inertial systems. Thus

p=c and e=—,
c
where c is the speed of light in a vacuum, and we have shown that the space-
time transformations between two inertial systems are the Lorentz transfor-
mations.
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K
V4
4 Y
Z' 10) x
X v
K' S
2~ | O
- Y | L
K V4

Fig. 1.17. The inertial systems K and K’ are introduced between systems K and
K'. The origin O is at the center of the systems K and K'. The system K is
space-reversed to K, and K’ is space-reversed to K’.

Note that the operator S, becomes self-adjoint with respect to the inner
product defined by (1.40) with p = ¢. Moreover, we can now calculate the
adjoint of the relative velocity v as a linear operator from time ¢ to space
displacement r. Since

(vle)t = (vt|r) = (t|v*r) = p’tv'r,
we get
* 1 T
v¥(r) = C—2<v|r> =e(v|r) = e’ r = S12(r).

This shows that the adjoint to the relative velocity between two inertial sys-
tems K’ and K is the operator which describes the non-simultaneity in K’
of simultaneous events in K displaced at a distance r.

Theoretically there is also the possibility that e = 0. In this case, the
space-time transformations defined by (1.31) become the Galilean transfor-
mations. In the next section, we will show that the case e < 0 leads to phys-
ically absurd results, leaving only two possibilities for relativistic space-time
transformations: the Galilean and Lorentz transformations.

1.3 Relativistic velocity addition

We begin this section by deriving a general formula for relativistic velocity
addition. Using this formula, we then show that e < 0 leads to physically ab-
surd results. Thus, we will assume that e > 0, implying that the space-time
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transformations between the inertial systems are the Lorentz transforma-
tions. In this case, the velocity addition coincides with the Einstein velocity
addition. We will study the mathematical properties of this velocity addition
and its effect on the ball D, of relativistically admissible velocities. We end
the section by showing that the symmetric velocity is the relativistic half of
its corresponding velocity.

1.3.1 General formula for velocity addition

In special relativity, the addition of two velocities v and u is defined as
follows. Let K7 and K5 be two inertial systems, with space axes parallel (not
reversed), where the relative velocity of Ky with respect to K7 is v. Consider
an object moving with uniform velocity u in K. If this object is observed in
K, it is moving with uniform velocity v @ u, called the relativistic sum of
the velocities v and u (see Figure 1.18).

K, K,
r S r
S21= v S]2
r r
SZZ

Fig. 1.18. The velocity addition v & u is the velocity in K; of an object moving
with uniform velocity u in K>, where K2 moves relative to K; with velocity v and
the space axes of the two systems are parallel (not reversed).

To derive an explicit formula for the velocity addition, we will associate
with our moving object an inertial system K3 with axes parallel to the axes
of Ks. The following diagram (Figure 1.19), showing the hybrid connection
between these three systems, will be used to derive the above-mentioned
formula. ;From (1.31), with sign modification due to non-reversal of space
frames, it follows that the operators in this diagram are

a1 =+/1—¢€|v|]?, as=+/1—c¢|ul? (1.47)

e =—evl, ey=—eul, (1.48)

Alzava—i—I—P\, (149)
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Fig. 1.19. Three inertial systems K7, K2 and K3. The system K; is moving par-
allel to K3, and K3 is moving parallel to K3. The circles represent two space-time
transformations: Sy from K7 to K2 and Sy from K> to K3. The ports By and D2
are inputs to Sy, the ports By and D; are outputs of Sy, the ports Bz and D4 are
inputs to Sy, and the ports By and D3 are outputs of Sy. The operators inside the
transformations are similar to the ones in Figure 1.10, page 15.

and
AQ :OéQPu—f—I—Pu. (150)

To define the velocity addition v @ u, we use inputs r” = 0 at port Dy
and At at port By. The output at port D; will be (v @ u)At. This output is
combined from the following passes through the diagram :

B1 — D1

B1 4>B24>B34>D34>D24>D1
B1—>BQ—>Bg—>D3—>D2—>BQ—>B3—>D3—>DQ—>D1
and so on.

By substituting the transformations for these passes and using the formula
for the sum of a geometric series, we get

(v u)At = vAL+ Ajuag At + Ajuejuag At + Ajuejuejuay At + - - -

= vAt + Alu(l — elu)_lalAt,
or
(vou)At = vALt+ Aju(l +e(viu)) o At. (1.51)

Using (1.47), (1.48) and (1.49), we get the velocity-addition formula

9 u
= P, +a(l - P))—— .
vhbu=v+ (a’Py + o ))1+e<v|u)
where o = /1 — ¢|Vv|2.

Note that in (1.51), the second velocity summand is obtained by the
following three corrections of u. The first correction, described by ayq, is due
to the time slowdown of the clocks in Ko with respect to K. The second

(1.52)
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correction, At' — At + e{v|uAt’), is needed to correct the difference in the
settings of two clocks at a distance u/At’, synchronized in Ky, with the clocks
at the same points synchronized in K;. Finally, the last correction, described
by A;, expresses the space contraction from K5 to Kj.

1.3.2 Non-negativity of e.
Consider now the case when the velocities v and u are parallel. Since, in this
case, u = Pyu and (v[u)v = |v|?u, from (1.52) we get

u _Vv+u
L+e(viu) 1+e(viju)

vou=v+(1—elv]) (1.53)

If e < 0, this implies that
lve&ul > [v|+|u,

and, thus, the magnitude of v & u can become arbitrarily large. For a fixed
v, the length of the vector v & u in the direction of v, as a function of u, is
shown in Figure 1.20.

150
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°
v
s
&
3

25 30 35 40

u

Fig. 1.20. Velocity addition with negative e. In the figure, e = —0.01 and v =
(5,0,0). For small u = (u,0,0), the relativistic sum v @ u is slightly larger then
v +u, but when u approaches 20, the sum goes to infinity, and later it even changes
direction.

This leads to physically absurd results: the sum is not defined for any u
such that (v|u) = —e™!, and for large u, the direction of the sum is opposite
that of each summand. Therefore, we will assume from now that e > 0.
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1.3.3 Velocity addition in special relativity

We will assume from now on that e = 1/¢2, and, thus, the space-time trans-
formations Sy given by (1.31) become

()= i) () o

a=+/1—1|v|?/c2. (1.55)

In this case, the relativistic addition formula (1.52) becomes

with

u

VEBEu:V-I-(aZPV-i-a(I—Pv))W,

(1.56)
which is known as the Finstein velocity-addition formula.

For some calculations, it is convenient to use a different form for Einstein
velocity-addition. The alternative formula follows from (1.56) by substituting
Py(u) = <1“‘|,‘|’2>V and a? =1 — |v|?/c?. With these substitutions, we get

vegu= (v+aou+ ﬁ(ﬂuw). (1.57)

1+«

The space-time transformations between frames K; and K3 can also be
obtained by use of the diagram in Figure 1.21. However, since the notion

L+ (vfu)/e?

Fig. 1.21. Diagram of the connection between systems K; and K3

of parallelism is not transitive in special relativity, the assumption that the
space axes of Ky were chosen to be parallel to those of K7 and that the space
axes of K3 were chosen to be parallel to those of K5, does not imply that
the space axes of K3 are parallel to those of K. An explicit expression for
the non-transitivity of parallelism in special relativity will be given in section
2.2.4 of chapter 2, page 64. Thus, the space contraction operator Az and the
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vector ez will depend on a rotation which will make the axes of K3 parallel to
the axes of K. Nevertheless, we can calculate the time contraction as using
the same argument we used for deriving the expression for v @ u, obtaining

asay |v2\/ u/2 1
_ — == 1.58
R (e1]u) \/ c? 2 14 (vlu)/c? (1.58)

1.3.4 Examples of velocity addition

We consider now two special cases of Einstein velocity addition.

Velocity addition of perpendicular vectors

If the velocity u is perpendicular to the velocity v, meaning that
(v|u) = 0, then from (1.57) we have

vdru=v+au, (1.59)

where a, = y/1 — |v|?/c?. In this case, there is no correction for the differ-

Fig. 1.22. Velocity addition with u perpendicular to v. Note that u®gv # vdgu.

ence in synchronization of clocks in the two systems, and there is no space
contraction. The only correction which we have to perform on u is that due
to the slowdown of the clocks in K5 with respect to the clocks in K. Note
that here the velocity addition is not commutative, since u@®g v = u+ auV,
with a,, = /1 — |u|?/c?, and differs from v @ u calculated by (1.59) (see
Figure 1.22). For an expression which quantifies the non-commutativity of
velocity addition, see Section 2.2.2 of Chapter 2, page 62.

Velocity addition of parallel vectors
Consider now the case when u is parallel to v. Let

I, ={ueD,:u=MXv, X € R},
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the set of velocities parallel to v. For any u € I, we use (1.53) to get

v+u
L+ (vlu)/c*

Note that in this case, we have v &g u = u @ v, so the addition is com-
mutative. Moreover, it could be shown that only in this case is the Einstein
velocity addition commutative. Denote the direction of v by j = v/|v|. Then
any u € I, can be written as

vdgu= (1.60)

u = ucj, (1.61)

where |u| = |u|/c is the relative length of u with respect to the speed of light.
Now we can rewrite (1.60) as

ij. (1.62)

The commutative addition on I, is connected to the usual addition of real
numbers in the following way. Recall that the hyperbolic tangent function is
defined by tanh(z) = (e —e™*)/(e* + e~ %) (see Figure 1.23) and that

-1

-5 0 5

Fig. 1.23. The hyperbolic tangent tanh function. This function maps the real line
R onto the open interval (—1,1) and often serves as a connecting function between
the addition of the real numbers and the addition of the commutative subspaces of
bounded symmetric domains.

tanh a + tanh b
tanh b) = . 1.
anh(a +b) 14 tanha tanhb (1.63)

Combining (1.62) with (1.63), we get, for any real numbers a and b,
tanh(a)cj ®p tanh(b)cj = tanh(a + b)cj. (1.64)

By introducing the map ¢ : R — I, defined by ¢(a) = tanh(a)cj, we have
the following commutative diagram:
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By using this diagram and the fact that ¢—!(u) = tanh™!(Ju|/c), the velocity
addition in I, is given by

u®p w = tanh(tanh ™' (|u|/c) + tanh ™' (|w]|/c))cj, (1.65)

for any u,w € I, where j = v/|v|.

Given an arbitrary u (not necessarily in I,), we decompose it as u =
u; + ug, where u; = Pyu € I, and up = (1 — P,)u. Then, from (1.56), we
have

vedpu=(ve&gu)+Juy, (1.66)

where the constant § = Ve depends on u;. Consider the disc Ay,

(07
1+<v|u1
obtained from the intersection of the plane v, = u; (which is perpendicular
to v) with D,. Note that all u ending on A,,, have the same u; component
and differ only in the us component. Thus, all vectors v@ g u end on the disc

Avgpu, (see Figure 1.24).

» 2
g 0 ; 0
-2 -2
o I
02 0 2 2 Vx
Vv Vx 8 Vy x 10°
y x 10 (b)
(a)

Fig. 1.24. (a) A set of 5 uniformly spread discs A; obtained by intersecting the
three-dimensional velocity ball D, of radius ¢ = 3 - 108m/s with y — 2z planes at
x = 0,£10% £2-10%m/s. (b) The images of these A; under the map ¢ (u) = v®ru,
with v = (10%,0,0)m/s. Note that o (A4;) is also a disc in D,,, perpendicular to v
and moved in the direction of v. On each disc A;, the map ¢ acts as multiplication
by a constant in the uz component.

The connection between a velocity and its symmetric velocity

As mentioned on page 16, the symmetry Sy fixes only the velocity wy. We
want to find the connection between w; and v. From the definition (1.38) of
the symmetric velocity wy of v, we have
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Wi =
! 1—[v[2/e’

29

(1.67)

which is a vector in the same direction as v. Thus w; € I, and has length

v .
|wi| = TRy (see Figure 1.25).

W,
1.5f

0.5F

Fig. 1.25. The length of the symmetric velocity wi with respect to the length of
v. For small velocities, the length of the symmetric velocity is approximately half
the length of the corresponding velocity, but for speeds close to the speed of light

3-10%m/s, they are almost the same.

Note that (v|wy) = |v||lw1| and
v=wi++1—|v|?2/Ew.
This implies that
V2 = 2(vlwi) + w1 [? = [wi[? = [v[*|wi[?/c?,

and

2|w |

lv| = 1+ |w1|2/02'

From this, it follows that

2W1

YT T e

(1.68)

(1.69)

(1.70)

(1.71)

Thus, the symmetric velocity wy is the relativistic half of the velocity v, as

we should expect (see Figure 1.12).
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1.4 Step 7 - The velocity ball as a bounded symmetric
domain

1.4.1 The symmetry on D,

Recall the definition of a symmetric domain. Let D be a domain in a real or
complex Banach space. We denote by Aut(D) the collection of all automor-
phisms (one-to-one smooth maps) of D. The exact meaning of “smooth” will
vary with the context, but it will always mean either projective (preserving
linear segments), conformal (preserving angles), or complex analytic. We will
sometimes denote the particular automorphism group under discussion by
Auty,(D), Aut.(D) and Aut,(D) in order to indicate the type of smoothness.
A domain D is called symmetric if for any element a € D, there is a symmetry
Sq € Aut(D) fixing only the point a. It is easy to show that a domain D is a
symmetric domain if it has a symmetry about one point and is homogeneous
in the sense that for any two points z,w € D, there is an automorphism
¢ € Aut(D) such that ¢(z) = w.
We show now that the set D,,, defined by

D,={v: veR |v|l<ec} (1.72)

representing all relativistically admissible velocities in an inertial frame K, is
a bounded symmetric domain with respect to the projective automorphisms
of D,. Let a € D, be an arbitrary velocity. We define

v=adga. (1.73)

(From (1.71), it follows that a is the symmetric velocity of v, and, thus, from
Section 2.1, the line (¢, at) in space-time is fixed by S, and also by the map
E, = ¥(Sy) defined by (1.33).

The map E, induces a map s, of the velocity ball as follows. Any point
u in the velocity ball D, can be identified as the intersection of a line L =
{(t,ut) : t € R} through the origin in space-time of K with the plane II =
{(1,r) € K : v € R3} (see Figure 1.26). Let K’ be an inertial system moving
with relative velocity v with respect to K, whose space axes are reversed to
those of K.

Under the space-time transformation F, between systems K and K’, the
line L : (¢,ut) in K is mapped to a line through the origin in K’. {From the
definition of Einstein velocity addition, this line is L' : (¢, (v &g (—u))t’) in
K’ (the minus sign came from the space reversal). We define s,(u) to be the
intersection of this line with the plane IT = {(1,r) € K : r € R*}. ;From
(1.57), the transformation s, is given by

—ua

salw) = v+ (@R +al = RO e

(1.74)
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Fig. 1.26. The velocity ball D, in space-time. Time and two dimensions of space
are displayed. The velocity u is the intersection of a line L = {(¢t,ut) : t € R}
through the origin with the plane IT = {(1,r) € K : r € R*}. The segment [AB] in
D, is the intersection of D, with a two-dimensional plane @@ through the origin.

with a = /1 — |v|?/c?, which is the Einstein velocity sum of the relative
velocity v of the systems with —u (and not u, due to the space reversal). To
visualize s,, decompose the velocity u into u = u; + us, where u; = P,u
and uz = (1 — Py)u. Then, from (1.74), we get

sa(u) = (v &g (—w)) +5(—ua), (L.75)

where the constant § = W depends only on u;. The first term v &g
(—uy) is depicted in Figure 1.27. The second term represents reversal and
stretching of the component of u perpendicular to v.

We will show that s, is a projective map and a symmetry fixing only a.
Note that any segment in D, is obtained from the intersection of D, with
a two-dimensional plane @ through the origin in space-time. The plane @
is mapped by F, to a two-dimensional plane in space-time (¢',r’) in K’.
Thus a segment of D, is mapped by s, to a segment, implying that s, is a
projective map. As mentioned on page 16, the symmetry S, fixes only the
line associated with a, the symmetric velocity of v. Therefore s, fixes only a.
By use of (1.74) and the definition of «, it is easy to show that sa(sa(u)) = u,
implying that s2 = I, and thus s, is a symmetry.

1.4.2 The group Aut,(D,) of projective automorphisms of D,

We denote by Aut,(D,) the set of all projective automorphisms of the do-
main D,. This set is a group, since the composition of two projective au-
tomorphisms is a projective automorphism, and the inverse of a projective
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Fig. 1.27. The action of the symmetry s, on velocities u; € D, which are parallel
to a, where a = 108m/s. Note that only the point a is fixed and the graph intersects
the u axis at v=a®g a.

automorphism (which always exists) is a projective automorphism. Note that
for any a € D,, the map ¢, defined by

¢a(u) =adru, (1.76)

where a®g u is defined by either (1.56) or (1.57), is an element of Aut,(D,).
The fact that ¢, is a projective map follows from the same argument which
showed that s, is projective. It is obvious that for any velocity u € D,, in the
system K5, which is moving parallel to K7 with relative velocity a, there is a
unique corresponding velocity ¢a(u) € D, in K;. Conversely, every velocity
in K; corresponds to a unique velocity in Ky. Thus, the map ¢, : D, — D,
is one-to-one and onto (see Figure 1.28).

Next, we characterize the elements of Aut,(D,). Let ¢ be any projective
automorphism of D,. Set a = ¢(0) and U = ¢, 4. Then U is a projective
map that maps 0 — 0 and is thus a linear map which can be represented by a
3 x 3 matrix. Since U maps D, onto itself, it is an isometry and represented by
an orthogonal matrix. Since 1 = @,U, the group Aut,(D,) of all projective
automorphisms is defined by

Autp(Dy) = {palU :a€ D,, U e O(3)}. (1.77)
We write @, i instead of p,U, and, from (1.57), we have

1 (a|]Uu)a

(Pa,U(u)

for u € D,. The group Aut,(D,) is a real Lie group of dimension 6, since
any element of the group is determined by an element a of the 3-dimensional
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Fig. 1.28. The velocity ball transformation @a, for a = 10°m/s. On the zero level
we see a two-dimensional section of the velocity ball D, of radius ¢ = 3 - 108m/s,
with a rectangular grid. On level one we see the image of this ball under the map
pa. One cell of the grid has been darkened along with its image to help visualize
the effect of the transformation. Note how the grid moves in the positive direction
of the v, axis.

open ball of radius ¢ in R? and an element U of the 3-dimensional orthogonal
group O(3).

By a one-parameter subgroup g(s) of Aut,(D,), we mean a map g : R —
Aut,(D,), such that for any s1, s2 € R, we have

g(s1+ s2) = g(s1)g(s2) = g(s2)9(s1)- (1.79)

Any physically meaningful evolution generates a one-parameter subgroup of
transformations of the state space of the system. This subgroup is commu-
tative, since the evolution of the system during the time interval s; + so is
independent of the way we partition this interval. Note, however, that the
tull group Aut,(D,) is not commutative. This means that the set of possible
evolution equations is restricted to those stemming from the commutative
subgroups of Aut,(D,).

For any a € D,, the one-parameter subgroup generated by , is ob-
tained as follows. Denote the direction of a by j = a/|a] and define
k = tanh™'(|a|/c). For any real s, define b(s) = tanh(sk)cj. Then b(1) = a,
and, from (1.64), it follows that for any real s, s2, we have

b(sl + 82) = b(Sl) DE b(SQ) = b(Sg) DE b(Sl) (180)
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We call g(s) = ¢n(s) the one-parameter subgroup generated by ¢a. See Figure
1.29 for an example.

Fig. 1.29. The effect on a two-dimensional section of D, by the one-parameter
subgroup g(s) generated by the map a from Figure 1.28, for s = —1,0,1,2. One
cell of the grid has been darkened along with its images to help visualize the effect of
the transformation. Note that g(—1) = wa* = @—_a, g(0) = I-the identity, g(1) = @a
and g(2) = 92 = Pavpa-

1.4.3 The group Aut,(D,) in two inertial systems

Consider two inertial systems K and K’, with common origins at time ¢ = 0.
Denote by a the relative velocity of system K with respect to K’, and by U
the relative rotation between the axes of K and K'. Then any velocity u € D,
in system K is observed in K’ as u’ = ¢(u) = papy(u) in D). The map ¢
between the velocity balls D, and D! induces a map between their projective
automorphism groups Aut,(D,) and Aut,(D)). Given ¢ € Aut,(D,), define

¢ € Aut,(D.) by
b= gt (1.81)

The map i[: is called the conjugate of 1 with respect to p. Thus, the transfor-
mation of the automorphism groups of the velocity balls between two inertial
systems is given by conjugation, and the following diagram is commutative:
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Pa,U
D, —— D,

wl li

Pa,U
D, B_)D;

1.5 Step 8 - Relativistic dynamics

It is well known that a force generates a velocity change, or acceleration.
There are two types of forces. The first type generates changes in the mag-
nitude of the velocity and can be considered a velocity boost. An example is
the force of an electric field on a charged particle. The second type of force
generates a change in the direction of the velocity - a rotation or, equiva-
lently, acceleration in a direction perpendicular to the velocity of the object.
An example is a magnetic field acting on a moving charge. Thus a force can
be considered as a generator of velocity change. During the time evolution,
the velocity of an object cannot leave the velocity ball D,,. Therefore, it is
natural to assume that the generator of a relativistic evolution is an element
of the Lie algebra aut,(D,), which consists of the generators of the group
Aut,(D,) generated by velocity addition.

1.5.1 The generators of Aut,(D,,)

The elements of a Lie algebra are, by definition, the tangent space of the iden-
tity of the group. To define the elements of aut,(D,), consider differentiable
curves g(s) from a neighborhood Iy of 0 into Aut,(D,), with g(0) = ¢o,1, the
identity of Aut,(D,). Any such g(s) has the form

9(8) = Pa(s),U(s)s (1.82)

where a : Iy — D, is a differentiable function satisfying a(0) = 0 and U(s) :
Iy — O(3) is differentiable and satisfies U(0) = I. We denote by § the element
of aut,(D,) generated by g¢(s). For any fixed u € D,, g(s)(u) is a smooth
curve in D,,, with g(0) = u, and 6(u) is a tangent vector to this line. Thus,
the elements of aut,(D,) are vector fields d(u) on D, defined by

() = L g(s)()| (1.83)

We now obtain the explicit form of d(u). First, define
E =a’(0), (1.84)

which is a vector in R?, and A = U’(0), which is a 3 x 3 skew-symmetric
matrix (i.e., AT = —A). Combining (1.82) and (1.78), we get
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g(s)(u) = sﬁa(s),U(s)(u)

_ I e AU wal)
= T @)U e ) T aleUlslut+ = v

where a(s) = /1 — |a(s)|?/c?. A simple calculation shows that

);

a(0) =1, %a(s) " 0.
Moreover,
L =1
[T (a(s)[U () 0) /2 lsmo —
d 1 -2 Elu
& T @)W/ ey = 7€ (Bl
@) +a@U (s + HPTORED]
and
d (a(s)|U(s)w)a(s) _
£(a(s) +a(s)U(s)u + 0+ a(s)2 ) " E + Au.

Thus, by using the formula for the derivative of the product, we get

o(u) = %g(s)(u) =E + Au — ¢ ?(u|E)u.

s=0

Since A is skew-symmetric, it has the form

0 a2 as
—ai2 0 ao3|,
—a13 —az3 0

Q23
and if we let B = | —aj3 |, we have
ai2

Au=ux B,
where x denotes the vector product in R3. Thus, the Lie algebra

aut,(D,) = {0, : E,B € R},

(1.85)

(1.86)

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)
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where dg B : Dy — R3 is the vector field defined by
sgp(u) =E+uxB-c?(u|E)u. (1.95)

Note that any §(u) is a polynomial in u of degree less than or equal to 2.
(A term f(u) is linear in u if f(u+v) = f(u) + f(v) and f(ku) = kf(u)
for all u,v in the domain of f and all k € R. A term f(u) is quadratic in
u if f(u) = g(u,u) for some bilinear form g(u,v)). Note also that at any
boundary point u, |u| = ¢, of D,, the vector dg g(u) is tangent to D,. To
see this, note that u x B is perpendicular to u and therefore tangent to D,,.
Moreover, since the projection of E onto the direction of u is ¢=2(u|E)u, the
vector E — ¢~2(u|E)u has zero projection onto the direction of u and is also
tangent to D,,. Thus, dg g(u) is tangent to D,. Two examples are shown in
Figures 1.30 and 1.31.

x10°
3l

—2F

Fig. 1.30. The vector field ¢/m - dg,B on a two-dimensional section of D,, with
qg/m =10"C/kg, E = (2,0,0)V/m and B = 0. Since E is in the positive direction
of the v;-axis, the field tends to move particles in this direction. However, near the
edge of D,, the vectors either shrink to zero magnitude or become nearly tangent
to D,, reflecting the fact that the flow generated by this field cannot leave D,,.

1.5.2 The Lie algebra of Aut,(D,)

To show that the set aut,(D,) defined by (1.94) and (1.95) is a Lie algebra,
it remains to check that this set is closed under the Lie bracket. Recall that
the Lie bracket of two vector fields § and & is defined as
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Fig. 1.31. The vector field ¢/m - dg,B on a two-dimensional section of D,, with
g/m = 10°C/kg, E = (2,0,0)V/m and c¢B = (0,0,3)V/m. Here, the addition of a
magnetic field B causes a rotation.

5.€100) = 9 (wpe(w) — % (), (1.96)

where u € D, and %(u){ (u) denotes the derivative of § at the point u in
the direction of the vector {(u). Let g g and 5]::’% be arbitrary elements of
auty(D,). To show that aut,(D,) is closed under the Lie bracket, we shall
calculate dg,B, 0 gl(u) and show that it has the form (1.95).
Note that
d(;E,B _9 _9
W(u)du =du x B — ¢ “(du|E)u — ¢”“(u|E)du. (1.97)

Thus

7

YE.B, (5;353](11) = (5;:7%(11) x B - 6_2(6E7]§(u)|E>u
—c*(u|E)dg 5 () — dpp(u) x B

+c 2 (0g (W) E)u+ ¢ 2 (u[E)0g 5(u). (1.98)

Using (1.95), the previous expression becomes a second-degree polynomial
in u, with constant term E x B — E x B, linear term

(ux B)x B — (uxB) x B—c¢2uE)E + ¢ 2(u|E)E, (1.99)
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and quadratic term
—¢%(u x BIE)u + ¢ ?(u x B|E)u. (1.100)

By using the identities

(uxB)xB—(uxB)xB=ux (BxB) (1.101)
(u|E)E — (u|[E)E = u x (E x E) (1.102)

and
(u x B|E) = —(u|E x B), (1.103)

the expression (1.99) can be written as
ux (BxB+c %(ExE)) (1.104)
and (1.100) as
—¢2(u|E x B—E x B)u. (1.105)
Thus, from (1.95), the expression for the Lie bracket in aut,(D,) is

(0.8, 05 8] = OpxB_ExB, c-2(ExE)-BxB (1.106)

an element of aut,(D,).
For example, [0g 0, 00,B] = —0ExB,0 is 0 if and only if E and B are parallel.

1.5.3 The commutation relations for the Lorentz group

We will now use (1.106) to derive the commutation relations for the Lorentz
group. Recall that the Lorentz space-time transformations induce projective
maps of the velocity ball and generate the Lie group Aut,(D,). The genera-
tors of this group are of the form dg g, for E,B € R3, and belong to the Lie
algebra auty,(D,) of Aut,(D,). There is a basis for the generators consisting
of the generators of rotations about the x, y, and z-axes and the boosts in
the direction of these axes.

Let i,j and k be unit vectors in the direction of the positive z,y and z
axes, respectively. Then from (1.92) and (1.93) page 36, it follows that d;
acts on v like the momentum of rotation about the z-axis. This momentum
is denoted by J;. Thus, we can represent .J; as a generator dp ; of a projective
map on the velocity ball D, and denote it by m,(J1), where the subscript p
indicates that it generates a projective map. Similarly, we can represent the
generators of rotation about the other axes, and we have
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mp(J1) = o1, mp(J2) = doj, mp(J3) = o k- (1.107)
(From (1.106), it follows that
[00,i, 0,5] = G0, ~ixj = —bo,k- (1.108)

This implies that [7,(J1), 7p(J2)] = —mp(J3) and similarly for the other pairs
of generators. Since the same relations hold for the momentums of rotations
about the axes, we get the first set of commutation relations

[J1,Jo] = =J3, [J3, 1] = —J2, [Jo, 3] = —J1. (1.109)

It is obvious that the generator of a boost in the z-direction is a multiple
of 8;,9, which we denote by Ad; 9 = dxi0. Similarly, the generator of a boost
in the y-direction will be denoted by dj,0. Then, from (1.106), we get

—21\2
[0i,0,00j,0] = 00,c-2x2ixj = €~ A“0p k-

In order to simplify the commutation relations, we will take A = ¢. This
suggests representing the boosts K7, Ko and K3 in the directions x,y and z,
respectively, by

ﬂ'p(Kl) = 5ci,07 Wp(Kg) = §cj,07 WP(K:;) = 5ck,0- (1110)
(From the above discussion, we get

[7p (K1), mp(K2)] = 7y (J3), [mp(K3), mp(K1)] = mp(2),

[mp(K2), mp(K3)] = mp(J1)
, and, for the boosts themselves,
(K1, K| = J3, [K3,Ki] = Ja, [K2, K3] = Ji. (1.111)

Direct use of (1.106) leads to the following commutation relations for the
remaining pairs of momentums and boosts

[J1, K] =0, [J1,K3] = —K3, [J1, K3] = K>, (1.112)
[J2, K1] = K3, [J2, K2] =0, [J2, K3] = —Kq, (1.113)
[J3, K1] = =Ky, [J3, K3 = Ky, [J3,K3] = 0. (1.114)

The commutation relations (1.109),(1.111),(1.112),(1.113) and (1.114) form
the full set of commutation relations for the generators of the Lorentz group.
The representation m,, defined by (1.107) and (1.110), is a representation of
this group into the projective maps on the velocity ball D,,.
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1.5.4 Transformation of aut,(D,) between two inertial systems

Consider two inertial systems K and K', with common origins at time ¢ = 0
and space axes parallel each to other. Denote by a the relative velocity of
system K with respect to K'. Let D, be the velocity ball in K, and let D,
be the velocity ball in K’. Let

Sgp(u) =E+uxB-c?u|Eju

be an arbitrary element of aut,(D,), generated by some curve g(s) into
Auty,(D,). This curve generates a curve g(s) into Aut,(D)), which, from
(1.81), is

9(s) = pag(s)ea " (1.115)

This curve defines a generator 0, which is an element of auty (D)) and thus
of the form

b (W) =E +u xB —c¢2(u |[E). (1.116)

We want to find the relationship between E,B and E’, B'.
To do this, we first rewrite (1.115) as

9(8)pa(u) = pag(s)(u) (1.117)

for u € D,. By differentiating this equation with respect to s and substituting
s =0, we get

o B (pal(u)) = %(u)dE,B(u)~ (1.118)

Now we have to calculate dd%(u)du. Using (1.56) and (1.102), we get

dipa _d
E(U)du = %(a @g u)du
= Lt (@Patall - P))— " )du
- du : 215 (aluy /2
(0P ta(l - P (—T0__ufaldw/

1+ (alu)/c? (14 (alu)/c?)?
du —c2a x (u x du)
(14 (alu)/c?)?

Substituting these expressions into (1.118) and comparing the terms con-
stant in u (i.e., setting u = 0), we get

= (a®Pa+a(I — Py))

(1.119)
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bmp(a)=FE +axB —c2alE)a=(a?P,+ a(l — P.))E,
and, hence,
E=(a?Pata (I -P))E +axB —c *a|E)a). (1.120)

In the particular case when the relative velocity of system K with respect
to K’ is a = (a,0,0), the previous equation yields

E,= E|
E; = o '(E,— aB}) (1.121)
Es; = o '(Ej+aBy),

where o« = /1 — a?/c2. This coincides with the usual formula for the trans-
formation of an electric field from one system to another.

To obtain a similar formula for the transformation of a magnetic field, we
will compare the terms of (1.118) which are linear in u. This leads to

ux B —c¢?(aE)u - ¢ 2(ulE)a

= (a?Pa+a(l — Py))(uxB—2c?(@uE —c?ax (uxE)), (1.122)
where
= (a’Py+a(l — P,))u (1.123)

is the linear term of y,(u). Assume now that a = (a,0,0). If we choose
u = (0,0, us3), then, comparing the first component in this equation, we get

By = a'(B) + ¢ %aE}), (1.124)
and for the second component, we get
B, =B]. (1.125)

If we choose u = (0, uq, 0), then, comparing the first component of equation
(1.122), we get

Bs = a (B} — ¢ %aE)). (1.126)
This coincides with the usual formula

B, - B,
a (B + ¢ 2aE}) (1.127)
B; = o 1(B} —c 2aE))

&
I

for the transformation of a magnetic field from one system to another.
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Thus, the elements of aut,(D,) and the electromagnetic field strength
transform between two inertial systems in the same way. We saw earlier that
the space-time transformations between two inertial systems are linear and
preserve the interval. Such transformations preserve the velocity ball D, and
are given by projective maps. So it is natural to ask “What is preserved by
the action of the above transformations on aut,(D,)?”

To answer this question, we combine the two real-valued three-dimensional
vectors E and B describing the elements of aut,(D,) into a complex vector
F'. In order that both vectors will have the same units, we will use ¢B in-
stead of B. An element of aut,(D,) will now be described by F' = E+icB in
system K and by F' = E' +icB’ in system K’. jFrom the formulas (1.121)
and (1.126), we get

E, +icB;
F =1 E;+icBsy
E3 + iCBg
E| +icB) Fl
= | a Y (B, +icB) — cBha/c+ iEsa/c) | = | a1 (F) +iFja/c)
a~YE} +icBj + cBha/c — iEa/c) a Y F} —iF}a/c)

(1.128)
Define the complex quantity F? by F? = FZ + F} + F3. By 1.128, we get

F? = (F))? +a 2((F§ +iFja/c)* + (F§ — iFja/c)?) (1.129)

= (F))? + (F3)* + (F)* = (F')?, (1.130)

implying that F2 is preserved by the transformation between inertial systems
and is a Lorentz invariant for the electromagnetic field .

1.5.5 Relativistic evolution equation

Evolution described by a relativistic dynamic equation must preserve the
ball D, of all relativistically admissible velocities. As mentioned above, we
consider the force as an element of aut,(D,). The equation of evolution of a
charged particle with charge ¢ and rest-mass mg using the generator dg g €
auty(D,) defined by (1.95) is

M~ Lo n(v(r)
W) _ 4 gLy x B — 2 v(r)[E)v(r)), (1.131)

dr mo
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where 7 is a real parameter related to time, which turns out to be the proper
time of the particle. We will show that this equation coincides with the known
relativistic equation for the evolution of a charged particle under the Lorentz
force of an electromagnetic field. Let us introduce a new variable F(7) (which
may depend on position and time), representing the Lorentz force acting on
the object, by

F(r) = q(BE +v(r) x B), v(r) € D,. (1.132)

Using the fact that v(7) x B is perpendicular to v(7), we can rewrite (1.131)
as

d
mOCTV = F — ¢ 2(v(1)|F)v(7). (1.133)
T
Consider an inertial system K, moving with the same velocity as our
object at time ¢ = 0. We may assume that Newton’s Second Law holds in

Ky. In other words,

dv

— =F 1.134
modto 9 ( )

where tg denotes the time in K. This implies that F' is the force acting on
our object if the object was at rest in Ky at time ¢t = 0 and 7 = ¢g is the
proper time of the object. If our object has velocity v at time ¢t = 0, by (1.17)
and (1.55), we have

dr =+/1— |v|?/cdt. (1.135)

Thus, we can rewrite (1.133) as

d
mo(1 — |V|2/02)*1/2d—‘t’ =F —c 2(v(t)|F)v(t). (1.136)
Taking the scalar product of this equation with v, we get
2/ 2\—1/2 dv 2/ 2
mo(1 = [v|7/e") ™ vl—) = (VIF) (L — [v[7/e%), (1.137)
or
dv

(VIF) = mo(1 = [v[*/e?) 722 (v] (1.138)

@t
Finally, from (1.136) we have

dv
F =mp(1-— ‘V|2/62)_1/2E + A {v|F)v

_1/2dV _ _ dv
= o1~ /)2 g (1 )2

v
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d(mv)

d _
mo(1 —|v|?/c?) 1/ 2v) = dt '

= = (1.139)

~1/2 This is the usual relativistic

where m = y(v)mg = mo(1 — |[v|?/c?)
dynamics formula .

We have shown that the equation of evolution (1.131) with the generator
0g,B defined by (1.95) for a charged particle of rest-mass mg and charge ¢

coincides with the well-known formula

d(mv)
dt

=q¢(E+v x B).

Thus, the flow generated by an electromagnetic field is defined by elements of
the Lie algebra aut,(D,), which are, in turn, vector field polynomials in v of
degree 2. The linear term of this field comes from the magnetic force, while the
constant and the quadratic terms come from the electric field. The dynamic
equation of evolution in relativistic mechanics is also given by elements of
auty(D,). This follows from the above discussion if we set B = 0.

For a constant electromagnetic field, the equation of evolution (1.131) with
the generator dg g from the Lie algebra aut,(D,) generates a one-parameter
(commutative) subgroup g(7) of the Lie group Aut,(D,) of projective auto-
morphisms. From (1.77), it follows that

9(T) = Pa(r)U(r) » (1.140)

where a(7) is the solution of (1.131) with the initial condition a(0) = 0. From
(1.91), we have

d

%g(T”T:O(V) = (E4+v xB—c ?(VIE)v) (1.141)

4
mo
for any v € D,. We will show now that

V(1) = 9(1)(v") = @ar)U(T)(v°), (1.142)

is a solution of the initial-value problem consisting the differential equation
(1.131) and the initial condition

v(0) = v°. (1.143)

Since a(0) = 0 and U(0) = I, the initial condition is satisfied. To show
that v(7) satisfies (1.131), note that from (1.79), we have

g(s +7) = g(s)g(1) = g(7)g(s). (1.144)
Thus, from (1.141) and (1.142), we get

d\cflS-T) — 4(s) d

)=yl ()

g 1) = %g(s +7)

s=
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= ig(s) v(r) = i(E +v(7) x B — ¢ 2(v(1)|E)v(T)). (1.145)
ds s=0 mo
Thus, v(7) solves the initial-value problem. Thus, we have produced a method
for solving the initial-value problem for the relativistic equation with a con-
stant electromagnetic field, given any initial condition.

There is an alternative way to extend Newton’s Second Law to relativity.
Instead of using the hybrid connection, which led us to the bounded do-
main D,, of relativistically admissible velocities, we could have used the cas-
cade connection, obtaining the domain of relativistically admissible proper
velocities. Proper velocity was defined in (1.4) as u = dr/dr, where dr =
V1—|v|?/c%dt, so u = v/ /1 —|v|?2/c?. The set of all proper velocities is,
therefore, not bounded, and, indeed, it is R3. As a result, a constant vec-
tor field (force) on this set is possible as a generator of evolution. Thus, the
equation

du
mo - = F (1.146)
makes sense, and, in fact, it coincides with the dynamic equation of relativistic
mechanics (1.139) given by elements of aut,(D,).

1.5.6 Charged particle in a constant uniform electromagnetic field

In this section, we will obtain an explicit description of the motion of a
charged particle of rest-mass mg and charge ¢ in three different constant
electromagnetic fields E, B. In all three cases, we will solve the initial-value
problem (1.131) with initial condition v(0) = v® = (v?,v9,v9). The first case
is that of a constant electric field E (B = 0). The second case is that of
a constant magnetic field B (E = 0). The third case is that of a constant

electromagnetic field F, B in which the vectors E and B are parallel.

Constant electric field E

If the charge is in a constant electric field E, then its motion will be described
by integrating its velocity v(¢) with respect to t. We will use the evolution
equation (1.131) to find the velocity of the particle v(7) as a function of
proper time. To do this, we have to solve the equation

dv(r)

mo =0T = (B = 2 (n)[E)v(r)) (1.147)

with the initial condition
v(0) = v? = (v}, 05, v5). (1.148)

Let us denote by a(7) the solution of the problem for a(0) = v® = 0. This
implies that
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da(T) _4¢E
dr lr=0  mg’

(1.149)

Without loss of generality, we may choose the axes so that the vector E points
in the direction of the positive z-axis. Set E = (|E|,0,0) and a = (a1, az, a3).
Then, examining equation (1.147) in each coordinate, we see that

az(7) = a3(t) =0, (1.150)

is a solution of (1.147) with a(0) = 0. Thus, it remains only to find a; (7).
For a1 (7), equation (1.147) becomes
)

day (7 qdEl 5 2
= —ai(T 1.151
l cgmo(c 1( ))a ( 5 )

with a1 (0) = 0. Separating variables, we obtain

dai(r) _ alBl (1.152)

implying that

E
metal _HdBl (1.153)
c—ay(T) cmg
Define
E
o- 1Bl (1.154)
cmyo
Taking the exponent of both sides, we get
a1(7) = ctanh(27 + co). (1.155)
(From the initial condition a;(0) = 0, it follows that ¢y = 0 and
a(7) = (etanh(£27),0,0), (1.156)
with (2 defined by (1.154).
We can define now a one-parameter subgroup
9(T) = Pa(r), (1.157)

where a(7) is given by (1.156). Then, from (1.91) and (1.149), we have

d

0 r=0(v) = 2 pa molv) = (B - VIEY) (1159

for any v € D,. As shown in the previous section,
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V() = g(1)(v°) = pair) (V") (1.159)

is the solution of the initial-value problem (1.147) and (1.148). By use of
(1.66), we get

v(r) =a(r) @ v’ = (a(7) g vi) + 6va,
where vi = (v9,0,0), vo = (0,19, v9) and

_ aa)
P T e

Next, define 79 so that
ctanh(027) = v, (1.160)
which implies that y(v1) = cosh(§279). Then, from (1.64), we get
a(r) ®g vi = (ctanh(2(7 + 719)), 0,0), (1.161)
and, by use of hyperbolic function identities, we get

_ cosh($279)
0= cosh(2(7 + 79)) (1.162)

Thus,

__ccosh(@m)  sinh(2(r+70)) o, 0,
vir) = cosh(Q(r+TO))( cosh(2r9) 2/c v3/c),

(1.163)

with 2 defined by (1.154) and 79 by (1.160). From this, it follows that

Y(v(r) = V(VO)W. (1.164)

The space trajectory r(7) of the particle is obtained by adding the integral
of vdt to its position r(0) at ¢ = 0. Thus

r(r) — x(0) = / "V (v(n)dr

¢ ,cosh(£2(r + 7))

— 1), 097,08 1.1
(2( cosh(£27p) ), 027, 037), (1.165)

=7(vO)(
which is called hyperbolic motion. The connection between time and proper

time on the trajectory can be found via

tr) = [ atvtryar = 26 [
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implying that

o [ ] ) anm

Substituting this into (1.163), we obtain the solution v(¢) of the initial-value
problem. To find the trajectory r(t) of the particle, substitute (1.166) into
(1.165).

Constant magnetic field B

Consider now the motion of a charged particle of rest-mass mg and charge ¢
in a constant magnetic field B. The equation of motion for such a particle is
described by the evolution equation (1.131), with E = 0. Hence, the initial-
value problem to be solved is

dv(r)
mo dr

=q(v(r) x B), (1.167)
with the initial condition
v(0) = v = (u7, 09, v9). (1.168)

Without loss of generality, we may choose the axes so that the vector B
points in the direction of the positive z-axis. Set B = (|B|,0,0) and v(7) =
(v1(7),v2(7),v3(7)). Complexify the y, z-plane by defining z(7) = va(7) +
ivz(7). Define v? and « by

v) 4 vy = el (1.169)

Then the initial-value problem (1.167) becomes

mod%@ = —iq|B|z(T), dv;f’) =0. (1.170)
The solution of these equations is
2(r) = e Ty (1) = 0, (1.171)
where
w = q|B|/my. (1.172)
This solution can be written as
v(7) = (07,02 cos(wT + a), —vl sin(wT + a)), (1.173)

or, equivalently,
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— 0,0 0 .: 0 .: 0
v(T) = (V7,5 COSWT + v3 SIN WT, —vg SIN WT + V5 COSWT). (1.174)

Note that |[v(7)| = \/(v{)2 + (v0)2 is constant and v(v(7)) = v(v?), implying
that t = v(v0)r.

Let Rg denote the operator of rotation around the axis through the origin
in the direction b by an angle . This an operator can be expressed by an
exponent of the vector field v x b/|b|, which generates the rotation, as

RY = exp(¢Jp), Jb(v)=v xb/[b|. (1.175)

If b =i (the direction of the positive z-axis), then the matrix representing
RL is
©

) 1 0 0
R,=|0cosp —singp | . (1.176)
0 singp cosyp

With this notation, we can express the solution of the initial-value problem
(1.167) and (1.168) as

v(1) = REV" = 0our)(v0) = U(1)(v"), (1.177)

where U(7) = RE, denotes the one-parameter subgroup generated by the
magnetic field.

The space trajectory r(7) of the particle is obtained by adding the integral
of vdt to its position r(0) at ¢ = 0. Thus, from (1.173), we get

0

1
= y(v?) (I, ;(vr sin(wr + ) +v3), —(v? cos(wT + @) —13)).  (1.178)

€~

Switching to t, we obtain
1 1
r(t) —r(0) = (v, w—(vg sin(wot + ) +13), w—(vg cos(wot + a) — 1Y),
0 0
(1.179)

where wy = wy }(v?) and w is defined by (1.172). Thus, a particle in a
constant magnetic field moves with angular velocity wy along a helix whose
axis is in the direction of the magnetic field.

Constant and parallel electric field E and magnetic field B

We consider now the motion of a charged particle of rest-mass mg and charge
q in a constant electric field E and magnetic field B in which the vectors E
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and B are parallel. The equation of motion for such a particle is described by
the evolution equation (1.131). Hence, the initial-value problem to be solved
is

dv(r)
m
O dr
with the initial condition

= g(E +v(1) x B — ¢ 2(v(7)|E)v(7)), (1.180)

v(0) = v’ = (v], 05, v3). (1.181)

As mentioned at the end of section 1.5.2, page 39, in this case the generator
0g,0 of the electric field and the generator g g of the magnetic field commute.
This implies that the flows on the velocity ball D, generated by each field
individually also commute. Thus, we can solve the problem separately for each
field and compose the results to obtain the flow generated by the combined
field.

More precisely, without loss of generality, we may choose the axes so
that the vector B points in the direction of the positive z-axis. Then E is
also parallel to the z-axis. The flow generated by E, by (1.159), is given by
v? — ©a(rv?, where a(7) is defined by (1.156), with {2 defined by (1.154).
Similarly, the flow generated by B is given by (1.177) and is v? — RE _v©,
where RE_ is defined by (1.176) and w is defined by (1.172). We will show
now that

V(7) = pan)(RE V) = a(r) @5 (RE, V) (1.182)

solves the initial-value problem (1.180)-(1.181).
Obviously, v(7) satisfies the initial condition v(0) = v%. From (1.173),
(1.177) and (1.163), we get

v(T) = cosh($27o) csinh(2(r + 70)) 00 cos(wT + o), —v? sin(wr + o
(7) cosh(2(7 + 7)) ( cosh(219) 7 (wr +a), oy sin( ( —:83))> ’
1.

where 2 is defined by (1.154), w is defined by (1.172), 79 by (1.160) and v¢, «
by (1.169). From this, it follows that

cosh(2(1 + 79))
cosh(f27)

To find the trajectory r(7) of the particle, we need to add to its position
at ¢t = 0 the integral of vdt. By use of (1.165) and (1.178), we get

r(r) — x(0) = / "V (v(n)dr

Y(v(1)) = (v") (1.184)

Sl

(v2 cos(wT + ) — Ug)) .
(1.185)
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1.6 Notes

Einstein’s original axiomatic derivation [20] of the Lorentz transformations
is based on two assumptions:

— the principle of special relativity
— the constancy of the speed of light in all inertial frames.

From 1910 until the present, much research has been done to show that the
Lorentz transformations can be derived from weaker assumptions. See, for
example, [63]. A derivation of the Lorentz transformations from the princi-
ple of special relativity and a symmetry based on space-time invariance was
obtained by J. H. Field in [24]. In [66], Y. Terletskii derived the Lorentz trans-
formations from the principle of relativity, isotropy of space and homogeneity
of space and time. He also reversed the space axes to preserve the symmetry.
As was shown by C. Marchal in [54], the Lorentz transformations, up to a
constant, are a direct consequence of the principle of special relativity and
the symmetry of the transformations between two inertial systems.

n [50], A. Lee and T.M. Kalotas showed that the Lorentz transforma-
tions up to an unknown constant are a manifestation of the properties of the
space-time of inertial systems, such as homogeneity of time and isotropy of
space. They derived a relativistic velocity-addition formula and showed that
this constant is non-negative. We have used here their argument to show the
non-negativity of our constant e. In [55], D. Mermin showed that the rela-
tivistic addition law of parallel velocities with some universal constant can
be derived directly from the principle of relativity and assumptions of homo-
geneity, smoothness and symmetry, without making use of the constancy of
the speed of light. From these assumptions, he showed that there is an in-
variant velocity depending on this universal constant. This chapter is based
mainly on ideas which first appeared in [30] and [25] and were developed
further in [28] for special relativity and in [29] for accelerated systems.

The main deviations of the approach in this chapter from the standard
approaches to relativity are

— the formulation of the principle of special relativity as a symmetry

— the choice of axes to preserve the symmetry

— the consistency of inputs and outputs for the transformations and the
description of the systems

— the choice of parameters to simplify the transformations

— the introduction of a weight on time which makes the eigenvectors of the
symmetry orthogonal (as in the Sturm-Liouville theory), thus leading to
conservation of intervals

— the use of the algebraic structure of the conserved bounded symmetric
domain to describe the evolution of systems.

The evolution equation (1.131) and the one-parameter group associated
with it was used in the last section to derive an explicit description of the mo-



1.6 Notes 53

tion of particles in a constant, uniform (a) electric, (b) magnetic and (c) par-
allel electric and magnetic fields for any initial conditions. Similar solutions
may be found in [51], pp. 52-57 and [42], pp. 579-592. In the next chapter,
we will obtain an ezplicit solution for the motion of a charged particle in a
constant, uniform electromagnetic field in which £ and B are perpendicular.






2 The real spin domain

In the previous chapter, we used the principle of special relativity to obtain
the real bounded symmetric domain D,,. This domain is symmetric with
respect to the projective automorphisms and is a domain of type I in the
Cartan classification of bounded symmetric domains. In this chapter, we will
discuss another real domain, called the real spin factor, which is a domain of
type IV in the Cartan classification. The complex spin factor will be studied
in the chapter 3.

We introduce the real spin factor as the ball Dy of symmetric velocities,
defined in chapter 1, section 1.2.1. We derive a formula for the addition
of symmetric velocities and define an automorphism group based on this
addition. We show that this group is exactly the group Aut.(Dy) of conformal
automorphisms of Dy and that Dy is symmetric with respect to Aut.(Ds). We
then show that the elements of the Lie algebra of Aut.(D;) are expressible
in terms of a triple product, which we call the spin triple product.

Next, we show that the relativistic evolution equations of mechanics and
electromagnetism can be written by use of the above Lie algebra. This pro-
duces a new method of solving relativistic dynamic equations. If the motion
has an invariant plane, the equation of evolution for the symmetric velocity
becomes a first-order analytic equation in one complex variable. We apply
this method to the description of the motion of a charged particle in a uni-
form, constant and mutually perpendicular electric and magnetic fields. We
find explicit analytic solutions for this problem. We also obtain a conformal
group representation of the Lorentz group.

2.1 Symmetric velocity addition

2.1.1 The meaning of s-velocity and s-velocity addition

In the previous chapter, we defined the symmetric velocity (1.38) and (1.67)
as the velocity of the eigenspace corresponding to the 1-eigenvalue, or the
fixed points, of the relativistic transformations between two inertial systems.
From this point on, we will assume the conservation of the speed of light.
Equation (1.71) shows that the new dynamic variable, symmetric velocity, is
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the relativistic half of the corresponding velocity. The symmetric velocity wy
and its corresponding velocity v are related by

wy+wp 2wWq
1o Bl bl T [wa e

V=W PgwW| =

where &g denotes Einstein velocity addition. Instead of wi, we prefer to
use a unit-free vector w = wy /c and call it s-velocity. Thus, the relationship
between an s-velocity w and its corresponding velocity v is given by

2cw

v=2>0(w)= W,

(2.1)

where & denotes the function mapping the s-velocity w to its velocity v.
Conversely, the s-velocity w can be expressed in terms of v by

_ v/c _ B
1+/1—[v[Z/c2 1+7
where v = 1/4/1 — |v|?/c? and 8 = v/c. From this we see that w — 3/2

as 3 — 0, and w — B as B8 — 1. The set of all relativistically admissible
s-velocities form a unit ball

D,={wecR: |w| <1} (2.3)

w=ao"1(v) (2.2)

Recall the physical interpretation of the symmetric velocity. Consider two
inertial systems with relative velocity v between them. Place two objects of
equal mass (test masses) at the origin of each inertial system. The center of
mass of the two objects will be called the center of the two inertial systems.
The symmetric velocity is the velocity of each system with respect to the
center of the systems, and the s-velocity the unit-free velocity of the systems
with respect to their center (see Figure 2.1).

We will show that the ball of all relativistically admissible s-velocities Dj
is a bounded symmetric domain with respect to the automorphisms generated
by s-velocity addition. To define this addition, we shall consider three inertial
systems K, Ky and K3. We choose the space axes of K5 to be parallel to
the axes of K7 and the axes of K3 to be parallel to those of K5. Denote
their origins by O1, 05 and Os, respectively. Denote by a the s-velocity of
system Ky with respect to K; and by w the s-velocity of system K3 with
respect to Ko. Then the s-velocity ws of system K3 with respect to K; (i.e.,
the velocity of K3 with respect to the center of systems K7 and K3) will be
called the sum of the s-velocities a and w and will be denoted by a®, w (see
Figure 2.2).

2.1.2 Derivation of the s-velocity addition formula

We now calculate the s-velocity sum a @s; w. Let us denote by v the relative
velocity of system K, with respect to K; and by u the relative velocity of
system K3 with respect to K5. Then
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~0

Fig. 2.1. The physical meaning of symmetric velocity. Two inertial systems K and
K’ with relative velocity v between them are viewed from the system connected to
their center. In this system, K and K’ are each moving with velocity +w.

2ca 2cw

= u= 2.4
v 1+‘a|2’ u 1+|W|2 ( )

From the definition of Einstein velocity addition, the relative velocity of sys-
tem K3 with respect to K is v @ g u, which, using (2.2), gives

wo (ERUC
1+ a(vdgu)

where a(v) = /1 —|v|?/c? for any velocity v. By (1.57) from page 25, we
have

(2.5)

1

v@pu= (v+a(v)u+ W(WUW), (2.6)

14 (v|u)/c?

and by (1.58), we have

a(v)a(u)
=" 2.7
a(V@Eu) 1+<V|u>/02, ( )
implying that
(v +a(v)u+ rrbrs (viuhv) e

ad,w= (+a(v))e? (2.8)

L+ (v[u)/e® + a(v)a(u)

From the definition of a;, we have

1—|af 1—|wf?
= — = — 2.9
o) = e 90 = e (29)
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Fig. 2.2. The sum of s-velocities. Inertial systems K1, K> and K3, with origins
01,02 and Os, respectively, had a common origin at time ¢ = 0. The line K2 is
the world-line of the center of the two inertial systems K; and K. Similarly, the
lines 1?23 and K 13 represent the world-lines of the centers of the systems Ka, K3
and K1, K3, respectively. The velocity of system K> with respect to system K is v,
and its s-velocity a is the velocity of K2 with respect to Ki2. Similarly, the velocity
of system K3 with respect to system K3 is u, and its s-velocity w is the velocity
of K3 with respect to Ka3s. The velocity of system K3 with respect to system K;
is, by definition of Einstein velocity addition, equal to v @g u. The s-velocity of
K5 with respect to K1, meaning the unit-free velocity of K3 with respect to Kis,
is called the sum of symmetric velocities a and w and is denoted by a ®s w.

and so

2 1 1+ |al?

1 = = 2.10

V)= TTRE Trem) > (2.10)

Substituting these expressions into (2.8), we obtain
2ca 1-|al® 2ew 1+|al? 4(a|w) 2ca
. w — \THaP * TFal THWPE T e ) Trar)/ ¢

° 1+ 4(a|w) + 1=faf? 1w
(+la®)(A+wl?) * 1+]al® 1+[w|?

(Lt WP 4 2a] what (1 faP)w o

L+ [a?|w[* +2(a | w)
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Thus, we obtain the s-velocity-addition formula

(1+|w|?+2(a|w)a+ (1 - |a|2)w'

adsw=
1+ |a]?|w|? +2(a| W)

(2.12)
It is sometimes useful to express the Einstein velocity addition v &g u in
terms of the addition of their corresponding s-velocities. From (2.2) and the
definition of s-velocity addition, it follows that for any two velocities v and
u, we have

vopu=®@ Hv)p, & (u)). (2.13)

2.1.3 S-velocity addition on the complex plane

To understand (2.12), note that a &5 w is a linear combination of a and w
and therefore belongs to the plane II generated by a and w. We introduce
a complex structure on IT in such a way that the disk A = D, N IT is
homeomorphic to the unit disc |z| < 1. Denote by a the complex number
corresponding to the vector a and by w the complex number corresponding
to the vector w. It is known that

aw + aw | |2

Re{a | w) = 5

= ww, (2.14)
where the bar denotes complex conjugation. Substituting this into (2.12), we
get

(14 ww + aw + aw)a + (1 —aa)w _ (a+w)(1+aw)  a+w
1 + aaqw® + aw + aw (A4 aw)(14aw)  1+aw’
(2.15)

adsw =

which is the well-known Mobius transformation of the complex unit disk.
Thus, s-velocity addition is a generalization of the Mdbius addition of com-
plex numbers (see Figure 2.3). Note that formula (2.15) does not depend on
the choice of the complexification of the disk A = Dg; N IT . For if we map a
to ea (instead of to a) and w to e’w (instead of to w), then

ea+ et e+ efw

¢a &, ew = 1+ efgeity  ltaw ¢ (a &s w). (2.16)

Note that (2.12) has meaning not only for vectors in R3, but also for
vectors in R™, for arbitrary n. If we define

Dl ={weR": |w|<l}, (2.17)

then from the connection of the s-velocity addition and the Mobius transfor-
mation, it follows that if a and w belong to D7, then the sum a®;w, defined
by (2.12), also belongs to DZ.
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Fig. 2.3. Symmetric velocity addition a @&s w for a = 0.4. The lower circle in the
figure is the unit disc of the complex plane, representing a two-dimensional section
of the s-velocity ball Ds. The upper circle is the image of the lower circle under
the transformation w — ffgfu Each circle is enhanced with a grid to highlight
the effect of this transformation. Notice how a typical square of the lower grid is
deformed and changes in size under the transformation.

2.2 Projective and conformal commutativity and
associativity

2.2.1 Non-commutativity of s-velocity addition

Let a and w be two arbitrary complex numbers in the unit disc of the complex
plane. If we switch the roles of @ and w in a s w = lajaww, the numerator will
remain the same, but the denominator will transform to its conjugate and
hence will not be the same unless aw is real. But aw is real if and only if a
and w are parallel. Thus a @, w is equal to w &, a if and only if the vectors
a and w are parallel. In this case, a ®; w = (ca @ cw)/c, implying that
for parallel vectors, Einstein and symmetric velocity addition coincide up to
scaling.
Observe that, in general,

at+w l+aw w+a

sw= = . =\ R 2.18
a®s w 1+aw l+aw 1+aw (w @ a) ( )
where
14 aw
A= . 2.19
14+ aw ( )

Since |A| = 1, we have A = e’? for some angle 3. Hence,
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a®sw=eP(wd,a). (2.20)
,From the definition of A\, we have
T
B =arg\= arg(1 1;3) = —2arg(1l + aw). (2.21)
So arg(1l + aw) = —(3/2, or
Im(1 +aw)
t 2) = ————.
an(5/2) Re(1 + aw)

For the next step, notice that the complex number 1+ aw is independent
of the complexification, for if a — e’ and w — e*®w, then

0 0

e "ae"w = aw.

So we choose a complexification in which a is real and positive. Let 6 be
the angle from a to w, or, equivalently, the angle between the corresponding
symmetric velocities a and w. Then

Im(1+aw) alm(w)

t 2)=— =-

an(5/2) Re(1 4+ aw) 1+ aRe(w)
__alw[sind _ [a][w]sind (2.92)
~ 1+alw|cos® 1+ |a||w|cosf '

Thus, the non-commutativity of the addition of two symmetric velocities
a and w is given by an operator of rotation by an angle 3, defined by (2.22),
in the plane IT (generated by a and w) with respect to the axis through
the origin in the direction a x w, which is perpendicular to IT (see Figure
2.4). This operator was called the gyration operator by A.A. Ungar [67] and
denoted gyr[a, w]. For the Mobius addition in the complex plane, the gyration
operator is multiplication by the number e?. Thus, (2.20) can be written as

a®sw=eP(w @, a) = gyrela, w](w ®; a), (2.23)
where
1+ aw
Cc[™ = . 224
gyrela, wl = To—- (2.24)

Recall that in Chapter 1 page 50, we introduced a rotation operator T\’,g
denoting rotation around the axis through the origin in the direction b by
an angle ¢. By use of this operator, we can express the gyration operator as

gyre[a, w] =REFY, (2.25)

where 3 is defined by (2.22). The gyration operator expresses the non-
commutativity of addition in Dy:

adbsw= gyrc[a, W](W s a)' (226)

See Figure 2.4(a). We will follow [67] and call equation (2.26) the commuta-
tive law for conformal geometry.
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(a) (b)

Fig. 2.4. The non-commutativity of s-velocity and Einstein velocity additions. (a)
Two s-velocities a = 0.4 and w = 0.1 + ¢0.85. The sum a ®s w = 0.676 + 0.596,
while the sum w &5 a = 0.193 + i0.88. The angle 0 is the angle between a and w,
while (3 is the angle between a®sw and w®sa. The two angles are related by (2.22).
The two sums a ®s w and w @ a have the same length, and a ®s w = ew(w Bsa) =
gyrla, w](w ®s a). (b) The two velocities v = (2.07,0,0)10%m/s, corresponding to
s-velocity a, and u = (0.35,2.94, 0)10%m/s, corresponding to w. The sum v @®gu =
(2.24,1.98,0)10%m/s, while the sum u ®g v = (0.64,2.91,0)10%m/s. The angle 0
is the angle between v and u, while  is the angle between v &g u and u &g v.
The two angles are related by (2.30). The two sums have the same length, and
v ®p u=gyrp[v,ul(udg v).

2.2.2 Non-commutativity of Einstein velocity addition

Using the map & defined by (2.2), connecting a velocity and its s-velocity, and
formula (2.13), connecting Einstein velocity addition and s-velocity addition,
we can apply (2.26) to express the non-commutativity of Einstein velocity
addition. For any two velocities v and u, we have

P(vepu) =d(v) Bs P(u) = gyre[P(v), P(w)|(P(u) &s B(v))

= gyr:[@(v),&(0)|P(u B g v)). (2.27)

The map @ and the operator gyr.[@(v), P(u)] commute because @ is a radial
function and gyr.[@(v),®(u)] is a rotation. Thus,

(v @pu) =D(gyr[P(v), 2(n)|(udp v)). (2.28)
We define the projective gyration operator by
gyrplv,u] = gyr[®(v), &(u)]. (2.29)

This operator is a rotation in the plane I generated by v and u by an angle
[ defined by
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|®(v)| |@(u)]|sin 6

t 2)=— , 2.30
an(8/2) =~ g [6(w) cos (2:30)

where 6 is the angle between v and u. Thus,
gyrplv,u] = ’Rgxu. (2.31)

From (2.28), we get the commutative law for Einstein velocity addition, which
is also called the commutative law of projective geometry:

v®gu=gyrp[v,ul(udg v), (2.32)
(see Figure 2.4 (b)).

2.2.3 Non-associativity of s-velocity and Einstein velocity addition

Now we want to derive the analogs of (2.26) and (2.32) for the associative
law. For s-velocity addition, this means finding the connection between a @,
(b ®; w) and (a ®; b) ®s; w for any s-velocities a,b and w. Let IT be the
plane generated by a and b, and assume first that w € II. Complexify IT
and observe that

b+ w a+fj§fu B a+abw+b+w

1+Bw) - L+aste 14 bw +ab+aw

a®s (bdsw) =aPs(

a+b + 1+a5 a+b 4 1+a5

_ =W = = 1 b
_ 1fab ﬂgab _ 1+ab7+g 11++abg = (a @5 b) s %w. (2.33)
a a a
L+ 5w 1+ 1tap 14ab @

Using the definition of the gyration operator (2.23), we can rewrite this as
a®s (bDdsw) = (aDsb) Ds gyrela, blw. (2.34)
Returning to the s-velocities and using (2.25), we get
a®, (b®s w) = (a®, b) ®s gyre[a, bw, (2.35)

for any w € II. As we will see in the next section, the map w — a &, w,
for any fixed a, is a conformal map on D,. This implies that both sides of
(2.35) are conformal maps in w of the unit ball Dy € R3, which coincide on
the intersection of the ball with the plane II. By a uniqueness theorem for
conformal maps, they must agree for any w € D,. Equation (2.35) is called
the associative law for s-velocities.

Turning to Einstein velocity addition, let d, v and u be any three veloci-
ties. Using (2.35), (2.13) and (2.29) we get

dep (vopu) = (dosv) &p gyr,ld, viu. (2.36)

This is the associativite law for Einstein velocity addition.
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2.2.4 Expression for the non-transitivity of parallel translation.

Formula (2.36) can be interpreted as the correction of non-transitivity of par-
allel translation between inertial systems. It is well known that if an inertial
system K5 moves parallel to system K; with relative velocity d, and system
K3 moves parallel to system Ky with relative velocity v, then, if d is not
collinear to v, the system K3 does not move parallel to system K;. How
can we measure the non-parallelism between K; and K37 Note that if an
object is moving with uniform velocity u in system K3, its velocity in Ky
will be v ®g u, and in system K7, its velocity will be d ®g (v &g u). Define
a space frame K3 moving together with system K3 but parallel to K;. In
this frame, let the velocity of our object be T. Since the system K3 moves
parallel to K7 with relative velocity d @ v, the object’s velocity in system
K, is (d ®g v) @ u. Now from (2.36), it follows that

u = gyry[d, v]u, (2.37)

implying that the operator gyr,[d, v], which is a rotation operator, corrects
for the non-parallelism of systems K7 and K3.

2.3 The Lie group Aut.(Dy)

In this section we will show that the group generated by the s-velocity addi-
tion coincide with conformal group on D;.

2.3.1 The automorphisms of D, generated by s-velocity addition

Given an s-velocity a € Dy, we define a map 1, by

(IL+|wl* +2(a | w)a+ (1 —Ja]*)w

Va(W) = 2@ W= LR + 2(a | W)

(2.38)
The transformation ¢, (w) is shown in Figure 2.3. This formula is somewhat
simpler in spherical coordinates (7,6, ¢). We choose the orientation so that
a is on the positive part of the z-axis and thus has coordinates (|a|,0,0) =
(a,0,0). Let the coordinates of w be (7,8, ¢). Then, in the complexified plane
IT generated by a and w, a represents a and re? represents w. By (2.15),
1a(W) is represented by

10
Palw) = 2T (2.39)

T 14 arei?’

If we denote the spherical coordinates of ¢, (w) by (1,0, ¢’), then
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i9+
r r: | ita Tf?e
Ya | 0] = 9/ = | arg(££28) (2.40)
¥ 4 ©

Since the transformation v, acts on the disc A = D, N II like the Mobius
transformation (2.15) on A, 1), is one-to-one and onto Dy. The inverse (15) "
is the map 9_,, where ¥_,(w) = (—a) s w. To show that 1, is conformal,
we have to show that its derivative Cfl“';‘ (w) is a multiple of an isometry.

2.3.2 The derivative of ¢,

To calculate the derivative %(W)dw of the map 1, at w in the direction
dw, we decompose dw = dw; + dwsy, where dw; belongs to the plane IT
generated by a and w and dws is perpendicular to II (see Figure 2.5). We

Fig. 2.5. The action of the map Cg/’—wa(w)dw. The vector dw is decomposed as

dwi + dwa, where dwi belongs to the plane I generated by a and w and dwa

is perpendicular to II. The map rotates dwi in the plane II by an angle 8 and
1—|a|?

multiplies it by a constant § = |1+Tw)2|7 while dws is only multiplied by 4.

complexify the plane II and replace the vectors a,w and dw; with their
corresponding complex numbers a,w and dw;. Then, from (2.15), we get
_dwi (1 +aw) — (a + w)adw; 1—a|?

i _
T (W)= L+ aw)? = Grawpdon (241

which shows that Cf;ﬁj‘ (w)dw; is a rotation in the plane IT by an angle [,
which is the argument of the complex number 1/(1+ @w)?, and multiplies its

length by

1—|a? = 1—|af?
I+aw)>’ 1+ aw]* +2{a [ w)’

5= (2.42)

Since

1
/6 = arg m = 72 arg(l +E'LU), (243)
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equation (2.21) and (2.24) imply that ¢?® = gyr.[a, w]. Thus,

i

T (w)dwy = § gyre|a, w]dw . (2.44)

Figure 2.6 shows the value of d:ﬁ#(w)OQ for any w € D;. Note how the

angle of rotation  and the multiplication factor § change for different values
of w.

08
06 -
04 -

02

Im(w)

Re(w)
Fig. 2.6. The value of d’fi’gj-“ (w)0.2 for different w. The bright arrows represent
u = 0.2 before application of the derivative d”ﬁg}-“ (w), while the dark arrow is its

image d‘f;g;“ (w)u. The length-stretching coefficient d decreases in the direction of

a = 0.4 and depends mainly on Re(w). The angle of rotation j is zero for real
w and depends mainly on I'm(w). Compare these results with the stretching and
rotation of the squares of the grid under 9 4 in Figure 2.3.

For the action of the derivative on dws, note that (dwy|w) = 0 and
(dwz|a) = 0. Then, from (2.38), we get
dipa (1—|al?)dws
—(w)dwy = =dd 2.45
dw Ve = e S Tw) 2 (245)

which is multiplication by the same constant as in (2.42). Thus,
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dipa

dw (W) = 0gyre [a’ W]

is a rotation with respect to the line perpendicular to the plane IT generated
by a and w by an angle 3 defined by (2.43) followed by multiplication by the
constant 0 of (2.42). This implies that the map 1, is conformal.

We can define the map ¥, on D¥ by use of (2.38). The argument above
shows that here also Cil“';‘ (w) is a rotation and multiplication by ¢ in IT and

multiplication by J in the subspace perpendicular to 1. Thus, 1, is conformal
in this case as well.

2.3.3 The description of Aut.(Ds)

We denote by Aut.(Ds) the set of all conformal automorphisms of the domain
D,. This set is a group, since composition of two conformal automorphisms
is a conformal automorphism, and the inverse (which always exists) is a
conformal automorphism. As we have shown in the previous section, for any
a € Dy, the map v, defined by (2.38) is conformal and, thus, an element of
Aut.(Dy).

Next, we characterize the elements of Aut.(Ds). Let ¢ be any conformal
automorphism of D;. Set a = 1(0) and U = ;9. Then U is a conformal
map that maps 0 — 0 and is thus a linear map which can be represented by
a 3 x 3 matrix. Since U maps D, onto itself, it is an isometry and is repre-
sented by an orthogonal matrix. Since ¥ = 14U, the group of all conformal
automorphisms Aut.(Dy) is defined by

Aut.(Ds) = {aU :a € Dy, U € O(3)}. (2.46)
We write ¢, i instead of 1aU. From (2.38), we have

(14w +2(a| Uw))a+ (1 — |a>)Uw

Vau(w) = T+ aP[wP + 2(a | O'w)

, (2.47)

for w € D;.

The group Aut.(Ds) is a real Lie group of dimension 6, since any element
of the group is determined by an element a of the 3-dimensional open unit
ball in R? and an element U of the 3-dimensional orthogonal group O(3).
It is easy to see that D, is a bounded symmetric domain with respect to
the conformal group Aut.(Ds). The element S : S(w) = —w of Aut.(D;)
is a symmetry about the origin of the ball, and for any a € D,, the map
a € Aut.(D;) satisfies 1,(0) = a.

For the domain D? with arbitrary n, we can define Aut.(D¥) by use of

(2.46), taking a € D7 and U € O(n). The dimension of this Lie group is
n(n+1)

3 .
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2.4 The Lie Algebra aut.(D;) and the spin triple
product

2.4.1 The generators of Aut.(D;)

The elements of a Lie algebra are, by definition, the tangent space to the
identity of the group. To define the elements of aut.(D;), consider differ-
erentiable curves g(s) from a neighborhood Iy of zero into Aut.(Dy), with
9(0) = 90,1, the identity of Aut.(Ds). Any such g has the form

9(8) = ¢a(s),U(s)a (248)

where a : Iy — D;, is a differentiable function satisfying a(0) = 0 and U(s) :
Iy — O(3) is differentiable and satisfies U (0) = I. We denote by £ the element
of aut.(Ds) generated by g(s). For any fixed w € Dy, g(s)(w) is a smooth
curve in Dy, with g(0) = w, and {(w) is a tangent vector to this line. Thus,
the elements of aut.(Dy) are vector fields £(w) on Dy defined by

d

§(w) = g5 w)| . (2.49)

We now obtain the explicit form of £(w). First, define b = a’(0), which is
a vector in R®, and A = U’(0), which is a 3 x 3 skew-symmetric matrix (i.e.,
AT = —A). Then

d (1+|wl*+2(a(s) | U(s)w))a(s) + (1 — |a(s) ) U(s)w

s T+ Ja(s) PIwP + 2{a(s) | U(s)w) o 0
Since 4 |a(s)|?|s—0 = 0, we get
E(w) = (1+|w[?)a’(0) + U'(0)w — 2(a'(0) | w)w
=(1+|w]>)b+ Aw — 2(b | w)w. (2.51)
We can rewrite this expression as a polynomial of degree two in w:
£(w)=b+ Aw — 2(b | w)w + |w|*b. (2.52)
Thus,
aut.(Dg) = {b+ Aw — 2(b | w)w + |w|*b}, (2.53)

where b € R® and A is a 3 x 3 matrix such that AT = —A.
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2.4.2 The triple product and the generators of translations

It will be shown in chapter 5, section 5.3.4, that the generators of translations
(meaning A = 0) in a bounded symmetric domain are of the form:

&p(w) =b — {w,b,w}, (2.54)

where {w, b, w} is the triple product associated with the bounded symmetric
domain.

Formulas (2.52) and (2.54) indicate that the triple product has to be
defined in such a way that

{w,b,w} =2(b | w)w — |w|*b. (2.55)

By substituting w = a + ¢ in the previous equation and using the linearity
of the triple product and its symmetry

{a,b,c} = {c,b,a}, (2.56)
we obtain the following definition for the triple product:
{a,b,c} = (alb)c + (c/b)a — (alc)b, (2.57)

where a,b,c € R3. This product is called the spin triple product. The
bounded symmetric domain D4 endowed with the spin triple product is called
the spin factor and is a domain of type IV in Cartan’s classification.

We now derive the complex form of the spin triple product. Complexify
the plane Il generated by the vectors w and b. Let the complex numbers
w and b represent w and b, respectively. Using (2.14), the triple product
{w,b,w} defined by equation (2.55) becomes

{w,b,w} = (b + bw)w — wwb = w?b. (2.58)

Note that this product is complex analytic in w and conjugate linear in b. As
above, by substituting w = a + ¢, we get a complex triple product

{z,b,w} = zbw, where z,b,w € C, (2.59)

called the complex spin triple product. In the next chapter, we will study the
domain associated with this spin triple product on C™, for arbitrary n.

2.4.3 The triple product and the generators of rotations

The Lie algebra aut.(Ds) consists of generators of boosts, described by (2.54)
and (2.55) in terms of the triple product, and generators of rotations. To
describe the generators of rotations on Dy, we first choose an orthonormal
basis e;, ez, e3 in R>, the tangent space of D,. For any a,b € R?, define an
operator D(a,b) : R® — R by
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D(a,b)c = {a,b,c}. (2.60)

Using the definition (2.57) of the spin triple product, the operator D(es, e3)
acts on the basis vectors by

0, if u=-e;
D(ez,e3)(u) =< —e3, if u=ey (2.61)
€o, if u=es,
and its matrix in this basis is
000
m(J1)=100 1], (2.62)
0-10

which represents the momentum .J; of rotation about the ej-axis. We use
the notation 7. to indicate that 7. is an element of aut.(Dy), the Lie alge-
bra of the conformal group. Similarly, the operators m.(J2) = D(es,e1) and
7.(J3) = D(e1,ez) represent the momentum of rotation about the es- and
ez-axes, respectively.

A general generator of rotation, represented by a 3 X 3 antisymmetric
matrix A, is a linear combination A = By7w.(J1) + Bame(J2) + Bsme(J3). By
introducing the notation

7we(J) = we(J1, Ja, J3) = (D(eq, e3), D(es,e1), D(e1, e2)), (2.63)
the generator of rotation A may be expressed as
Aw = (B -7 (J))(w) =w x B,

where B = (By, By, B3) € R®. We can now express the elements of the Lie
algebra aut.(D;) in terms of the spin triple product. From (2.52) and (2.55),
it follows that any element £ of aut.(Ds) has the form

§=&pB(W) =b+ (B-m(J))(w) — {w,b,w}

=b+wxB—-{w,b,w}, (2.64)

where b, B € R3. See Figures 2.7 and 2.8 for two examples of these vector
fields.

2.4.4 The Lie bracket on aut.(Ds).

To show that the set aut.(D;) defined by (2.64) is a Lie algebra, it remains
to check that this set is closed under the Lie bracket. Let &, B and & g be

any two elements of aut.(D,). Since these elements are vector fields, the Lie
bracket is defined by



2.4 The Lie Algebra aut.(Ds) and the spin triple product 71

1
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Fig. 2.7. The vector field &8, with b = (0.07,0,0) and B = 0, on a two-
dimensional section of the s-velocity ball Ds. Note that this vector field is similar to
the corresponding one for the Lie algebra aut,(D,) of the velocity ball (see Figure
1.30 of chapter 1).
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Fig. 2.8. The vector field &8 with b = (0.07,0,0) and B = (0,0,0.1), on a two-
dimensional section of the s-velocity ball Ds. Note that this vector field is similar to
the corresponding one for the Lie algebra auty(D,) of the velocity ball (see Figure
1.31) of chapter 1.

d&=
o6 5)) = S8 (e )~ DB (e nw) (269

for w € D, where dfi‘;,B (W)&; 5(w) denotes the derivative of &, B at the

point w in the direction of the vector & g(w). To show that aut.(D,) is
closed under the Lie bracket, we will calculate [¢p B, & E] and show that it
has the form (2.64).
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From (2.55) and (2.64), we have
déb,B

T (w)dw =
dw x B — 2(dw|b)w — 2(w|b)dw + 2(dw|w)b. (2.66)
Using the identity
(dw|w)b — (dw|b)w = dw x (b x w), (2.67)
we have
déb,B
- (w)dw = dw x (B+b x 2w) — 2(w|b)dw. (2.68)
Thus,

6.8 &.5)(W) = & (W) x (B + b x 2w) — 2(w|b)¢; 5(w)

—&p (W) X (B+b x 2w) + 2(w|b)&p B (W). (2.69)

Using (2.55) and (2.64), the previous expression becomes a second-degree
polynomial in w, with constant term b x B — b x B and linear term

(wx B)x B— (wxB) x B

+2b x (b x w) — 2b x (b x W) — 2(w|b)b + 2(w|b)b. (2.70)
By using (2.67) and the identity
(wx B)xB—(wxB)xB=wx (BxB), (2.71)
the linear term can be written as
w x (B x B +4b x b). (2.72)
The quadratic term can be simplified to
—{w,bxB—bx B,w}. (2.73)
Thus, from (2.69), we have
[€6.8,65 B8] = 5B bxBBx B+ abxb: (2.74)

an element of aut.(Dy).

For arbitrary n, the Lie algebra aut.(D?¥) of the Lie group Aut.(D?) is
defined by (2.53), where b € R™ and A is an n x n skew-symmetric matrix.
The associated spin triple product is given by (2.57). Also here it can be
shown that aut.(D?) is closed under the Lie bracket.
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2.4.5 The representation of the Lorentz group in aut.(D;)

In section 2.4.3, we defined a representation 7. of the group of rotations into
the Lie algebra aut.(Ds) by (2.63), which defines the representation on the
generators Ji,Jo and Js of rotation about the basis vectors e;,es and es,
respectively. We want to extend this representation to a representation of
the Lorentz group. To achieve this, we need to find a representation for the
generators K1, K5 and K3 of boosts in the direction of the basis vectors e, es
and es, respectively, and to show that they satisfy the commutation relations
of the Lorentz group.

Recall that the Lie algebra of the Lorentz group is the real span of Jy, Ky,
for k =1,2,3. As we have shown in section 1.5.3, page 39, the generators of
the rotation group satisfy

[J1, o] = —J3, [J2, J3] = —=J1, [J3,J1] = —Ja, (2.75)

and the remaining commutation relations for the generators of the group are

[J1, K1) =0, [J1, K2] = —K3, [J1, K3] = Ko, (2.76)
[J2, Ki]| = K3, [J2, K2] =0, [J2, K3] = —K;, (2.77)
[J3, K1) = — K, [J3, Ka] = Ky, [J3,K3] =0, (2.78)
(K1, K3 = Js, K2, K3] = Ji, [K3, K] = Ja. (2.79)

As defined earlier,

7e(J1) = D(ez,e3) = oo, Te(J2) = D(e3, e1) = &o.e,

me(J3) = D(e1, e2) = &o,e5- (2.80)

Using (2.74), it is easily verified that (2.75) holds. Motivated by the results
of the previous subsection, we define

7rc(-Kvl) = £e1/2,0> WC(K2) = fez/Q,Ov WC(KB) = £e3/2,0~ (281)

Again using (2.74), one can check that (2.76),(2.77), (2.78) and (2.79) hold.
Thus 7., defined by (2.80) and (2.81), is a representation of the Lorentz group
into aut.(Ds).
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2.5 Relativistic dynamic equations on D,

We now derive the relativistic dynamic equation for symmetric velocity as a
new dynamic variable. Suppose w is the symmetric velocity corresponding
to the velocity v. Using the identity v28% = (y — 1)(y + 1) and (2.2), we get

2 —1 L+ |wf?
== d = — 2.82
W] roor A ey e (2.82)
and, thus,
1+ |w? 2w 2ew
= = = 2.83
TV SOV =TT G w2 T 0 w2 (2:83)
where my is the rest-mass of the object.
Substituting this into the relativistic dynamic equation
d
F= ﬁ(mv),
we have
d 2cw
F= =
dt 1 — |w?
1 dw 2w dw
=2 — — . 2.84
Mol R T A wiE (2:84)

By taking the inner product with w, we obtain

dw 1+ |wl?
F =2 — W) 2.
By substituting (4% |w) from (2.85) into (2.84), we obtain

2moc  dw 2w
——— =F - ——(F|w). 2.86
1 w2 dt T w2 E W) (2.86)
Multiplying both sides of (2.86) by 1+ |w|?, we get
1+ |w|? dw

1—|w2 dt F(1+[w[?) — 2(F|w)w. (2.87)

2mge

Using the relation

1— 2
dr = Vi wpraa = 2= g (2.88)

1+ w2

we obtain the relativistic dynamic equation for symmetric velocities
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dw

Mmoo = F/(2¢c) —{w,F/(2c), W} = & /(20),0(W), (2.89)

where 7 denotes proper time, the triple product is the spin triple product de-
fined by (2.57), and &g /(2c),0 is given by (2.64). Thus, the action of a constant
force F on D, is described by an element &, g of aut.(D;), with b = F/(2¢)
and B = 0. Since for small velocities w = v/(2¢), we have a factor 1/(2c) for
the generator. Note that the flow generated by a constant force on D, will
be conformal.

Next, we will derive the relativistic dynamic equation for the electromag-
netic field for symmetric velocities. Let E denote the strength of the electric
field, and let B denote the strength of the magnetic field. Then, from the for-
mula for the Lorentz force for the electromagnetic field, the dynamic equation
becomes

%(mv) =q(E+v x B).

By using equation (2.83), we obtain

2cw d 2cw
E+—xB)= —mg——— 2.90
1B+ eE X B = g T (2:90)
1 dw 2w dw
=2 — — .
mocli W A weE e Y
By taking the inner product with w, we get
dw 1+ |w|?
E =2 — W) —. 2.91
q< |W> m06< dt W> (1_ |W|2)2 ( 9 )
By substituting (4¥|w) from (2.91) into (2.90), we obtain
2moc  dw 2cw 2w
——— =¢g(E+ —— xB - —(E . 2.92
1—|w|? dt al Jr1+|w|2>< 1+|w|2< [w)) (2:92)

Multiplying both sides of the previous equation by 1 + |w|? and switching
from dt to dr, the dynamic equation becomes

mocdw/dr = q(E/2 +w x cB — w(w|E) + |w|*E/2), (2.93)

the relativistic dynamic equation for the electromagnetic field.
Using (2.55), this equation becomes

mocdw/dt = q(E/2 +w x cB —{w,E/2,w}) = ¢{g/2..B(W), (2.94)

showing that this dynamic equation is given by an element (2.64) of aut.(D;)
if we take b = E/2. Thus, the flow on Dy generated by a constant electro-
magnetic field is a one-parameter conformal flow in Aut(D;). By (2.46), this
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flow is of the form 1), (), (). Note that a(7) is the trajectory of the s-velocity
of a particle with zero initial velocity (or s-velocity) under the field. In case,
there is a plane IT which is preserved under the evolution, U(7) is a rotation
with respect to the line perpendicular to IT and is uniquely defined by its
action on I1.

To obtain the space trajectory r(7) of the particle, we have to add to its
initial position r(0) the integral [ vdt = [J v(7)y(v(7))dr. Using (2.1) and
(2.88), we get

w(7)

r(r) =r(0) + 2c /OT Wdﬂ (2.95)

and the proper velocity of the particle, defined by 1.4, is

_ dr(T) _ 2ew (T)
dr 1—|w(r)]

u(7) 5 = 1P(w(7)), (2.96)
with @ defined by (2.1). If we want to use time ¢ as a parameter on the space
trajectory, we have to replace 7 by a function of ¢, which can be defined from
the equation

_/OTV(V(T))dT_/OT %dr. (2.97)

2.6 Perpendicular electric and magnetic fields

2.6.1 General setup of the problem

We will use now equation (2.94) to find an analytic solution for the motion
of an electric charge ¢ in a uniform, constant electromagnetic field E, B in
which the vector B is perpendicular to E. We will assume first that the initial
velocity of the charge is perpendicular to B. In this case, the charge will stay
in the plane II which is perpendicular to B and passes through its initial
position. This follows from the fact that the right side of (2.94) is in II at
7 =0 and dw/d7 belongs to this plane.

We will complexify the plane IT so that the vector E € IT lies on the pos-
itive part of the imaginary axis. We associate to any s-velocity w a complex
vector w = w1 +iwsq, with real wq, wo. Note that w is unit-free. The vector E
will be represented by the complex number ¢|E|. In this representation, the
vector w X ¢B, which is in IT, is equal to ¢|B|(wg — iwy) = —ic|B|w. By use
of (2.58), the vector {w, E/2 w} is represented by the complex number

{w, E/2,w} = —i(|E|/2)w?. (2.98)

The equation (2.94) of evolution of w(7) now becomes
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iq|E| B

dw/dr = mioc(i|E|/2 — ic|Blw + i(|E|/2)w?) = e~ 2+ w?).
(2.99)
Rewrite this differential equation as
dw(7)/dr = i2(w(r)? = 2Bw(r) + 1), (2.100)
where the constants are
_ aEl 5 _ Bl (2.101)

~ 2mgc’ Bl

Note that we got a first-order complex analytic differential equation, which
by a well-known theorem from differential equations has an analytic solution.
The solution is unique for a given initial condition

w(0) = wo, (2.102)

where the complex number wy represents the initial s-velocity wy of the
charge. Of course, wy could be calculated from the initial velocity vo by

(2.103)

Vo
Wy = .
e(1+ 1+ Vol /)

The differential equation (2.100) can be solved by separation of variables.
We have

dw(r) = idr, (2.104)
w(7)? — 2Bw(r) + 1
and, integrating both sides, we get
d
/ w(r) =i+ C, (2.105)
w(7)? — 2Bw(7) + 1

where the constant C' depends on the initial condition (2.102). The explicit
form of this integral depends on the sign of the discriminant 452 — 4 of the
denominator in the integral. Let

(Bl — [B

A=DB2_1=
E?

(2.106)

We will consider three cases: case 1 |E| < ¢|B|, case 2 |E| = ¢|B| and case
3 |E| > ¢/B|. To simplify the notation, we introduce two new constants

P VALV SOV (oLt A

|E| 2mpc
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2.6.2 The solution for the case |[E| < ¢|B|

Case 1  Consider first the case A = ((¢|B|)? — |[E|?)/|E|?> > 0, meaning
that |E| < ¢/B|. Rewrite the denominator of the integral of (2.105) as

w(r)? = 2Bw(r) + 1 = (w(r) — wi)(w(r) — wa),
where the roots of this quadratic polynomial are

wy=B—\/B2—1=B—0§, ws=DB+04. (2.108)

Then, by decomposing into partial fractions, the integral is

/ dw(j) _ 1 In w(T) — ws ‘e
w(t)? —2Bw(t) +1 w2—wi  w(T)—w

Substituting this into (2.105), we get

1 —
me = oo (2.109)
we —wy  w(T) —wy

or by (2.108),

m P =2 o050 = iopr 4 C)
w(T) —wy
By exponentiating both sides, we get

w(T) — wy _ o~ i2BT
71”(7_) T Ce , (2.110)

which is a periodic solution with period T' = 27 /(23) = 7/f. From the initial
condition w(0) = wy, we get

wo — W2

C= , (2.111)
wo — W1
which, in general, is a complex number.
Equation (2.110) implies that
_wy — w Ce®PT

where C is defined by (2.111), wq, we by (2.108) and 5 by (2.101) and (2.107).

Note that the linear fractional transformation in (2.112) has real coef-
ficients. Such a transformation maps the circle Ce’?%7, which is symmetric
with respect to the reals, into a circle which is also symmetric with respect
to the reals. Thus, the center of the circle described by w(7) is on the real
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axis. To find the intersection of this circle with the real line, we chose 71 and
79 such that

Cei2Bm — lel} Clei2bm2 — -|C|. (2.113)
Then
wy — w1 |C| wg + w1 |C|
— 22 il == -7 2.114
w(r) TSI w(T2) T£C| ( )

are the two intersections of the circle with the real axis. This implies that the
center of the circle is

wo — w1\0|2

= o

Substituting the value C from (2.111) and wq, w9 from (2.108), we get

_ Lofwol® (2.115)
2(B — Re(wyp))
The radius of the circle is
R = |wo — d. (2.116)

Let a(7) be the solution which corresponds to wy = 0. From (2.111) we get
C = wa/w;. In this case, the center of the circleis dy = 1/(2B) = |E|/(2¢|B]),
and Ry = |E|/(2¢|BY]). See Figure 2.9 for w(7) with different initial conditions.

We calculate now the flow on Dy generated by the electromagnetic field.
Substituting the initial condition (2.111) into the solution (2.112) and using
the fact that wiws = 1, we get

wl(eiw'r -1+ (1- w%eﬂm)wo
€287 — w? + w; (1 — 2P )y

w(r) = (2.117)

20T

Dividing the numerator and the denominator by e?2/7 —w?, we get that w(7)

has the form

w(T) = a(r)(U(T)wo), (2.118)
where 1), (w) is defined by (2.15) and
w1(€i2ﬁ7- -1) 28T

1 —w?e
eiQBT _ ’U)% :

a(r) = , U(r) = (2.119)

We can express the connection between the rotation, given by U(7), and
the translation, given by a(7), as
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Fig. 2.9. The trajectories of the s-velocity w(7) of a charged particle with ¢/m =
107C/kg in a constant, uniform field, with E = 1V/m and ¢B = 1.5V/m. The
initial conditions are wo = —0.02 + ¢0.5 and wo = 0.3 + ¢0.2. Also shown is a(7),
corresponding to wo = 0. Note that the trajectories are circles.

11— éa(r)

U = e

(2.120)

We use (2.95) to calculate the position of the charged particle in each
case and under different initial conditions. In particular, we will derive the
explicit solution r(t) for the initial condition wy = 0. In our case from (2.119)
we have

a(T) B-4§ 1 .
= — 14+ =—)(1 —cos(207)) + isin(287)). 2.121
T Tl = gy U+ 51— cos(2m) 4 isin(26m). (2121)

Substituting this into (2.95), we get

_B-§ 1

r(t) = m((l + E)(Qﬂt — sin(26t)), — cos(20t),0) (2.122)
and
B4 1 :
v(t) = ﬁ((l + E)(l — cos(20t)),sin(2/t),0). (2.123)

This shows that the particle moves along an cycloid path with E x B drift
given by the constant velocity Z2=9(1 + =-).

Figures 2.10 and 2.11 illustrate the evolution of velocity and position,
respectively, of the particles with initial conditions as in Figure 2.9.
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Fig. 2.10. The velocity trajectories v(¢) on D, of the test particle of Figure 2.9 in
the same electromagnetic field. The initial velocities are vo = (—0.1,2.4,0)10%m/s,
Vo = (1.59,1.06,0)10%m/s and 0. The velocity of the particle is shown at time
intervals dt = 10s.
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Fig. 2.11. The space trajectories r(t) of the test particle of Figure 2.9 in the same
electromagnetic field during 1200 seconds. The position of the particle is shown at
fixed time intervals dt = 10s.

2.6.3 The solution for the case |E| = ¢|B|

Case 2 Consider now the case A = ((¢|B|)? — |E[?)/|E|?> = 0, meaning

that |E| = ¢|B|, or B = 1. Rewrite the denominator of the integral of (2.105)
as
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w(r)? = 2w(t) +1 = (w(t) — 1)

Then the integral is

dw(T) _ 1
/w(7)2 —2Bw(r)+1  w(r) -1 e

Substituting this into (2.105), we get

1
- =1if2 C. 2.124
w1 T (2.124)
JFrom the initial condition, we get
C= ! (2.125)
N wo — 1’ '
which, in general, is a complex number.
Equation (2.124) implies that
1 — 12 (2
w(r) =1 wo — 127w + 1427 (2.126)

TA0r 01— iQTtwe +i27

where 2 is defined by (2.101).
Dividing the numerator and the denominator of (2.126) by 1 + if27, we
get (2.118), where

127 1—14027
= = —. 2.12
o= 1ree YO T (2:127)
Here, also, the connection between a(7) and U(7) is
1— 1-B
U(r) = 1240 _ 1= Baln) (2.128)

- 1-a(r) 1-Ba(r)

This defines the conformal flow in Aut.(Ds) generated by this electromagnetic
field.

Note that w(7) is an arc of a circle, since it is the image under a linear
fractional transformation of a half line {i27 : 7 € [0,00)}. This arc starts
at wo at 7 = 0 and approaches the point w. = 1 as 7 goes to infinity (see
Figure 2.12). For large 7, the charge moves with speed approaching the speed
of light in the direction E x B. Since also w_., = 1, the center of this arc is
on the real axis, at

g L= lwol
~ 2(1 — Re(wp))’

which is similar to the result in the previous case. Since a(7) corresponds to
w(T) with wg = 0, we get that a(7) belongs to a circle with center dy = 1/2
and radius Rg = 1/2 (see Figure 2.12).
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Fig. 2.12. The trajectories of the s-velocity w(7) of a charged particle with g/m =
10"C/kg in a constant, uniform field, with E = 1V/m and ¢B = 1V/m. The
initial conditions are wg = —0.5 — 0.3 and wo = 0.3 — ¢0.1. Also shown is a(7),
corresponding to wg = 0. Note that the trajectories all end at we, = 1.

We use (2.1) and (2.88) to derive the evolution of velocity, and (2.95) to
calculate the position of the charged particle, under different initial condi-
tions. For the the initial condition wg = 0, we get

2
r(t) = (gcQQt?’, c2t%,0) (2.129)
and
v(t) = (2c2%t%,2c0t,0). (2.130)

Figures 2.13 and 2.14 illustrate the results of these calculations.

2.6.4 The solution for the case |E| > ¢|B|

Case 3 Finally, consider the case A = ((¢/B|)? — |E[?)/|E|? < 0, meaning

that [E| > ¢/B|, or B < 1. Rewrite the denominator of the integral of (2.105)
as

w(r)? = 2Bw(r) +1 = (w(r) — B> +1 - B>+ C.
Then, from the table of integrals, we get

/ dw(T) _ 1 tan—1 w(r) — B
w(r)? —2Bw(r)+1 0 ] ’
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Fig. 2.13. The velocity trajectories v(¢) on D, of the test particle of Fig-
ure 2.12 in the same electromagnetic field. The initial velocities are vo =
(—2.24,-1.34,0)10%m/s, Vo = (1.64,—0.55,0)10%*m/s and 0. The velocity of the
particle is shown at time intervals dt = 10s.
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Fig. 2.14. The space trajectories r(t) of the test particle of Figure 2.12 in the same
electromagnetic field during 3000 seconds. The position of the particle is shown at
fixed time intervals dt = 100s. Note that in this case, it takes the particle a much
longer time to get close to its limiting velocity.

Substituting this into (2.105), we get
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—pw(T) — B
)

(From the initial condition w(0) = wq, we get

tan

—ifr +C. (2.131)

_1w0_B

C = tan 5 (2.132)
which, in general, is a complex number.
Equation (2.131) implies that
- B j tanh - B
SO =B ipr 4 ¢y = SO+ 0= B/
4 1 —itanh(B7)(wo — B) /4§
, and, therefore,
~  _idtanh - B
w(r) = B + g2 tanh(B7) + wo (2.133)

§ — itanh(87)(wy — B)’
where the constants are defined by (2.101) and (2.107). Since in this case,
0?2 =1 — B2, we can rewrite equation (2.133) as

i tanh(B7) + wo (6 — iB tanh(37))

wlr) = § 4 iBtanh(37) — i tanh(B7)wy

(2.134)

Dividing the numerator and the denominator by § + iB tanh(57), we get
(2.118), where

a(r) = i tanh(57) Ulr) = § — iB tanh(87)

— - , =\ (2.135)
8 + iB tanh(f7) § +iB tanh(f7)

By use of the gyration operator, defined by (2.24), we can express the con-
nection between the rotation, given by U(7), and the translation, given by
a(T), as

U(r) = 1= Balr) _ gyrla(r), —B]. (2.136)
1 — Ba(r)
Equation (2.118) defines the one-parameter subgroup of the conformal group
Aut.(Ds) generated by our electromagnetic field.
Observe that w(7) (for a fixed wy), as defined by (2.133), is the image of
a line segment 7 tanh 87 under a linear fractional transformation. Thus, w(7)
is an arc of a circle. To identify this circle, we calculate the limit wio =
lim,_, 4 w(7). Since lim,_, 4o tanh(B7) = £1, we get

~  +i -B =~
Wi = lim w(r) =B 460" B (2.137)
T—+o0 o F i(wo — B)
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For large 7, the charge moves with speed approaching the speed of light in
the direction ws, = B + i, which is independent of the initial condition.
This direction does not depend on the magnitude of the field, but only on
the ratio between the magnitudes of the electric and magnetic components
of the field (see Figure 2.15).

Fig. 2.15. The direction of the limiting velocity weo = B + 5. The angle 0 is

defined by tan 6 = /|E|? — ¢|B|?/(c|B]).

Since both points B+idand B—id belong to the circle, the center of the
circle is represented by a positive real number d, which satisfies the equation

lwo — d|? = |d — B — 6|2 (2.138)

This implies that

(2.139)

The radius of the circle is
R = |wy — d|. (2.140)

Since a(7), defined above, corresponds to w(7) when wy = 0, we get that
a(7) belongs to a circle with center dy = 1/(2B) = |E|/(2¢|B|) and radius
Ry = |E|/(2¢|B|) (see Figure 2.16).

We derive now the explicit solution r(¢) for the initial condition wy = 0.
From (2.135), we have

a(r i, B .
1|(a()7')2 =3 sinh(37) cosh(87) + 2 sinh?(37). (2.141)

Substituting this in (2.95), we get

cB .

Cc

r(t) =r(0) + ( ' 355

cosh(25t),0), (2.142)



2.7 Notes 87

0.8

04 -

02

Fig. 2.16. The trajectories of the s-velocity w(7) of a charged particle with ¢/m =
107C/kg in a constant, uniform field, with E = 1V/m and ¢B = 0.6V/m. The
initial conditions are wg = —0.5 — 0.3 and wo = 0.6 + ¢0.1. Also shown is a(7),
corresponding to wo = 0. Note that the trajectories all end at wee = 0.6 + ¢0.8.

and

v(t) = (%(cosb@ﬂt) —1), 2% sinh(26t),0). (2.143)
Figures 2.17 and 2.18 illustrate the results of these calculations.
In all cases, the s-velocity trajectory with zero initial condition a(7) is on
a circle with center dy = 1/(2B) = |E|/(2¢|B|) and radius Ry = |E|/(2¢/B).
The solution of the initial-value problem (2.100) and (2.102), for any initial
condition wgy € Dy, is given by

w(T) = Ya(r) (U(T)wo), (2.144)
where a(7) differs from case to case, and
_ 1—Ba(r)

vl = 1 — Ba(r)

(2.145)

in all three cases.

2.7 Notes

The connection between symmetric velocity and conformal geometry was
observed in [30] and further explored in [27], in which the relativistic equation
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Fig. 2.17. The velocity trajectories v(t) on D, of the test particle of Fig-
ure 2.16 in the same electromagnetic field. The initial velocities are vo =
(—2.24, -1.34,0)10%m/s, Vo = (2.63,0.44,0)10%m/s and 0. The velocity of the par-
ticle is shown at time intervals dt = 10s.
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Fig. 2.18. The space trajectories r(t) of the test particle of Figure 2.16 in the same
electromagnetic field during 500 seconds. The position of the particle is shown at
fixed time intervals dt = 10s.

for symmetric velocity was also derived. The formula for addition in the
conformal group on the unit disc in R™ can be found in [1]. The formula 2.55
for the generator of the conformal group appear already in [45]. The gyration
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operator for the conformal and projective geometries and its properties is
well described in [67].

The relativistic motion of charged particles in a constant uniform electro-
magnetic field E, B is studied in [51] for an electric field E alone, a magnetic
field B alone, parallel electric E and magnetic B fields, and mutually per-
pendicular E, B (meaning E-B = 0) of equal strength (meaning |E| = ¢/B|).
Recently, Takeuchi [65] obtained an exact solution of the relativistic equa-
tion of motion of a charged particle in electric and magnetic fields that are
constant, uniform and mutually perpendicular. Our solution of the problem
in section 1.5.6 of chapter 1 and in section 2.6 of chapter 2 is new and will
appear in [26].






3 The complex spin factor and applications

In this chapter, we will discuss the complex spin factor, a domain of type
IV in the Cartan classification. This domain is symmetric with respect to
the analytic automorphisms. In fact, in the previous chapter, we used the
analyticity of the spin factor on a two-dimensional plane to solve equations
of evolution.

We start by extending the real spin triple product to the complex case.
Then we study the algebraic properties and the geometry of the unit ball of
the spin factor and its dual. Since this is our first example of a non-trivial
bounded symmetric domain, the concepts of the general theory of bounded
symmetric domains will be illustrated here, in order to help the reader become
familiar with BSDs.

In this chapter, we will study the duality between minimal and maximal
tripotents. This duality plays an important role in the study of the geometry
of the unit ball of the spin factor and its dual. We describe different repre-
sentations of the Lorentz group as linear transformations of the spin factor
which preserve the determinant. The duality between maximal and minimal
tripotents allows us to construct both spin 1 and spin 1/2 representations
on the same spin factor. Thus, we can incorporate particles of integer and
half-integer spin in one model. As a result, the complex spin factor with its
triple product is a new model for supersymmetry.

The spin factor plays an important role in physics. It was shown in [35]
that the state-space of any two-state quantum system is the dual of a complex
spin factor. The spin factor can be used to represent efficiently the electro-
magnetic field strength. Its basis satisfies the Canonical Anticommutation
Relations (CAR). The basic operators of the complex spin triple product
are closely related to the geometric product of Clifford algebras. Recently, it
was shown [10] that Clifford algebras provide a model for different physical
phenomena.

3.1 The algebraic structure of the complex spin factor

In the previous chapter, we saw that s-velocity addition generates the group
Aut.(D,) of conformal automorphisms of the unit ball of R3. For any n, the
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elements of the Lie algebra aut.(D?) of the conformal group Aut.(D?) can
be described by use of the triple product, defined as

{a,b,c} = (a|b)c + (c|b)a — (a|c)b, (3.1

where a,b,c € R". In case the evolution has an invariant plane II, we may
introduce a complex structure on II, and the above triple product becomes

{z,b,w} = zbw, for z,b,w € C, (3.2)

which is complex linear in the first and third variables (z and w) and con-
jugate linear in the second variable (b). We have also seen in section 2.6 of
chapter 2 that the relativistic evolution equation in this structure has an
explicit solution and is given by analytic linear fractional transformations.
These considerations suggest extending the triple product to C™ in such a
way that on the real part it will coincide with (3.1) and on the complex plane
with (3.2).

3.1.1 The triple product structure on C™ and its advantage over
the geometric product

Let C™ denote n-dimensional (finite or infinite) complex Euclidean space with
the natural basis

e; = (1,0,...,0),eo=(0,1,...,0),-- ,e, = (0,...,0,1)

and the usual inner product

(a|b) = a1b; + asby ... ,anby, (3.3)

where a = (ay,... ,a,), b= (b1,...,b,). The Euclidean norm of a is defined
by |a| = (ala)!/2. For any a, b, c € C™, we define a triple product by

{a,b,c} = (a|b)c + (c|b)a — (a[e)b, (3.4)
where b = (by,...,b,) denotes the complex conjugate of b. This product
is called the spin triple product and is an extension of the real spin triple
product (3.1) and the one-dimensional complex spin product (3.2).

Note that this triple product is linear in the first and third variables (a
and ¢) and conjugate linear in the second variable (b). Since, by the definition
of the inner product, we have (a|c) = (c[a), the triple product is symmetric
in the outer variables, i.e.,

{a,b,c} = {c,b,a}. (3.5)

The space C™ with the above triple product is called the complex spin triple
factor and will be denoted by S™. We use this name because if we define a
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norm based on this triple product, then the unit ball of S™ is a domain of
Cartan type IV known as the spin factor. The real part of the spin factor,
denoted S%, is the subspace of S™ defined by

Sg={aecS": a=a},
or, equivalently,
Sh =spanp{e;}. (3.6)

This subspace is identical to R™ with the triple product defined by (3.1).
For instance, the ball D, of s-velocities considered in the previous chapter,
endowed with the triple product derived from the Lie algebra aut.(D), is
the real spin factor S3,.

For any a,b € 8™, we define a complex linear map D(a,b) : S — S" by

D(a,b)z = {a,b,z} = (a|b)z + (z|b)a — (a|Z)b. (3.7
The linear map D(a,b) is equal to
(alb)I +aAb, (3.8)
where I denotes the identity operator and
(aAb)(z) = (z|b)a — (a|Z)b.

Thus, the map D(a, b) resembles the geometric product of a and b, defined
by

ab = (a|b) +aADb, (3.9)

where the sum of a scalar (a|b) and bivector a A b belongs to the Clifford
algebra. Hence, the operator D(a,b) is a natural operator on the spin factor
and plays a role similar to that of the geometric product.

It is worth comparing the representations of the geometric product as the
product in the Clifford algebra and as operators on the complex spin triple
product. In the first case, in order to represent n canonical anticommutation
relations, we need an algebra of dimension 2", while in the second case, it
is enough to consider the space 8™ of complex dimension n, along with the
operators defined by the spin triple product on it.

The complex spin triple factor arises naturally in physics. In chapter 2,
the spin triple product was constructed, in the real case, directly from the
conformal group. The complex spin triple product was effectively used in
section 2.6 to describe the relativistic evolution of a charged particle in mu-
tually perpendicular electric and magnetic fields. In the complex case, the
spin triple product it is built solely on the geometry of a Cartan domain of
type IV which represents two-state systems in quantum mechanics, as it was
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shown in [35]. The advantage of the Clifford algebra approach, on the other
hand, is the ability to express the equations of physics in a more compact
form.

The Lorentz group is represented in both cases by a spin-half representa-
tion. As we will show later, the spin factor has a spin one representation as
well. Like any bounded symmetric domain, the spin factor possess a well de-
veloped harmonic analysis, has an explicitly defined invariant measure, and
supports a spectral theorem as well as quantization and representation as
operators on a Hilbert space. However, since the spin factor representation
is more compact, we are currently missing several techniques that play an
important role in the Clifford algebra approach. For instance, here we do not
have multivectors of order 3 or higher, nor do we have the analog of the I
operator. But we believe that it is possible to overcome these difficulties.

3.1.2 The triple product representation of the Canonical
Anticommutation Relations

The canonical anticommutation relations (CAR) are the basic relations used
in the description of fermion fields.

We will show now that the natural basis of 8™ satisfies a triple analog of
the CAR. Recall that the classical definition of CAR involves a sequence py
of elements of an associative algebra which satisfy the relations

PPk + Prpr = 2051, (3.10)
where
1, ifk=1
o =1 ’ 3.11
M {0, otherwise. ( )

This implies that pi =1, and, therefore,
prprpr = py for any 1 < k1 < n. (3.12)
Multiplying (3.10) on the left by p;, we get

pipkpr = —pi for k # 1. (3.13)

We call the relations (3.12) and (3.13) the triple canonical anticommautation
relations (TCAR).

Using definition (3.4) of the spin triple product, it is easy to verify that
the elements e, es, ... , e, of the natural basis of the spin triple factor satisfy
the following relations:

{e[,ek,el} = —ey, fork#l, (3.14)
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{el,ex,ex} = {ex,ex, e} =€, for any kI, (3.15)

{er, e, en} =0 for k,I,m distinct. (3.16)

Thus, the natural basis of the spin triple factor S™ or Sj satisfies the TCAR.
Conversely, if we define a ternary operation on {e;, es, ... , e,} which satisfies
(3.14)-(3.16), then the resulting triple product on 8™ will be exactly the spin
triple product.

We will say that a basis {uj,uz... ,u,} of 8" is a TCAR basis if it
satisfies (3.14)-(3.16). We show now that a TCAR basis is orthonormal. The
converse is false. For example, {e1,ie3,€3,... ,e,} is an orthonormal basis
of 8™ but not a TCAR basis because if | # 2, then {e;,ies,€;} = iey, in
violation of (3.14).

By the definition of the triple product, for any 1 < k < n, we have
{ug,ug,ui} = 2Jug|?up — (uglug)ug. But any element of a TCAR basis
satisfies {ug, ug, ux} = ug. Thus,

2Jug Py, — (g [ w, = uy. (3.17)

Hence, there is a complex number A such that Ty = Aguy. Since |[ag| = |ug|,
A has absolute value one. Thus,

u, = A\ug : |>\k| =1. (318)
This implies that
(ug )T = (ug| Apug) Apug = [ug|*uy.

Substituting this last expression into (3.17), it follows that |ui| = 1. More-
over, for any 1 < j < k < n, we have

{ur,uj,ur} = 2(up|uj)uy, — (uglug)uy,

and for such elements in a TCAR basis, we have {u,u;, ux} = —u;. Since
the vector uy, is linearly independent of both u; and u; (which is proportional
to u;), the vectors uy and u; are orthogonal. Thus, any TCAR basis is an
orthonormal basis of C™.

3.1.3 The automorphism group Taut (8™) and its Lie algebra

The natural morphisms of the complex spin triple factor S™ are the linear,
invertible maps (bijections) T : 8" — S™ which preserve the triple product.
This means that

T{a,b,c} = {Ta,Tb,Tc}. (3.19)
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Such a linear map is called a triple automorphism of S™. We denote by
Taut (S8™) the group of all triple automorphisms of S™.

Since the definition of a TCAR basis involves only the triple product, it
is obvious that a triple automorphism 7" maps a TCAR basis into a TCAR
basis. In particular, the image of the natural basis {e1,es,... ,e,} isa TCAR
basis. For any 1 < k < n, let uy = Te. Since {u;,us... ,u,} is a TCAR
basis of 8™, it is also an orthonormal basis of C™ and from (3.18) it follows
that for any k there is a number Ay : |A\g] = 1 such that Ty = Aguy.
Moreover, for any 1 < j # k < n, from (3.14) we have

u; = —{up, uy, we} = ()T = (e deur)Ajuy = (uglug) Aedju;,

implying that Xk)\j = 1. Hence, A\ = A;. Call this common constant x. So
lu| = 1, and for any 1 < k < n, we have T, = pug. Define A = 7'/? and

U = A\T. Then

Uer = XTek = \Tle, = AUy = \puy, = Xuk = XTek =Ueg.

This implies that the matrix of U in the natural basis has real entries, and,
since it maps an orthonormal basis to an orthonormal basis, U is orthogonal.
Thus, we have shown that any map T of the spin triple factor S™ which
preserves the triple product has the form 7" = AU, where X is a complex
number of absolute value 1 and U is orthogonal.

Conversely, suppose a linear map T of the complex spin triple factor S™
has the form A\U. Using the fact that an orthogonal map preserves the triple
product, we have, for any k,l and m,

{Tuy, Tu, Tuy} = {A\Uug, \Uu;, \Uu,, } = MUu,Uu;, Uu,,}

= \U{uk,w,uy} = T{ug,u;,u,}t,

showing that T preserves the triple product. From our discussion, it follows
that

Taut (S8™) = U(1) x O(n), (3.20)

where U(1) is the group of rotations in the complex plane and O(n) is the
orthogonal group of dimension n. Thus, Taut (§™) is a Lie group with real
dimension n(n —1)/2 + 1.

This group is a natural candidate for the description of the state space of
a quantum system. The state description of a quantum system is often given
by a complex-valued wave function (r), where r € R®. This description is
invariant under the choice of the orthogonal basis in R?, implying that there
is a natural action of the group O(3) on the state space. In the presence of an
electromagnetic field, the gauge of the field induces a multiple of the state by
a complex number A, |A| = 1, which will not affect any meaningful results.
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Multiplication of all ¢ (r) by such a A corresponds to an action of the group
U(1) on this state space. Moreover, even without gauge invariance, all mean-
ingful quantities in quantum mechanics are invariant under multiplication by
a complex number of absolute value 1, resulting in an action of U(1). Thus,
Taut (S™) acts naturally on the state space of quantum systems. A similar
result holds for quantum fields.

We now describe the Lie algebra taut (S™) of the Lie group Taut (S™). This
Lie algebra consists of sums of generators of the group U(1) of rotations in
the complex plane and generators of O(n), the orthogonal group of dimension
n. It is well known and easy to verify that the first type of generator is
described by a pure imaginary number and that the second type of generator
is described by an n x n real antisymmetric matrix. From the TCAR, it
follows that the matrix of D(uy,u;) with respect to the basis uy,... ,u, is
a basic antisymmetric matrix. For instance,

010---0
—100--- 0

D(ay,u)=| . .. . |. (3.21)
000---0

Thus, the Lie algebra taut (S™) is the direct sum of ¢R and the algebra of
real antisymmetric n X n matrices, that is,

taut (S") = {dil +» _diD(up,w) : d,dy € R}. (3.22)
k<l

3.1.4 Tripotents in S™

For binary operations, the building blocks are the projections, which are
the idempotents of the operation, that is, non-zero elements p that satisfy
p?> = p. For a ternary operation, the building blocks are the tripotents, non-
zero elements u satisfying {u,u,u} = u.

We will describe now the tripotents u € §™. To do this, we define first the
notion of determinant for elements of S™. For any a € 8™, the determinant

of a, denoted det a, is

n

deta = (ala) = Za?. (3.23)

i=1

In case the elements of 8™ can be represented by matrices, this definition
agrees with the ordinary determinant of a matrix. Note that elements with
zero determinant are called null-vectors in the literature.

From (3.4), it follows that if an element u is a tripotent, then

u = {u,u,u} = 2(ujuju — (detu)u.
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Thus, only the following two cases can occur. In case 1,
detu =0 and (ulu) = 1/2. (3.24)

Such a u is called a minimal tripotent. If det u # 0, then there is a constant
A such that @ = Au. Since |t = |u|, we must have |A\| = 1. Define 7 = \'/2.
Then pu = pu, implying that iu = r is a real vector. This leads us to case
2, in which

u=pur and (rr) =1, (3.25)

where r € S% and |u| = 1. In this case, u is called a mazimal tripotent.

We say that an element w € S™ is algebraically orthogonal to a tripotent
u in 8" (i.e., orthogonal in the sense of the algebraic structure and not in
the sense of the inner product) if

D(uw)w =0, (3.26)

where the operator D is defined by (3.7), and D(u) is an abbreviation for
D(u,u). Suppose u = ur is a maximal tripotent. Then, for any a € S,

D(u)a = (u|u)a + (aju)u — (uja)u

= (rfr)a+ (a|r)r — (ar)r = a,

implying that D(u) = I. This implies that there are no tripotents alge-
braically orthogonal to u, explaining why u is called a maximal tripotent.
Note that from (3.25), each element e; of the natural basis is a maximal
tripotent.

Suppose v is a minimal tripotent. Then (3.24) implies that ¥ is also a
minimal tripotent. Since detv = (v|¥) = 0, we have D(v)v = 0, and so ¥
is algebraically orthogonal to v. Since (v|v) = 1/2, the orthogonal (in C™)
projections P, and Py are:

P,a = 2(a|v)v, Pgya=2(a|v)v.

These two projections are algebraically orthogonal projections in the sense
that P, Py = 0. Moreover, since

D(v)a = (v|v)a+ (a|v)v — (v[a)v,
we can write D(v) in terms of P, and Pg as
1

The spectrum of the operator D(v) is the set {1,1/2,0}, where the eigen-
value 1 is obtained on multiples of v (i.e., on the image of P, ), the eigenvalue
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0 is obtained on multiples of ¥ (on the image of Pg) and the eigenvalue 1/2 is
obtained on the image of the projection I — P, — Pg. This leads to the Peirce
decomposition of S™ with respect to a minimal tripotent v as a direct sum of
the 1, 0 and 1/2 eigenspaces of the operator D(v) (see section 3.1.6 below).

We claim that if w € 8™ is algebraically orthogonal to a minimal tripotent
v, then

w = AV, with A € C. (3.28)
To see this, note first that
1

0=D(v, v)w = W + (w|v)v — (v[W)V.

Taking the inner product of this expression with v and substituting (v|v) = 0,
we get

1

2

implying that (w|v) = 0. Thus w = 2(v|W)¥V = AV.
From the definition of the triple product, we have {v,v,v} = 0. Thus,
for any a = av + GV, with «, 8 € C, we have

(wlv) + 5 {wlv) =0,

{a,a,a} = ala|*v + 8|8)*¥. (3.29)

In particular, both v + ¥ and v — ¥ satisfy (3.25) and thus are maximal

tripotents and have determinant 1. Since all the tripotents of the complex

spin triple factor 8™ are either maximal or minimal, v cannot be written as

a sum of two orthogonal tripotents. This explains the terminology minimal

tripotent. Moreover, there cannot be more than two orthogonal tripotents in

S™. Such a triple is said to be of rank two. Thus, 8™ is a rank two triple.
Note also that if we decompose a minimal tripotent v as

v=x+1iy, x,y€Sg, (3.30)
then, from the definition of the determinant, we have
detv = |x? — |y|* + 2i{x|y), (3.31)
and from (3.24), the condition det v = 0 implies
x| =yl and (xly) =0, (3.32)
Finally, the condition (v|v) = 1/2 implies
x| = Iyl = 1/2. (3.33)

Thus the real and imaginary parts of a minimal tripotent satisfy (3.32) and
(3.33). Conversely, if two real vectors x and y satisfy these conditions, the
vector v, defined by (3.30), is a minimal tripotent. Table 3.1 summarizes the
properties of the two types of tripotents in a complex spin triple factor.
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Decomposition into real

Type Norm det D(u,u) and imaginary parts
u=cosOr+ i sinOr
Maximal | <ulu>=1 ildetul=1:D(u,u)=17 Irl 1
D(v,v)= V=X+1y

Minimal <v|v>=15 detv=0 %(I+Pv‘PV) <xly>=0 IXI:IyI:l2

Table 3.1. The algebraic properties of tripotents in S™.

3.1.5 Singular decomposition in S™

In this subsection, we explain how to obtain the singular decomposition of an
element of S™. This concept plays a major role in the investigation of spin
factors.

Let a be any element in S™. If det a = 0, then it follows from (3.24) that a

is a positive multiple of a minimal tripotent. In fact, u := ﬁa is a minimal

tripotent. If deta # 0, then, as we will show, there exist an algebraically
orthogonal pair vy, vy of minimal tripotents and a pair of non-negative real
numbers s1, s9, called the singular numbers of a, such that

5128220
and
a = $s1Vy + SaVa. (334)

This decomposition is called the singular decomposition of a. If a is not
a multiple of a maximal tripotent, then s; > s5 and the decomposition is
unique. If a is a multiple of a maximal tripotent, then s; = s, and the
decomposition is, in general, not unique.

To obtain the singular decomposition of an element a in S™ we define first
the element’s polar decomposition. Recall that the polar form of a complex
number z = x + iy is re’®, where r = |z| is the modulus of z and €% is of
modulus one, called also unimodular, where § = arctan (%) is the argument,
or phase, of z.

For a in 8™ with deta # 0, we define the argument of det a to be

deta

deta = ———.
argdet a [detal

Note that for any element a € S™ with deta # 0, if p is a complex number
with |p| = 1, then from (3.23), it follows that argdet(ua) = p? argdet a. Set
A = (argdeta)'/? and a; = Aa. Then a, has positive determinant (in fact,
deta;, = |detal) and
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a=)\a,. (3.35)

This is the polar decomposition of a as a product of a complex number \ of
modulus 1 and an element a; in 8™ with detay > 0. Since |A| = 1, we have

la] = |at]. (3.36)
Note also that A = —)\ satisfies A\ = (argdeta)’/2 and that the element
a, = —)a = —a; has nonnegative determinant. Thus, any element a € S™

has an additional polar decomposition
a=—-\-ay).

Decompose a into real and imaginary parts Re(ay) and I'm(ay ), respec-
tively. Then

deta; = |Re(ay)|* — [Im(ay)|* 4 2i(Re(ay ) |Im(ay)), (3.37)
and the condition deta; > 0 implies
(Re(at)[Im(ay)) =0 and |Re(ay)| > |[Im(ai)l. (3.38)
Therefore, in the above notation, we have
a= ARe(ay) +ilm(ay)), Re(ai),Im(a;) € Sg, (3.39)

where \ = (argdeta)'/? and Re(ay), Im(a,) satisfy (3.38).
Using (3.32) and (3.33), we see that the two elements

Re(a,) . Im(ay) _
Y Reay)] | Amiay)) M T (40
are orthogonal minimal tripotents. Then
a; = (|Re(a))] + [Im(a;)[)wi + ([Re(ay)| — [Im(a;))wa.  (3.41)

The desired singular decomposition (3.34) of a is now obtained by defining
the singular numbers s1, s2 to be

s1 = |[Re(ay)| +[Im(ay)], sz =|Re(a;)| — |[Im(ay)| (3.42)
and taking as minimal tripotents the two elements
V1 = AWl, Vg = AWQ. (343)

The minimality and orthogonality of the tripotents v and v, follow from the

same properties for wy and ws. Note that from (3.39) and (3.42) we obtain

s+ s3
2

Ss1+ 82
2

S1 — S2

2

la* = [Re(a,)|* + [Im(ay)” = ( )? + )2 = (3.44)



102 3 The complex spin factor and applications

If s1 = so, then sl_la = v1 + Vg, a sum of orthogonal minimal tripotents,
and, hence, a maximal tripotent. Thus, if a is not a multiple of a maximal
tripotent, then s; > ss, and, since the second polar decomposition yields the
same $1, Sa, V1, Vo, the above development shows that the singular decompo-
sition is unique.

Since a = Aay, by use of (3.37), (3.38) and (3.42), we get
|deta] = detay = s189. (3.45)

This result corresponds to the fact that the determinant of a positive operator
is the product of its eigenvalues. From (3.44) and (3.45), we have

s1 £ 89 = /2|a|? £ 2|det al. (3.46)
For any a with singular decomposition (3.34), by use of (3.29) we get
a® := {a,a,a} = sivi + sivo, (3.47)

implying that the cube of an element a € §™ can be calculated by cubing
its singular numbers. Similarly, taking any odd power of a is equivalent to
applying this odd power to its singular numbers.

3.1.6 The Peirce decomposition and the main identity

Let v be a minimal tripotent. Motivated by the discussion of the spectrum of
the operator D(v) on page 98, we define Pi(v), Py 2(v) and Py(v) to be the
projections onto the 1, 1/2 and 0 eigenspaces of D(v), respectively. Thus,

Pi(v) =Py, Pia(v)=1—P,— Py, Py(v)=Py. (3.48)
Then, from (3.27), we have
1
Since
I:P1(V)+P1/2(V)+P0(V), (350)

these projections induce a decomposition of 8™ into the sum of the three
eigenspaces:

8" = SP(V) +87)5(v) + S (V). (3.51)

This is called the Peirce decomposition of 8™ with respect to a minimal
tripotent v.

Next, we want to derive the main identity of the triple product. Decom-
pose v as in (3.30). We denote the mutually orthogonal norm one elements
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2x and 2y in S} by u; and us, respectively. Complete them to a TCAR
basis B. ;From (3.22), the operator 6 = i + 7D(u;,us) is an element of
taut (8™) for any real 7. Denote by (wi,ws, - ,w,) the coordinates of an
arbitrary element w € S™ in the basis B. Then, writing v = (%7 %i, 0,0,...),
we have

0(w) =itw + 7D(uy, u2)w = i7(wy — iws, i(wy — twsa), ws, -+ ,Wwy,)

=i7(2P (V)W + Py j5(v)w) = i27D(v)w,
implying that
exp(itD(v)) € Taut (§™) (3.52)
is a triple product automorphism. Thus, for any a,b,c € 8", we have
exp(itD(v)){a,b,c} = {exp(itD(v))a,exp(itD(v))b,exp(itD(v))c}.

By differentiating both sides of this equation with respect to 7, substituting
7 = 0, using the linearity and conjugate linearity of the spin triple product,
and dividing by ¢, we get

D(v){a,b,c} = {D(v)a,b,c} — {a,D(v)b,c} + {a,b,D(v)c}. (3.53)

We can use this last expression to describe the behavior of the triple
product on the eigenspaces S}'(v). Suppose

a€Sj(v), beS(v), ce§'(v),

where j, k,l € {1, 1,0}. Then, from (3.53), we get

D(v){a,b,c} = {ja,b,c} — {a,kb,c} + {a,b,lc}

=(j—k+1){a,b,c}.

This implies that the vector {a, b, c} is an eigenvector of D(v) and therefore
is in the range of a Peirce projection. Thus,

{Sj(v),Si(v), S['(v)} C 8 (V) (3.54)
if j —k+1 € {1,3,0}, and otherwise, {S}'(v),Sj(v),S['(v)} = 0. Equation
(3.54) is called the Peirce calculus formula.

The main identity of the triple product is a generalization of (3.53), in
which the minimal tripotent v is replaced with an arbitrary element d € S™.
Use the singular decomposition of d as

d = s51vi + 52y,
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where vi,vy are orthogonal minimal tripotents. The tripotent vy belongs
to the image of Py(v1), which implies that vo = Av; for some A € C with
|A| = 1. This implies that for any w € 8™, we have

D(vi,vo)w = (vi|vo)w + (W|va) vy — (W[V])Va

=0+ Mw|V1)vi — Mw[vy)vy = 0.
Thus,
D(d) = D(s1vy + sava, s1v1 + s2v2) = s1D(v1) + s3D(v2). (3.55)
By using (3.49) and the Peirce decomposition, we can rewrite (3.55) as

52 4 52
! 5 2Py 2(v1) + 3P (v1). (3.56)

D(d) = s2Py(vy) +

This shows that the spectrum of the linear operator D(d) is non-negative for
each d.
For any a,b,c € 8", by use of (3.53) and (3.55), we get

D(d){a,b,c} = {D(d)a,b,c} — {a,D(d)b,c} + {a,b,D(d)c}. (3.57)

This is the main identity of the triple product.

3.2 Geometry of the spin factor

The bounded symmetric domains D, and D;, considered in the first two
chapters, are Euclidean balls. The geometry of these balls is somewhat trivial.
Any two points on the boundary can be mapped to each other by a rotation,
and any two internal points can be mapped to each other by elements of
the appropriate automorphism group. Thus, the only significant distinction
is that between objects moving with the speed of light and objects moving
with less than the speed of light. Such a model is too simple to describe the
variety of different phenomena in our physical world. On the other hand, as
we will see, the complex spin triple factor is a bounded symmetric domain
with non-trivial geometry.

3.2.1 The norm of 8™.

For a with singular decomposition (3.34), we define a norm, called the op-
erator norm of a, by

la]l = s1. (3.58)
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(From (3.42), we have
lall = |Re(at)| + [Im(ay)], (3.59)

and from (3.46), we have

1
llal| = 5(\/2|a|2 + 2| det a| + \/2]a|? — 2| detal). (3.60)
(From (3.47), it follows that the operator norm satisfies the identity
la® = fall®, (3.61)

and hence is a natural norm for a set with a triple product. The above identity
is the analog of the star identity ||aa*|| = ||al|? in C*-algebras.

The operator norm (3.58) coincides with the usual operator norm of a
positive operator, defined to be the maximal eigenvalue (corresponding to
the maximal singular value for the triple product). Note that from (3.56), it
follows that

lall* = [1D(@) lop, (3.62)

where || D(a)l/op denotes the operator norm of D(a). This identity can also
be used to define the norm of a € §™.

Let a be any element of §™, and let u be a complex number with |u| = 1.
Let the polar decomposition of a with det a # 0 be given by (3.35). Then the
polar decomposition of pa is pa = pAay, implying that (ua)y = ay, and so

Re((pa)s) = Re(ay), Im((na)y) =Im(ay). (3.63)

Thus, from (3.59) we get

luall = la)l for any e C, |ul =1 (3.64)
In particular,

lat ] = [la]- (3.65)

Moreover, for any complex number z, we have (za); = |z|a;, and from
(3.59), we get

lzall = |z| ||a]] for any z € C. (3.66)

In the next section, we will show that the operator norm satisfies the triangle
inequality

la+ bl < [lafl + [[b]. (3.67)

To compare the Euclidian norm in C™ and the operator norm in 8™, note
that from the polar decomposition (3.35) and (3.59), we get
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lal* = a|* = [Re(ar)|* + [Im(as)]* < (|Re(ar)| + [Im(ay)])* = [la]|?,

and the equality |a| = ||a|| holds if and only if I'm(a,) = 0, implying that a
is a multiple of a maximal tripotent. Since for any two real numbers x and
y, we have (z +y)? < 2(2% + y?), it follows that for any a in 8™, we have

la]* = (| Re(ar)| + [Im(as)])* < 2(|Re(ay)]” + [Im(as)]?) = 2[af,

and the equality ||al| = v/2|a| holds if and only if |Re(ay)| = |[Im(ay)l,
implying that a is a multiple of a minimal tripotent. Thus,

la| < la]l < v2al. (3.68)

This implies that the operator norm is equivalent to the Euclidean norm on
C™. For n = oo, the space C™ is a complex Hilbert space H, so we can define
S to be equal as a set to H, with the triple product defined by (3.4) and
norm defined by (3.59). From our observations, S will be norm closed.

3.2.2 The unit ball of the spin factor
We denote the unit ball of §™ by
D;p,={ae8": |a|] <1} (3.69)

The intersection of this ball with S3 is the Euclidean unit ball D} of R™. It is
a symmetric domain with respect to the conformal group and was considered
in chapter 2. For example, D? is the ball of s-velocities. The unit ball D ,, is
our first example of a domain with non-trivial geometry. To gain an under-
standing of this geometry, we will consider two three-dimensional sections of
D .

Let us consider first the three-dimensional section D; obtained by inter-
secting D, ,, with the real subspace

M, ={(z,y,i2,0,...): z,y,z € R}. (3.70)

Each element of a € Dj is of the form a = (x,y,iz,0,...). From the definition
of the determinant, we have

deta = 22 + y? — 22.

Hence, argdet a is either 1 or —1. If 22 + y? > 22, then a = a,, Re(a;) =
(x,y,0,...) and Im(ay) = (0,0,2,0,...). Thus, from (3.59), we get

[lal]l = Va2 + 4% + |z|. (3.71)

If 22 +y? < 22, then a; = —ia, Re(ay) = (0,0,2,0,...) and Im(a;) =
(—z,—y,0,...). Thus, from (3.59), we get that ||a|| is defined by (3.71). Thus,
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Fig. 3.1. The domain D; obtained by intersecting Ds , with the subspace M; =
{(z,y,iz) : z,y,z € R}. The domain is the intersection of two circular cones.
The minimal tripotents belong to two circles Co5 and C_g.5, whose respective
equations are iz = 0.5 and ¢z = —0.5 . The maximal tripotents are the two points
C1 = (0,0,7) and C_; = (0,0, —1), as well as the points of the circle Cp 2z = 0 .
The norm-exposed faces are either points or line segments.

Dy ={(z,y,i2,0,...) : Va2 +y?2<1-—|z|},

which is a double cone (see Figure 3.1).

To locate the minimal tripotents v in D; we introduce polar coordi-
nates r, 0 in the z-y plane. Then v = (rcos,rsinf,iz,0,...). The conditions
detv =0 and |Re(v)| = |Im(v)| = 1/2 lead to

v =1/2(cos6,sinf, +i,0, ...), (3.72)

implying that the minimal tripotents lie on two circles Cys and C_g5
of radius 1/2. Maximal tripotents are multiples of a real vector of unit
length. Thus, the maximal tripotents of Dy are C; = (0,0,4,0...), and
C_1 = (0,0,—14,...) and the circle Cy = {(cosf,sinb,0,...) : 6 € R} of ra-
dius 1.

We can now visualize the geometry of the singular decomposition. Let
a = (rcosf,rsind,iz,0,...) and let r > z > 0. Then a; = a. The mini-
mal tripotents in the singular decomposition of a are obtained from (3.40),
yielding

vi = 1/2(cosb,sinb,i,0,...), va =1/2(cosb,sind, —i,0,...).
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These tripotents are the intersection of the plane through a, C; and C'_;
with the circles Cy 5 and C_g 5 of minimal tripotents . The singular numbers
of a are s =r + z and so = r — z. Thus the singular decomposition is

a= 7ﬂ—gZ(cos&sin&,i,O,...) + !

— Z(cos 0,sin6,—1,0,...).

See Figure 3.1.
Consider now the three-dimensional section Dy obtained by intersecting
D, ,, with the real subspace

My = {(z +iy,2,0,...): x,y,z € R}. (3.73)

Each element of a € D5 is of the form a = (z+1y, 2,0, ...). From the definition
of the determinant, we have

deta = 2?2 + 2iay — y? + 2°.

Hence, arg det a can be any complex number of absolute value 1. This makes
the calculation of the norm much more complicated. Let’s consider the inter-
section of this ball with the basic two-dimensional planes.

If 2 = 0, then a = (x+iy, 0, ...). Since for such a, we have a® = (22 +y?)a,
the norm ||a|| = |z + iy| = /a2 + y2. This also follows from the fact that
a= (z+1y)(1,0,...), is a multiple of a maximal tripotent (1,0, ...), and, since
the operator norm of any tripotent is 1, we get ||a|| = |z + dy|. Thus, the
intersection of Dy with the z-y plane is a unit ball 22 + 32 < 1, with the
boundary consisting of maximal tripotents.

If y = 0, then a = (,2,0,...). Then deta = 22 + 22, so argdeta = 1, and
a; = a. Hence, ||a]| = Va2 + 22. Thus, the intersection of Dy with the 2-2z
plane is a unit ball 22 + 22 < 1, with the boundary consisting of maximal
tripotents.

If z = 0, then a = (iy, 2,0, ...). So deta = —y%+22. Hence, argdet a = +1,
and aj is either a or —éa. Thus, ||a|| = |y| + |z|. Thus, the intersection of
Dy with the y-z plane is a square rotated 45°. Here, we have four minimal
tripotents 1/2(+4, £1,0, ...). The singular decomposition of an element in the
y-z plane is a linear combination of these tripotents. But note that for any
a € D5 which is not in the y-z plane, the singular decomposition of a consists
of tripotents not belonging to Ds. Figure 3.2 shows the domain Ds.

The geometry of a domain can also be understood from the structure of
the norm-exposed faces or the flat components of the boundary of the domain.
For this approach, we need to study the linear functionals, or the dual space,
of §™.

3.3 The dual space of ™

Every normed linear space A over the complex numbers equipped with a
norm has a dual space, denoted A*, consisting of complex linear functionals,
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Fig. 3.2. The domain Ds obtained by intersecting D, , with the subspace My =
{(z+14y,2): z,y,z € R}.

i.e., linear maps from A to the complex numbers. We define a norm on A*
by

1£]l = sup{|f(w)[ : w e A, [w] <1}. (3.74)

In general, A C A**, where A** denotes the dual of A*. If A = A** then A
is called reflexive. In this case, A can be considered as the dual of A*. Hence,
we sometimes refer to A* as the predual of A.

It is known that if A is finite dimensional or isomorphic to a Hilbert space,
then A is reflexive. From (3.68), it follows that S™ is reflexive.

3.3.1 The norm on the dual of S™

The dual (or predual) of 8™ is the set of complex linear functionals on S™.
We denote it by S7'. We use the inner product on C™ to define an imbedding
of 8™ into S, as follows. For any element a € 8™, we define a complex linear
functional a € S by

a(w) = (w|2a). (3.75)

The coefficient 2 of a is needed to make the dual of a minimal tripotent
have norm 1. This is a convenient normalization for all non-spin factors.
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Conversely, for any f € S”, by the Riesz theorem, there is an element f € S”
such that for all w € 8™,

f(w) = (w|2f). (3.76)
The norm on S}, called the trace norm, is defined by
If]l« = sup{|f(w)|: weS", |w] <1} (3.77)

Let v € 8™ be a minimal tripotent. We will show now that the functional
v has norm 1 and has value 1 on v.

To do this, write v = x + 4y, where x,y € S} satisfy (x|y) = 0 and
|x| = |y| = 1/2. From the definition (3.75) of ¥, we have, for w € 8™,

V(w) = (w]2v) = (w|(2x + i2y)). (3.78)
Note that 2x and 2y are mutually orthogonal norm one vectors in C™. Let
j =2xand k = 2y. Then Pjw = (w|j)j and Pcw = (w|k)k are the orthogonal
projections onto j and k, respectively. Then we can rewrite (3.78) as

(w) = (wlj) — i(wlk) = [Pyw]| — il Pcw]. (3.79)

Use the polar decomposition w = Aw, and decompose wi as wi =
Re(wy) + iIm(wy) = wy + iws. Then, from (3.79), we obtain

VW)l = [V(wi)l = [{walj) —i{wi k) + i(w2l) + (walk)],
and, hence,
[V(w)]? = (W1ld) + (w2lk))? + ((W2lj) — (wi]k))*.

Note that P = P; + Py is the orthogonal projection onto the plane II gener-
ated by j and k. Thus, for any b € C™ we have, by the Pythagorean Theorem,

|Pb|” = |Pb[* + | Pib|” < |b[*.
Thus, we get

[V(w)[* = [Pwi[* + [Pwa/*

F2((W1]j)(walk) — (walj)(wi[k)).

In the basis j,k of the plane II, the coordinates of 13w1 and f’wQ are
((w1lj), (w1lk)) and ({wa|j), (w2]k)), respectively. Hence,

(w1 lj) (walk) — (walj) (w1 [k)| = [(Pw1) x (Pw2)| < [Pwy||[Pwal,
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and so
I < (1Pwi| + [Pwa|)* < (jwi| + [w])* = | wl], (3.80)
implying that ||¥]/« < 1. On the other hand, from (3.24) we have
v(v) = (v]2v) = 2(v|]v) =1, (3.81)

and, hence, [|¥]/. = 1.

For an arbitrary element f in S?, let a = f. We use the singular decom-
position a = s1vy + savy to calculate the norm of f. From (3.76), for any
w € D; ,,, we have

f(w) = (w|2f> = 51(W|2v1) + s2(W|2Va) = (s1V1 + s2V2)(W),

and so
f =5,V + s9Va. (3.82)
Note that since ||V1]|« = ||V2]|« = 1, we have
[E(w)] = [s191(W) + s2V2(W)[ < s1|[Va]|s + s2][V2[[« < 51+ s2.

But for the tripotent v; + vy which has norm one, we have
[f(v1 + va)| = [s1V1(v1 + va) + saVa (v + Va)| = 1 + s0. (3.83)
Therefore,
€[l = 51+ 52 = 2[Re(f} )], (3.84)

where s1, so are the singular numbers of f. From (3.46) we get

I£]l« = s1 + s2 = 1/2|f]2 + 2| det f|. (3.85)

Now we can prove the triangle inequality (3.67) for the operator norm.
Let a and b be arbitrary elements of S™. Use the singular decomposition
to decompose a + b = s1v; + s3vs as a linear combination of two minimal,
orthogonal tripotents vi, vo. Then, since 2(vy|vy) = 1, (vi1|ve) = 0 and
I¥1]]« = 1, we have

la+b| = s1 = (s1v1 + s2va|2vi) = vi(a+ b)

=Vi(a) + vi(b) < [la][ + [b]] (3.86)
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3.3.2 The facial structure of D, ,

The geometry of a domain can be understood from the structure of the norm-
exposed faces, or flat components, of the boundary of the domain. To define
the notion of a norm-exposed face F' of a domain D in a normed space X,
we will use the concept of a tangent hyperplane. A hyperplane L in X is the
parallel translation of the kernel of a linear map from X to R. It has real
codimension 1. A hyperplane L is tangent to D if L N D C dD. The subset
F of D is a norm-ezposed face of D if

F=LND (3.87)

for some hyperplane L which is tangent to D. Any point of F' is said to be
exposed by L. For a Euclidean ball (like D, or D;), each boundary point is
a norm-exposed face, and any norm-exposed face is a single boundary point.
In the previous section, we introduced the domain Dj ,,, the unit ball of S™.
We are now ready to describe the norm-exposed faces of D; ,,.

Let v be a minimal tripotent. Since ||¥V||. = 1, for any w € Dj ,,, we have
Rev(w) < |v(w)| < 1. Define a hyperplane

II={weS8": Rev(w)=1}.
Suppose w € II N Dy ,,. Then |v(w)| = 1. But
L= [v(w)| < V] - [lw] = [lw] < 1.

Thus, w € 0Ds ,, and II is a tangent hyperplane to Ds .
Suppose Re v(w) = 1. Then, since |v(w)| < ||V||. = 1, we have ¥(w) = 1.
Decompose w using the Peirce decomposition with respect to v as

w = P (V)W + Py 5(V)W + Py (v)w.
From the definition (3.75) of v and the definition (3.48) of P;(v), we have
1=v(w) = (w|2v) = (W|2P,(v)V) = (P, (V)W|2Vv) = V(P (v)W).

Thus, P;(v)w = v. From (3.48), we get Py(v)w = AV for some constant A.
Next, we will show that

Py(v)w =v and ||w|| = 1 imply P;/5(v)w = 0. (3.88)

Let a = P;/5(v)w. By use of the Peirce calculus (3.54) and the fact that v
is orthogonal to v, we get

Pi(v)(w®) =v +2{a,a, v} + {a,\V,a}.

Since a = P 3(v)a, we have (alv) = (a|v) = 0. From the definition of the
spin triple product, we have {a,a,v} = |a|>v and {a,¥V,a} = (deta)v. Thus,
by (3.44) and (3.45), we have
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Rev(Pi(v)(w®)) = Re(Py(v)(w®)|2v)

= Re(1+2la]® + Xdeta) > 1+ s? + 53 — 5180 > 1,

where s1, 55 are the singular numbers of a. This implies that | Py (v)(w®)|| >
1. However, since P;(v) is a projection, we have

1P (V) (W) < lw®]| = 1.

Hence, we must have ||Py(v)(w®)|| = 1. This implies that s; = sy = 0,
which, in turn, implies that a = 0. This proves (3.88).
Since ||w]|| = 1, the constant A satisfies |A| < 1. Thus, the norm-exposed

face Fy, defined to be the intersection of IT with D ,, is
F,={v+Xv: [N\ <1}, (3.89)

which is a two-dimensional disc with center at the minimal tripotent v and
of radius 1 in the operator norm. The boundary points of the face F, corre-
spond to |A| = 1. Since such elements are the sum of two orthogonal minimal
tripotents, they are maximal tripotents. On the other hand, for every max-
imal tripotent u, there is a minimal tripotent v such that u belongs to the
boundary of F\,. Thus 0D; ,, consists of discs of real dimension 2 of radius 1,
centered at a minimal tripotent, whose boundaries consist of maximal tripo-
tents.

If u is a maximal tripotent, then we can write it as a sum u = vy + Vo,
where vy and v, are minimal tripotents. Define a hyperplane

I,={weS8": Re(vi+Vs)(w)=2}

Then (V1 +V2)(u) = 2, implying that u € I, N D; ,,. But if (V1 +V2)(w) = 2,
then v1(w) = 1 and vo(w) = 1, implying that w € Fy,, N Fy, and w =
v1 4+ vo = u. Thus, any maximal tripotent u is norm-exposed by I1,, which
tangent to Dy, and is an extreme point of D, ,,.

It is not easy to visualize a surface 9D;, which is paved totally with
two-dimensional discs. Let’s take a look at the intersection of this surface
with the three-dimensional subspace M; from Figure 3.1. In this figure, we
see only one-dimensional sections of F;,, which are intervals with center at v.
These intervals start at a vertex C; or C_y, which are maximal tripotents,
and end up on the circle Cy consisting of maximal tripotents. The midpoint
of the interval is a tripotent from one of the two circles Cy 5 and C_g 5. In
Figure 3.2, only four faces Fy have a one-dimensional intersection with the
subspace M, and the rest either do not intersect the subspace or intersect it
at a single point. The four one-dimensional faces are in the plane x = 0 and
correspond to the four minimal tripotents 1/2(+4,+1,0,...).
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3.3.3 The unit ball in 87
The unit ball S;, in 8} is defined by
S, ={fesm: |f]. <1} (3.90)

We call the ball S,, the state space of S™. Later we will show that this ball
represents the state space of two-state quantum systems. The state space S,
has non-trivial geometry. To understand this geometry, we will examine two
three-dimensional sections of this ball.

We consider first the three-dimensional section D consisting of those
elements f € §,, satisfying

of € My = {(2,y,i2) : x,y,z € R}. (3.91)

;From the definition of the determinant, we have det f = 1/4(x? + y? — 2?).
So arg det f is +1. If 22 + y?> > 22, then f, = f and 2Re(f,) = (z,¥,0,...).
Thus, from (3.84), we obtain

1£]]. = 2/Re(Es)] = Va? + 2. (3.92)

If 22 + 9% < 22, then f, = —if and 2Re(f,) = (0,0,2,0,...). Thus, from
(3.84), we get that ||f||. = |z| . Thus,

Dy ={(x,y,iz,0,...) : max{\/aﬁy?7 2]} <1},

which is a cylinder (see Figure 3.3).

To describe the functionals f in D} which correspond to minimal tripo-
tents v = f, we introduce polar coordinates r,# in the z-y plane. For such
functionals, by (3.72) we have

2f = (cos,sin 6, +i,0,...), (3.93)

yielding two circles C7 and C_; of radius 1. The functionals correspond-
ing to multiples of maximal tripotents are multiples of a real vector of unit
length. Thus, the norm one functionals corresponding to multiples of max-
imal tripotents are A; = (0,0,¢,0...), A2 = (0,0, —4,...), which are the
centers of the two-dimensional discs of 0S5, and the center of the circle
Co = (cos8,sin 6,0, ...) of radius 1. See Figure 3.3.

Consider now the three-dimensional section Dj consisting of those ele-
ments f € S, satisfying

of € My = {(z +iy,2,0,..): z,y,2 € R}. (3.94)

For these f, we have det f = 1/4(2% + 2izy — y* + 22). Hence, arg det 2f can
be any complex number of absolute value 1. This makes the calculation of
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Fig. 3.3. The domain D7 obtained by intersecting the state space S, with the

subspace M1 = {(z,y,12,0,...) : z,y,z € R}. This domain is a cylinder. The
pure states, corresponding to minimal tripotents, are extreme points of the domain
and belong to two unit circles C; : iz = 1 and C_; : iz = —1. The functionals

corresponding to maximal tripotents are A1 = (0,0,%) and A2 = (0,0, —i) and each
point of the circle Cy : iz = 0. They are centers of faces. The norm-exposed faces
are either points, line segments or disks.

the norm much more complicated. Let’s consider the intersection of this ball
with the basic two-dimensional planes.

If z = 0, then 2f = (z +iy)(1,0,...) is a multiple of a maximal tripotent.
Note that if a is a multiple of a maximal tripotent, then |Reay| = |a|. So
from (3.84), we get ||f||. = 2|Ref, | = |2f| = |z+iy|. Thus, the intersection of
D3} with the -y plane is a unit ball 22 +y? < 1, with the boundary consisting
of functionals corresponding to multiples of maximal tripotents.

If y = 0, then 2f = (z,2,0,...). Then det(2f) = 22 + 22, so arg det
(2f) = 1, and (2f), = 2f. Hence, |2f| = v/22 + 22. Thus, the intersection of
D3} with the 2-z plane is a unit ball 2%+ 2% < 1, with the boundary consisting
of maximal tripotents.

If x = 0, then 2f = (iy, 2,0, ...). If |z| > |y|, then f, = f, and by (3.84),
we get ||f|l = |z|. If |2| < |y|, then f, = —if and 2Ref, = (y,0,...).
Then, by (3.84), we get ||f||« = |y| Thus, the intersection of D3 with the y-z
plane is a square {(iy, z) : |y| < 1,|z| < 1}. Here, we have four functionals
corresponding to the minimal tripotents (+i,+1,0,...). Figure 3.4 shows the
ball Ds. It has the form of a pillow.
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More information on the geometry of the domain .S,, can be obtained from
an analysis of its extreme points and norm-exposed faces. This will be done

in the next section.
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Fig. 3.4. The domain D35 obtained by intersecting the state space S, with the
subspace M> = {(x + 1y, 2,0,...): =,y,z € R}.

3.3.4 The geometry of the state space S,

For any element f in S}, there is a unique tripotent on which f attains its
norm. This tripotent, denoted s(f), is called the support tripotent of f. From

(3.83) and (3.84), it follows that
s(f) = vy + vo, (3.95)

where vq, vy are the the tripotents from the singular decomposition of f.
If f is not a multiple of a minimal tripotent, then s, # 0, and the support
tripotent of f is a maximal tripotent. In this case, for any norm one element
f of S,,, we have s1 + so = 1, and (3.82) then implies that

f=51V)+82Va, 81+ 8 =1. (396)

This means that f is a convex combination of two norm-one states. From the
definition of an extreme point of a set, it follows that f is not an extreme

point of .S,,.
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We will show now that v, where v is a minimal tripotent, is an extreme
point of S,,. First, we will show that if v and w are minimal tripotents, then

v(w)=1= v=w. (3.97)

In this case, we have equality in (3.80). Thus |Pw;| = |w1|, [Pwa| = |wal,
which implies that Pw; = wy, Pwy = wy. Thus, writing v = x + iy, there
is a 6 such that

w1 =cosfx —sinfy, wy =sinfx+ cosfy.

Therefore,

W = W] + iwy = cos 0(x + iy) + isin f(x + iy) = e¥v.
But from v(w) = 1, we obtain § = 0, and so v = w.
Now let f be any norm one element in .S, with decomposition (3.96).
Suppose f(v) = 1. We claim that

f(v) = [|f], =1 = f=v. (3.98)
Since
1=f(v)] = |51V1(V) + 52¥2(V)| < 851+ 52 =1,

we have Vv1(v) = 1, and, by (3.97), vi = v. If s # 0, then also va(v) =1
and vy = v, contradicting the fact that v; is orthogonal to vo. Thus, f = v
and (3.98) holds. Therefore, the minimal tripotent v, considered as a linear
functional on S, exposes only v, implying that

V is a norm-exposed face (3.99)

in S7.
Suppose now that v is a convex combination of two elements, say f; and
f, of the state space Sy,. Then v = af; + (1 — «a)fs, for some 0 < a < 1. Then

l=v(v)=afi(v)+ (1 —a)fze(v) <a+(1—-a)=1.

Since f1(v) and f2(v) belong to the unit disc A of C' and 1 is an extreme
point of C, we get f1(v) = fo(v) = 1. Hence, f; = v and, similarly, fo = v.
This proves that for a minimal tripotent v, the functional v is an extreme
point of the state space S,,. We call such a v a pure state.

We say that a pair of maximal tripotents u and u are complementary if
there are r,T € S} and A € C such that |A\| =1 and

u=Ar, u=4Ar and (r|r)=0. (3.100)

It is easy to check that maximal tripotents u and u are complementary if
and only if {u,u,u} =1u
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For any a € S™, use the polar decomposition (3.35) a = Aay, where
Re(ay) and I'm(ay) satisfy (3.38). If Im(ay) # 0 (meaning that a is not
a multiple of a maximal tripotent), then u := ARe(a;)/|Re(a;)| and 1 :=
iAXm(ay)/|Im(as)| are maximal complementary tripotents. Thus, a can be
decomposed as

a=aju+ au, (3.101)

where a; = |Re(ay)| and as = |Im(ay)|. The decomposition (3.101) by
maximal complementary tripotents u and u, with a; > as > 0, is called
facial decomposition. From the definition (3.59) of the norm, we get

lal| = a1 + as. (3.102)

Thus, any a € 8™ of norm one is a convex combination of two maximal
tripotents which are extreme points of Ds ,. In Figure 3.1, for example, we
see that any a € 0D, which is not a maximal tripotent belongs to a line
segment which connects two maximal tripotents. This implies that a is a
convex combination of the end points of this line segment.

By (3.84), we have

a[ls = 2|Re(ay)| = 2a1. (3.103)

Note that the norm ||@||, of the dual of a maximal tripotent u equals 2.

To describe the faces of S, recall that each element v € S} corresponding
to a minimal tripotent v is an extreme point of S;,, and a norm-exposed face.
If a is not a minimal tripotent and ||al|. = 1, then from (3.103) and (3.101),
it follows that

2a = u+ au,
where u and u are complementary and 0 < « < 1. Since
a(u) = (ulu+oau) =1,

the maximal tripotent u is the support tripotent s(a) of a. Thus, a belongs
to a face defined by a maximal tripotent. To describe these faces, we now
define, for each maximal tripotent u, the set

Fa={feS,: 2f =u+au}, (3.104)

where u and u are complementary and 0 < a < 1. Then ﬁu is a face of
Sn, exposed by u, and consisting of all norm one functionals f in S,, with
support s(f) = u. From (3.100), it follows that the set F}, is a Euclidian ball
in 87, with center at 0.51, of real dimension (n — 1) and radius 0.5]|u||. = 1.
Thus, the boundary of the state space S, is paved with faces in the form of
(n — 1)-dimensional balls. In Figure 3.3, we see the intersection of faces that
are two-dimensional discs or one-dimensional line segments.
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3.3.5 S,, as the state space of a two-state quantum system

A quantum system is called a two-state system if any measurement of the
system has at most two possible outcomes. Examples of such systems are the
polarization of photons and the spin of spin-half particles. If the measurement
of some physical quantity has at most two distinct possible outcomes for some
state 1, then this state can be written as a convex combination of two states,
corresponding to the two possible outcomes of the experiment. For a two-
state system, each of these states must be a pure (indecomposable) state,
called also an atom. Equation (3.96) shows that a similar property holds for
elements of S,,.

The measuring process of quantum systems implies that each pure state
1o has a filtering projection. This projection represents the process of trans-
forming any state (incoming beam) into a multiple of 1) of possibly smaller
intensity. The Stern-Gerlach apparatus, after blocking the |z—) component
of an incoming beam of electrons, is a filtering projection for the pure state
|z+). If we have a beam of photons, we can use the R-projector based on
right-left polarization analyzer to create a filtering projection for photons
with right circular polarization. In general, a measurement causes the sys-
tem to move into an eigenstate of the observable that is being measured.
Thus, the measuring process defines a projection on the state space for each
possible observed value, which is called a filtering projection. Since applying
the filtering a second time will not affect the output state of the system, the
filtering maps are indeed projections.

Note that a pure state in S, is given by v, with v a minimal tripotent.
We can associate to Vv a projection P(v) : S,, — S, defined by

(P; (W)E)(w) = (P, (v)w). (3.105)
From the definition (3.48) of P;(v), we get
E(Py (v)w) = (Py(v)w[2F) = (2(w]v)v[2F) = (v]2F) (w[2v) = £(v)¥(w),
implying that
Pr(v)f =1f(v)v. (3.106)

Since ¥(v) = 1, the map Py (v) is a projection, and, since ||P;(v)f]l. <
[£(v)] ||¥]]« < ||f]|«, it is a contraction. This projection transforms any f € S,
to a multiple of v and behaves like a filtering projection.

Let P be a filtering projection. The norm ||Pt||. represents the proba-
bility that a beam in the state v, represented by a norm one element of S,
will pass the filter. Another important property of a filtering projection is
neutrality. A projection P is called neutral if

|Pf||, = ||f||. implies Pf=f.
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This means that if the beam passes the filter definitely (with probability
1), then it is already in the range of the filter. For our set S, the filtering
projection is defined by (3.106). If for some state f € S, with [|f|. = 1,
we have |Pf(v)(f)|l. = [f(v)| = 1, then from (3.98) we have f = AV with
|A] = 1. But for such f we have P;*(v)(f) = £, showing that P;(v) is a neutral
projection.

For any two pure states 1 and ¢, the transition probability Py_.4 between
1 and ¢ is defined as the probability that a beam in the state ¢ will pass the
filter preparing the state ¢. The transition probability on a state space must
satisfy the symmetry of transition probability property, meaning that

Py = Loy
For any two minimal tripotents u and v, we have Py_¢ = [|Pf(v)al|. =
[a(v)]. Since

[a(v)| = [v(u)],

the transition probability is symmetric on S,,.

On a state space S, each filtering projection P has a unique complemen-
tary filtering projection, denoted by P%. If P prepares the state 1), the pro-
jection P! prepares the state complementary to 1. If an observable has two
possible values and the probability of getting the first value when the system
is in state 1 is zero, then it will definitely have the second value and belong
to the complementary state. The complementary projection P* is contractive
and neutral, like P. Moreover, the sum P+ P* a contractive projection, which,
in general, differs from the identity. The operator Sp = 2(P + P*) — I on
the state space S is a symmetry and fixes the state 1 and its complementary
state. This property is called facial symmetry.

If P = Py(v), then the complementary filtering projection P¥ is P;(¥),
which we also denote by Py (v). This projection prepares the state associated
to Vv, which is orthogonal to v. Note that the complementary projection is
contractive and neutral. The operator

Sy =2(P1(v) + Fg(v)) = I = P{(v) = Pyp(v) + F (V)
is a symmetry of S,. From (3.49) and (3.52), it follows that
Sy = exp(i2rD(v))

is a triple automorphism of D; ,, and an isometry of S,,. Thus, S, is facially
symmetric.

It was shown in [35] that if the state space of a two-state quantum system
is facially symmetric and satisfies the above-mentioned pure state properties,
then it is isometric to the dual of a spin factor. The proof is based on the
construction of a natural basis, called a grid, on a facially symmetric space.
We turn now to the construction of grids.
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3.3.6 S* and Pauli matrices

Let v = x + iy be a minimal tripotent in S*. Then |x| = |y| = 1/2 and
(x|y) =0. Let u; = 2x and ug = 2y. Then u; = v+ v and uy = (v —v)/i.
In any TCAR basis {u;, us, us, uyg}, we will have

v =0.5(1,1,0,0), ¥ =0.5(1,—i,0,0). (3.107)

Applying the Peirce decomposition with respect to v, we have S* =
SHV) + 81 (v) + S5 (v).

Note that Sf/g(v) has dimension 2. Choose a minimal tripotent w &€
S} /Q(V). Without loss of generality, we may assume that

w =0.5(0,0,1,i), W =0.5(0,0,1,—1). (3.108)

Then we can choose u3 = w + W and uy = (w — W)/i. Let us calculate
{w, v,w}. Since the dot product of v with both w and W is zero, we have

{w,v,w} = (w|v)W + (W|v)w — (W|w)V = —0.5V. (3.109)

This leads us to the definition of an odd quadrangle. We say that in a space
with a triple product four elements (v, w,v,w) form an odd quadrangle if
the following relations hold:

VvV, W,V,W are minimal tripotents,

V is algebraically orthogonal to v and W is algebraically orthogonal to w,

the pairs (v,w),(v,w),(w,Vv) and (W,V) are co-orthogonal (the pair

(v, w) is said to be co-orthogonal if D(v)w = 0.5w and D(w)v = 0.5v),
e {w,v,w}=-0.5Vand {v,w,v} = —0.5w.

An example of an odd quadrangle is the following set of 2 x 2 matrices:

(30 o= (1) = () w-(80). em

where the triple product is

ab*c + cb*a

{a,b,c} = 5 (3.111)

Our TCAR basis becomes

(10 _(=i0 (01 =
W=lp1 )™= o)™ \10) ™M 0 /)

Thus,

u = I, uy = —io3,u3 = —ioz, Uy = —ioy,
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where o; denote the Pauli matrices.
Any element a = (ay, as,as,a4) € S* can be represented by a 2 x 2 matrix
A as

4 . .
ap —11as a3z — a4
E aj 11j = . 3 . =A
- —az — 104 a1 + a2
Jj=1
Note that

det A = a? + a3 4 a3 + a3 = deta, (3.112)

providing another justification for the definition of the determinant in the
complex spin factor.

3.3.7 The spin grid and TCAR bases in &™

In the previous section, we studied the duality between minimal and maximal
tripotents in the spin factor §™. In Table 3.2 below, we summarize the dual
properties of these objects.

TCAR bases consist of maximal tripotents. In physical applications, max-
imal tripotents correspond to physical quantities or components of such quan-
tities. They are distinguished extreme points on the ball D; , in the space
representing observables. On the other hand, it is sometimes convenient to
use a basis consisting of pure states. In quantum mechanics, for example,
we often work with a basis for the state space built from eigenstates of a
commuting family of observables. These states are, in general, pure states,
and they correspond to minimal tripotents. This type of basis is called a spin
grid of 8™.

We assume here that n = 2m is an even number. We say that

V1, Va, ..., vy, form a spin grid in 8"

if for any 1 < j < k < m, the elements (vg;j_1, Vak—_1, V2, Vo) form an
odd quadrangle. A spin grid in 8™ is a basis consisting of minimal tripo-
tents. The connection between a TCAR basis and a spin grid is as follows. If
{uj,uy,...,u,} is a TCAR basis, then {vy, va,..., v, } is a spin grid, where

Vaj—1 = 0.5(112]‘,1 + iUQj), Vo = 0.5(112j,1 — illgj). (3113)

Conversely, if {vy,va,...,v,} is a spin grid, then {u;, ua,...,u,} is a TCAR
basis, where

Ugj—-1 = V25-1 + Vaj, Ug; = i(ng — V2j—1)~ (3114)
Equation (3.113) explains why in quantum mechanics we encounter ex-

pressions like a = & + ip,, a* =& — Py, J4 = Jp +iJy and J_ = J, —iJ,,.
For the case when n is odd, see chapter 6.
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Quantum

Type Ball Dy, Ball S, Basis :Decomposition Mechanics

Maximal | Extreme point ; Center (n-1)D face: TCAR: Facial Observables

Spin

grid Spectral Pure states

Minimal |Center 2D face: Extreme point

Table 3.2. The geometric and quantum mechanical properties of tripotents in S™.

3.4 The unit ball D,, of 8™ as a bounded symmetric
domain

In this section, we will show that the unit ball D; ,, of S is a bounded sym-
metric domain with respect to the group Aut, (D, ) of analytic automor-
phisms of D; ;. This domain is a good example with which to demonstrate
various concepts that will be generalized in Chapter 5 to general bounded
symmetric domains.

3.4.1 Complete analytic vector fields on D; ,

Let D be a domain in a complex linear space X. A map £ : D — X is called
a vector field. We will say that a vector field £ is analytic if, for any point
a € D, there is a neighborhood of a in which £ is the sum of a power series
(see Chapter 5 for more details). A well-known theorem from the theory of
differential equations states that if £ is an analytic vector field on D and
a € D, then the initial-value problem

dw(r) =¢(w(r)), w(0)=a (3.115)

dr

has a unique solution w,(7) for real 7 in some neighborhood of 7 = 0. A field
¢ is called a complete analytic vector field if the solution of the initial-value
problem (3.115) exists for all real 7, all a € D, and all w(r) € D. In this
case, for any fixed 7 € R, the map ¢, : D — D, defined by

¢-(a) = wa(7) (3.116)

is analytic and is called the flow generated by £. If € is complete, then the flow
¢- generated by £ belongs to the group Aut,(D) of analytic automorphisms
of D. We denote

¢r = exp(TE), (3.117)

where 7 € R. By a result in [64], an analytic flow £ on a bounded domain D
is complete if and only if it is tangent to the boundary 0D of the domain.
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For each a € 8™, we define a vector field representing a generator of
translation, by

fa(w) =a— {w,a,w}. (3.118)

Note the similarity of &, to the generators of velocity addition in Chapter
1 and the generators of s-velocity addition in Chapter 2. Note that &, is a
second-degree polynomial in w and, thus, an analytic vector field. See Figure
3.5 for an example of &,(w), where w ranges over the intersection of D; ,
with the two-dimensional real span of the two minimal tripotents v, and vo
from the singular decomposition of a. We will show now that &, is tangent on

V2
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\

- T T = =TT T 7 -

-1 ‘ 0 1

Fig. 3.5. The vector field £a(w), with a = 0.17v; 4 0.1vs, on the intersection of
Dy, with spang{vi,va}. Note that the flow is tangent on dDj .

the boundary of D ,,. Thus, it generates a complete analytic flow on D ,,.

Let w € 0D; ,,. Then, from section 3.3.2, it follows that w belongs to
a norm-exposed face F,,, corresponding to a minimal tripotent v. This face
is exposed by the hyperplane IT = {w : Rev(w) = 1}. We will show that
&a(w) is parallel to the hyperplane, meaning that

Rev(&a(w)) =0. (3.119)
(From (3.89), it follows that w = v + Av, with |A| < 1. Thus,

{w,a,w} ={v+v,a,v+ v}
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={v,a,v} + \{¥,a,v} + 2\{v,a,v}.
Since v and Vv are orthogonal minimal tripotents, we have

{w,a,w} = 2(v]a)v + 2\*(V|a)V + 2\ (v|a)¥

+2X\(V]a)v — A\a.
Recall that v(v) =1, ¥(¥) = 0 and v(a) = 2(a|v). Thus,

V(€a(w)) = 2(alv) — 2(v|a) — 2A(v]a) + 2A(alv)

= 4iIm((a|v)),

implying (3.119). Thus, the analytic vector field &, defined by (3.118) is
tangent on D, , and, thus, is a complete analytic vector field.

3.4.2 Decomposition of the translations on D, ,

Let a € 8™ . Let a = s1v1+82va be the singular decomposition of a. Using the
linearity of the triple product, we can decompose the generator of translation
&a, defined by (3.118), as

a=—a-— {Wv a,w} = gslvl + gSQVQ' (3120)

The vector fields &,v, and &g,v, represent generators of translations in the
directions of two orthogonal minimal tripotents. We will show that these
vector fields commute, meaning that

[551V17582V2] =0. (3121)

Figure 3.6 shows the decomposition of the vector field &,(w) from Figure 3.5
into the sum of the vector fields &,v, and &s,v,-

Recall from section 1.5.2 that the Lie bracket of two vector fields ¢ and &
is defined as

s

a0 LS
T dw

[0,€](w) (W)E(w) — -~ (w)d(w), (3.122)

where w € 8™ and 4 (w)é(w) denotes the derivative of § at the point w

. . . s, v
in the direction of the vector {(w). Let us calculate first =721 (w)&s,v, (W).
Using the orthogonality of v and vy, we have

d§81 Vi
dw

(W)Esovs (W) = =2{w, 511, (52v2 — {W, 52v2, W})}
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Fig. 3.6. The vector field {a(w), with a = 0.17vy + 0.1vz, decomposed into the
sum of the vector fields £o.17v, and &p.1v,. Compare to Figure 3.5

= 28159{w, v, {w, vy, W}}.
(From (3.28), it follows that there is a constant A such that |A\| = 1 and

Vo = /\Vl. ThU.S,

dgslvl

- (W)Esyvy (W) = 25150 M W, vy, {w, ¥V, w}}.
Similarly, we get

ngQVQ
dw

Thus, in order to prove (3.121), it is enough to show that

(W)fslvl (W) = 28182X{W, Vi, {W’ Vi, W}}

{w,v1,{w,v1,w}} = {w, vy, {w,vi,w}}.

By the definition of the triple product, both sides of the equation are equal
to

Awlvi)(wlvi)w — (wlw) ((w[v1) V1 + (W|vi)vi +1/2),

proving (3.121).
Since the exponent of the sum of commuting vector fields is the product
of the exponents of each field, we have

exp(fa) = exp(fsz‘,z) exp(§syvs ), (3-123)

implying that any translation exp(£,) can be decomposed as a product of
translations exp(€sy) defined by multiples of minimal tripotents.
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3.4.3 The homogeneity of D, ,

Since Dy ,, is the unit ball in the operator norm, the reflection map w — —w
is an analytic symmetry on Dj , which fixes only the origin. Clearly, Ds,, is
bounded. Thus, in order to show that D, ,, is a bounded symmetric domain,
it is enough to show that it is homogeneous. This means that for a given
b € D, ,, we must find an analytic automorphism ¢y of Dy, such that
©p(0) = b. We will construct an element a of Dy ,, such that exp(&,)(0) = b.

The first step is to calculate exp(&sy)(0), where s is a positive constant
and v is a minimal tripotent. To do this, we have to solve the initial-value
problem (3.115), which in our case is

dw(T)
dr

=sv —s{w(r),v,w(r)}, w(0)=0. (3.124)
But if we take

w(T) = tanh(sT)v
(as in the solutions of the similar initial-value problem in Chapter 1), then

dW(T)_ 5 = —aHQST vV = WI(T
dr _COSh2(ST)V_S(1 t h( )) —Esv( ())7

implying that w(7) is a solution of the initial-value problem (3.124). Thus,
by (3.117), we have

exp(&sv)(0) = tanh(s)v. (3.125)

Now let b = s;v; 4 s2va be an arbitrary element of D ,. Then the
function

w(7) = tanh(7 tanh ™' (s1))vy + tanh(7 tanh ™' (s2))va
satisfies the initial-value problem

dw(T)
dr

=&a(w(r)) =a—{w(r),a,w(r)}, w(0)=0, (3.126)
where

a = tanh™ ' (s1)vy + tanh ™' (s2)va.
Thus,

exp(£a)(0) = b.

This establishes the homogeneity of D; ,,. In Figure 3.7, we see w(r) for the
vector field &, (w) from Figure 3.5.
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V2

w(T)

wo(T)

1 0 1

Fig. 3.7. The trajectory w(7) for the vector field £a, with a = 0.17vy + 0.1vo,
from Figure 3.5. The trajectory starts at the origin and ends up at the maximal
tripotent vi + va. Such behavior is stable under small perturbations of a. The
trajectory wo(7), corresponding to the vector field &, ends up at the minimal
tripotent vi. This trajectory is unstable under small perturbations of v;.

3.4.4 The group Aut,(D; )

The group Aut,(Ds ;) of all analytic automorphisms of D ,, consists of trans-
lations ¢y, which are the exponents of complete analytic vector fields &, and
rotations, which are linear isometries of D, ,. We will denote the group of
all linear isometries of D;,, by K, since this is a compact subgroup of D; ,,.
We will show now that K is exactly the group Taut(S™) of triple product
automorphisms of 8™, defined earlier and characterized by (3.20).

Let T € Taut(S8™) be a triple product automorphism. Then, for any tripo-
tent u, we have

T(u) = T({u,u,u}) = {T(u), T(a),T()}),

implying that T'(u) is also a tripotent. Since algebraic orthogonality of tripo-
tents is defined by the triple product, the map T preserves algebraically
orthogonal tripotents. Thus, for an arbitrary element a € S™ with singular
decomposition a = s1v; + sava, the singular decomposition of T'(a) is

T(a) = s1T(v1) + s2T(v2).

From the definition (3.58) of the norm on S™, we have ||T'(a)|| = s1 = ||a|,
implying that T is an isometry and, hence, belongs to K.
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Conversely, suppose T is a linear isometry of S™ preserving the unit ball
D ,,. In this case, the dual T is an isometry on S} preserving the state space
Sp. The linear map 7" must take extreme points of Dj ,, which are maximal
tripotents, to extreme points of §™. So maximal tripotents are mapped to
maximal tripotents. The same argument for 7™ implies that the minimal
tripotents which correspond to extreme points of \S,, are mapped to minimal
tripotents. Since two minimal tripotents are algebraically orthogonal if and
only if their sum is a maximal tripotent, the map T preserves algebraic or-
thogonality of minimal tripotents. Thus, for any element a € S™ with singular
decomposition a = s1vy + sava, the singular decomposition of T'(a) is

T(a) = s1T(v1) + s2T(v2).
Thus,
T(@®) = T(sivy + s3vy) = 3T (vy) + 3T (vy) = T(a)®.

By polarization, this implies that 7" is a triple product automorphism. Thus,
we have shown that

K = Taut(S").

3.5 The Lorentz group representations on &™

In section 1.5.4 of chapter 1, we saw that the transformation of the electro-
magnetic field strength E, B from one inertial system to another preserves
the complex quantity F2, where F = E+icB. If we consider F as an element
of 83, then F? = det F. Thus, if we take S® as the space representing the set
of all possible electromagnetic field strengths, then the Lorentz group acts on
83 by linear transformations which preserve the determinant. This leads us
to study the Lie group of determinant-preserving linear maps on 8* (and, in
general, on 8™) and the Lie algebra of this group.

3.5.1 The determinant-preserving group Dinv (8™) and its Lie
algebra

Let Dinv (S8™) be the group of all invertible linear maps 8™ — S™ which
preserve the determinant. We introduce a complex bilinear symmetric form
Bl on 8™ by

Bl(a,b) :a1b1 —|—a2b2—|—-~—|—anbn, (3127)
where a = (a1,a2, -+ ,a,) and b = (b1, b2, -+ ,by). Then

Dinv (8™) = {g € GL(S™) : Bl(ga,ga) = Bl(a,a) for all a € S"}. (3.128)



130 3 The complex spin factor and applications

We denote the Lie algebra of Dinv (S™) by dinv (8™). If g(¢) is a smooth
curve in Dinv (8™), with ¢(0) = I, the identity map on 8", then X := ¢’(0) €
dinv (8™). Since g(t) € Dinv (§™), from (3.128) we have

Bi(g(t)a, g(t)a) = Bl(a,a) for all a € S".
Differentiating this by ¢ and substituting ¢ = 0, we obtain
Bil(Xa,a)+ Bl(a, Xa) =0,

and so Bl(Xa,a) =0 for all a € §™. By polarization, for every a,b € 8™ we
obtain

Bi(Xa,b) + Bl(a, Xb) = 0. (3.129)

Note that from the definition (3.127) of the bilinear form Bl, for any element
u; of a TCAR basis B and any element ¢ € 8", we have

Bl(c,u;) = Bl(uj, c) = (c[u;),
implying that
(Xujlug) + (Xugu;) =0

for any 1 < j,k < n. Thus, the matrix [x;;] of X with respect to the basis B
is antisymmetric.

Hence dinv (S§™) C A,(C), where A, (C) denotes the space of all n x n
complex antisymmetric matrices, a Cartan factor of type 2. Using the triple
product on 8™ and (3.22), we can express this Lie algebra as

dinv (Sn) = {Z dle(uk,ul) tody € C} (3.130)
k<l

The Lie group Dinv (S8™) consists of matrix exponents of elements of X from
dinv (8™). If X € dinv (S™) is real, then its exponent is an orthogonal matrix.
Thus, O(n) C Dinv (8™). Since the trace of X is zero, the determinant of
exp(X) equals 1. Thus, Dinv (S™) is a subgroup of SL(n,C).

The problem of characterizing the linear maps which preserve the de-
terminant has a long history dating back to Frobenius in 1897. Frobenius
showed that the linear maps of the n X n complex matrices which preserve
the determinant are of one of the forms A — PAQ or A — PA!Q, where
At is the transpose of A and P, Q are matrices with det PQ = 1. The group
Dinv (8™) coincides with the pseudo-orthogonal group SO(n,C) ,which con-
sists of linear maps of C" having determinant 1 and preserving the form
Z% 4+t 2721
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3.5.2 Representation of the Lorentz Lie algebra in dinv (S3)

We consider the complex spin triple factor S* as a representation space for
electromagnetic field strength. As mentioned at the beginning of this section,
the Lorentz group preserves the complex value F? = (E + icB)? = det F.
Thus, the Lorentz group acts by elements of Dinv (S%) and the generators of
this group are elements of dinv (S3). We can thus define a representation 72
from the Lorentz Lie algebra into dinv (S3).

To determine this representation, it is enough to define 72 on the gen-
erators of rotation J; and the generators of boosts Ki, for £k = 1,2,3. Let
B = {u;,uy,u3} be a TCAR basis of S3. Similar to the representation 7.
from section 2.4.5 of Chapter 2, we define

Wf(Jl) = D(UQ,Ug), ’/T::)(JQ) = D(U3,U1), ’/Tf(Jg) = D(ul,u2). (3131)

Using the definition (3.4) of the spin triple product and the definition (3.7)
of the D operator, the matrix of D(ug,us), for example, in basis B is

000
73(J1) = D(ug,uz) = [0 0 1], (3.132)
0-10
which is an antisymmetric matrix, and, by (3.130), an element of dinv (S3).
This matrix is the same as the matrix of momentum J; of rotation about the
uj-axis.

To define the representation 72 on the generators of boosts Kj as el-
ements of dinv(S3), it is natural to try to use the remaining three di-
mensions of the six real dimensions of dinv(S®). By (3.130), the opera-
tors iD(ug,u3),iD(u3, uy) and iD(uy,us) are also elements of dinv (S3). As
shown in section 1.5.3, page 39, the generators of the Lorentz group satisfy
the following commutation relations:

[J1, Jo) = —Js, [Ja, 5] = =Ju, [Js, Ji] = —Jo (3.133)
[J1, K1) =0, [J1,Ks] = —K3, [J1,K3] = Ko, (3.134)
[J2, Ki] = K3, [J2, Ka] =0, [J2, K3] = =K, (3.135)
[J3, K1) = —Ks, [J3, Ko = K1, [J3, K3] =0, (3.136)
(K1, K| = Js, Ko, K3) = J1, [K3, Ki] = Jo. (3.137)

We define
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mo (K1) = i) (1), 73(Ka) = im3(J2), mi(K3) = imd(J3). (3.138)
For example,
0
0

—1

m (K1) = iml(J1) = (3.139)

oo o
o = O

It is straightforward to verify that the images of Ji, Kj under 73 also satisfy
the relations (3.133)-(3.137). Thus, (3.131) and (3.138) define a linear repre-
sentation 72 of the Lorentz Lie algebra into dinv (§%). In fact, the range of
72 is the entire Lie algebra dinv (S3).

3.5.3 Representation of the Lorentz group in Dinv (S3)

To define a representation of the Lorentz group into Dinv (§%), we compute
the exponents of the matrices, defined above, representing the generators in
dinv (83). We use the usual formula for the exponent of a matrix A:

exp(4) =) o (3.140)
j=0

If A represents a generator of rotation 73(.J;), then from (3.132), A3 = — A
and the exponent is a matrix of rotation. For example, using the notation
(1.176) for the rotation operator, we obtain

1 0 0
’Rio = exp(er(J1)) = [ 0 cosp sing |. (3.141)
0 —siny cosy

If A represents a generator of a boost 73(K), then from (3.139), A% = A and
the exponent is a matrix of hyperbolic rotation. For example, for the boost
in the z-direction, we have

1 0 0
BZD = exp(gmrg(Kl)) = |0 coshy isinhy |. (3.142)
0 —isinh ¢ cosh g

We now compute the eigenvalues and eigenvectors of the operators
RZD,BSO. It is obvious that i = (1,0,0) is an eigenvalue corresponding to
the eigenvector 1 for both operators. By a direct calculation, we find that the
other two eigenvectors are v = 0.5(0,1,4) and v = 0.5(0,1, —¢). The eigen-
vector v corresponds to the eigenvalue e’ for the operator RZO and to the
eigenvalue (cosh ¢ + sinh ¢) for the operator B;. Similarly, the eigenvector v
corresponds to the eigenvalue e % for the operator 7220 and to the eigenvalue
(cosh ¢ — sinh ¢) for the operator Bi,.
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Note that v and Vv are orthogonal minimal tripotents and that i belongs
to the Peirce 1/2 part of each of them. Thus, the Peirce decomposition

§* =8} (v) + 87 /2(v) + S5 (v) (3.143)

is a decomposition of S? into the eigenspaces of both R and BL. Note also
that v and ¥ are photon helicity eigenstates (see [71] v.I, p.359) corresponding
to circular polarization.

3.5.4 The electromagnetic field and S3.

The transformation of the electromagnetic field intensity E’, B’ from an in-
ertial system K’ to an inertial system K, moving with velocity v = (v,0,0)
with respect to K’, was discussed in Chapter 1 and is given by (1.121) as

B, — vB, B, +vB}
By =E), By— 2278 p B3t UBs (3.144)
2 2
-z - =
and
B, + X F B, _ v E!
B, = B!, BQZM, BSZM, (3.145)
1-% -5

where E and B have coordinates F1, Fs, F5 and By, Bs, Bs, respectively.
It was shown in section 1.5.4 that if F' = E + icB, then

F?=F? 4 F? + F} = |E]* - &#|B|* + 2ic(E|B) (3.146)

is invariant under the transition from one inertial frame to another. The
above transformations of electric and magnetic fields take the form

Fy = F|, Fy = Fjcoshp + iFjsinhp, F3 = —iF}sinh ¢ + Fj cosh .

Hence, the matrix of this transformation is exp(w2(K7)), which is (3.142)
where tanh ¢ = wv/c. Thus, it is natural to represent the electromagnetic
field intensity as a vector F in C?, in which case the Lorentz group acts by
linear maps which are described by matrices of type (3.141) and (3.142) and
preserve the value of F2.

Consider now elements of the spin factor S? as representing the vector
F = E + icB of the electromagnetic field strength. Let us understand first
the physical meaning of multiples of minimal tripotents. Using singular de-
composition, each element can be decomposed as a linear combination of two
orthogonal multiples of minimal tripotents. The dual of such a tripotent is
an extreme point of the state space. Since the Lorentz group representation
72 acts on S? by operators which preserve the determinant, it follows that a
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multiple of a minimal tripotent remains a multiple of a minimal tripotent in
any inertial system.

In the current interpretation, a multiple kv of a minimal tripotent v can
be decomposed as kv = y + iz, representing an electric field F = y and a
magnetic field ¢B = z, in which E and B are perpendicular and |E| = ¢|B|.
Motion in such a field was described in Case 2 of section 2.6.3 of chapter
2. From (3.144) and (3.145), it follows that only in this case will a charged
particle moving with the speed of light in the direction E x B (the z-direction
in our example) experience no field. Thus, it is natural to associate with
a coherent ray of photons (which has no charge of its own and thus zero
electromagnetic field in its own frame) a field of this type, where E x B is
the direction of propagation of the ray. Such a ray is an eigenstate of both
the rotation pr about the z-axis and the boost B; in the z-direction. It is
also a helicity eigenstate and has definite circular polarization.

If two multiples of minimal tripotents are orthogonal to each other, then
each one is the complex conjugate of the other. This means that the photons
which they are representing move in opposite directions and have the same
wavelength and complementary polarization.

A multiple ku of a maximal tripotent u = e*“r represents an electric
field E = kcos o r and magnetic field B = ¢~ 'ksin ¢ r. This means that the
electric and magnetic fields are parallel. Motion in such a field was studied
in section 1.5.6 of chapter 1.

A general field F' = E + icB can be decomposed by singular decomposi-
tion (3.34) as a sum of multiples of two orthogonal minimal tripotents. By
the above interpretation, the field can be represented as a combination of
two rays of photons moving in opposite directions with the complementary
polarization.

3.5.5 Spin 1 representations of the Lorentz group on Dinv (§%)

The three-dimensional linear representation 72 was defined on the rotation

group and extended to the full Lorentz group. In this subsection, we construct
a four-dimensional linear representation 7% of the Lorentz group which also
extends the linear representation 72 of the rotation group. We will show
that ¢ is equivalent to the standard representation of the Lorentz group on
space-time.

We shall again let Jy, Js, J3, K1, Ko, K3 be the standard infinitesimal gen-
erators of the Lorentz Lie algebra. We also let ug, uy, us, uz denote a TCAR
basis of S* and define a representation 7% from the Lorentz Lie algebra to
the set of operators on S*. For ease of notation, we shall write D, instead
of D(u;,uy), for j,k € {0,1,2,3}, j # k. Note that here, D(uz, us3) acts on
the space spanned by ug, uy, us, uz, whereas in (3.131), it acts on the span
of uy,uy, uz. We define 72 by

W?(Jl) = D23, W?(JQ) = D31, W?(Jg) = Dlg, (3147)
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’/T?(Kl) = iDOl, ’/TZ;L(KQ) = iDOQ, ﬂg(Kg) = iDog. (3148)

To show that 7 is a representation of the Lorentz group, it is enough to
check that it satisfies the commutation relations (3.133)-(3.137). To do this,
we need the following generalization of the main identity (3.53). By use of
polarization, we can rewrite this identity as

D(X7 Y){a’ b, C} = {D(X7 Y)a’ b, C} - {av D(Ya X)bv C} + {a7 b, D(Xv Y)C}a
(3.149)

which is equivalent to
D(x,y)D(a,b)c = D(D(x,y)a,b)c — D(a, D(y,x)b)c + D(a,b)D(x,y)c.
This implies that
[D(x,y), D(a,b)] = D(D(x,y)a,b) — D(a, D(y,x)b).  (3.150)

Using this identity and the TCAR relations (3.14)-(3.16), it is easy to
verify the commutation relations. For example,

(w3 (J1), w3 (K2)] = i[Das, Dos]

= iD(D(UQ,U3)uO, 112) - iD(UQ, D(U3, 112)112) = —iD03 = —7T3(K3).
An additional example is

[m3 (K1), 75 (K2)] = —[Do1, Do)

= —D(D(uo,ul)uo,ug) + D(uo,D(ul,uo)ug) =Dy = W?(Jg)

It is straightforward to check the remaining relations. Thus, 74 is a represen-
tation of the Lie algebra of the Lorentz group into dinv (S?).

The representation of the Lorentz group by elements of Dinv (S%) is ob-
tained by taking the exponent of the basic elements of 7%. For example,
exp(p7m#(K1)) with respect to the basis {ug, u;,uz,uz} is, by use of (3.140),

coshyp isinhep 00

—isinh o coshy 00
exp(pr(Ky)) = 0 14 0@10 . (3.151)

0 0 01
Similarly, we have

10 0 0
01 0 0
00 cosy sing
00 —siny cosyp

exp(pmg(J1)) =
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3.5.6 Invariant subspaces of 71';1

Unlike the representation 72, which is onto dinv (§%), the representation 7

is not onto dinv(S*). This follows from the fact that dinv(S*), which is
identical to A4(C), is of complex dimension six, while the Lorentz group is
of real dimension six. Therefore, we want to find a subspace M; of S* which
is invariant under the representation 7%. Then the representation of the Lie
algebra of the Lorentz group is by elements of dinv (S*), which are vector
fields generating flows on S* that preserve the determinant and map the
subspace M into itself.
It is easy to check that the subspace

My = {(2°, 2", 22, 2%) = 2"u, € S*: 2° € R, 2!, 2 2% €iR} (3.152)

is invariant under 7?. To see this, it is enough to check that the maps
exp(pnt(Jy)) and exp(end(K})), for k = 1,2,3, keep M; invariant. We can
attach the following meaning to the subspace M;. Let M be the Minkovski
space representing the space-time coordinates (¢,x,y,2) of an event in an
inertial system. Define a map ¥ : M — M; by

U(t,z,y,2) = ctug — izu; — iyus — izus. (3.153)

We use the minus sign for the space coordinates in order that the resulting
Lorentz transformations will have their usual form. Note that

det(¥(t,z,y,2)) = (Ct)2 g2 y2 2 52,

where s is the space-time interval.
Any map T € Dinv (S*) which maps M; into itself generates an interval-
preserving map

A=0"'TY (3.154)

from M to M. Thus, any map T from 7% generates by (3.154) a space-time
Lorentz transformation. For example, if T' = exp pm%(K7), then

coshp ¢ 'sinhp 00 t
csinh cosh 00 T

A(t7x7y’z) = 0 v O v 1 0 y )
0 0 01 z

which is the usual Lorentz space-time transformation for the boost in the
a-direction, where tanh ¢ = v/c, and v is the relative velocity between the
systems. Conversely, any space-time Lorentz transformation A generates a
transformation T = $A¥~! on M; which can be extended linearly to a map
on 8% which belongs to 2. Thus, the usual Lorentz space-time transformation
is equivalent to a representation 7%, and 7% can be considered as an extension
of the usual representation of the Lorentz group from space-time to S*.
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In addition to the subspace M;, the representation 7# preserves the sub-
space

M2 == {(p07p17p27p3) =p,Uu, € 84 1 Po € ZRa P1,P2,P3 € R}) (3155)

which is complementary to M;. We can attach the following meaning to the
subspace Ms. Let M be the Minkovski space representing the four-vector mo-
mentum (pg, p1, P2, p3) = mo(cy,yv), where myg is the rest-mass and (v, yv/c)
is the four-velocity of the object. Define a map WM — M> by

¥ (po,p1,P2,P3) = ipoUp + piug + pauy + paus. (3.156)
Note that

det(@(pomhpz’p:s)) = —pg + P} + 03+ 3 = —(E/c)* + p° = —(mgc)?
is invariant under the Lorentz transformations.
Any linear map 7' on S* which maps M, into itself generates a map

T|5; =90 'TY (3.157)

from M to M. If T € Dinv (S*), then the map T'|3; is a Lorentz transforma-
tion on the four-vector momentum space. Thus, any map 7' from 7% generates
a Lorentz transformation on the four-vector momentum space. For example,
if T = exp(pn?(K1)), then A := T|M = exp(gmrﬁ(Kl))bVI is

Do cosh ¢ sinh g 00 o

~| p1 | | sinhg coshep 00 P1

A v | = 0 0 10 o | (3.158)
D3 0 0 01 D3

Conversely, any four-vector momentum Lorentz transformation A generates a
transformation T = W A¥~! on M, which can be extended linearly to a map
T on 8* which belongs to 2. Thus, the usual Lorentz four-vector momentum
transformation is equivalent to a representation 72, and 7% can be considered
as an extension of the usual representation of the Lorentz group from four-
vector momentum space to S*.

4

3.5.7 Transformation of the electromagnetic field tensor under =

We can now use (3.157) to define the restriction of the generator of a boost
73(K1) in the z-direction on the four-momentum space M. We have

T4 (K1)| 57 (pos 1, P2, p3) = T (K1) (po, pr, pas p3) =

Wi Doy (ipoug + prug + paus + paug) = ¥ (ip1ug + pous) = (p1, o, 0,0).
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In matrix notation, we get

Po 0100 Po
4 P | _|-1000 D1
T ED |y [T 0 000 ] | 12
Ps3 0000 P3

Thus, 74(K1)|5; acts like the electromagnetic tensor for an electric field in
the z-direction. Such a field generates a boost in the z-direction.
A similar calculation for 73 (J1)|5; gives

Po 00 00 Po
4 || _| 0000 D1
ﬂ-s(‘]l)‘]\/[ Do - 00 0 1 Do 5
P3 00-10 P3

which is the action of the magnetic field. Thus,the electromagnetic strength
tensor F' for an electromagnetic field E, B on M is represented by

0 E B, P
7E1 0 CBg 7CBQ
—E2 —CB3 0 CBl
—E3 CBQ —CBl 0

FZEkﬂ'é(Kk”M—FCBk?Tg(Jk”M: (3.159)

This is very natural, since the electric field generates boosts and the magnetic
field generates rotations.

We are now able to obtain the transformation of the electromagnetic
strength tensor F' under the Lorentz transformations A on the four-vector
momentum. The transformation of this tensor can be calculated by use of
the formula

F' = AFA7Y, (3.160)
which stems from the following commutative diagram:
My —— M,
N
My —2
Thus, for example, let A = exp @ma(K1)|5; be the boost in the z-direction

with speed v, and set tanh ¢ = v/c. Then, by use of (3.158), the electromag-
netic field tensor F’ after the boost is

0 FE| E), EFE
—-E] 0 ¢Bi —cB)
—E} —cB} 0 c¢Bj
—E; ¢B) —c¢B;} 0
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cosh ¢ sinh ¢ 00 0 E1 FE, Ej cosh —sinhp00
sinhpcoshp00 || —FE1 0 ¢Bs —c¢Bs| | —sinhy coshy 00
0 0 10||—-FEy—cBs 0 cB 0 0 10
0 0 01/ \—-E3 ¢By —cB; 0 0 0 01

This coincides with the transformation of the electromagnetic field strength
given by (3.144) and (3.145).

3.5.8 The relativistic phase space

In classical mechanics, we use the phase space, consisting of position and
momentum, to describe the state of a system. The results from the pre-
vious subsection suggest that S* can serve as a relativistic analog of the
phase space (by representing space-time and four-momentum on it). Note
that any relativistically invariant multiple of four-momentum can be used
instead of four-momentum. For instance, we may use four-velocity instead of
four-momentum.

In order to allow transformations under which the subspaces M; and My
are mot invariant, we have to multiply the four-momentum by a universal
constant that will make the units of M; equal to the units of Ms. Therefore,
we propose two embeddings of the relativistic phase space S*:

1) The space-momentum embedding:

‘Q(tvxvyvsz/Cvplyp%pS) = (3161)

(ct +<ciE/c)ug + (sp1 — iz)us + (sp2 — iy)ug + (sp3 — iz)us,

where the universal constant ¢ transforms momentum into length.
2) The space-velocity embedding:

Rt x,y, z,7v,vv1/c,yva/c,yvs/c) = (3.162)

(ct +iwy)ug + (wyvi/c — iz)uy + (wyva/c — iy)us + (wyvs/c — iz)us,

where the universal constant w transforms velocity into length.

We now explain the physical meaning of the tripotent u = 0.5(ug + iu;)
in the range of {2. Since for any A of modulus 1, Au is also a tripotent, the
coordinates of Au satisfy

ct+ciE/c=—i(sp1 —ix), y=2z=ps =p3=0.

This implies that ¢t = —x and E/c = —p;. Since E = mgyc? and p = moyv,
the second equation becomes ¢ = —wv;. This is also consistent with the first
equation. Thus, the minimal tripotent u = 0.5(ug + 4u;) and, similarly, the
minimal tripotent @ = 0.5(up — iuy), orthogonal to u, represent particles
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moving in the direction of the z-axis with velocity Fc, respectively. Such
particles have rest-mass my = 0 and spin 0, and their momentum is expressed
in terms of their wavelength. Thus,

0.5(up £iuy) = mo =0, © = Fct, p1 = FE/c, y =2 =p2 = p3 =0.
(3.163)

Consider now the minimal tripotent u = 0.5(uz 4 4u3) in the range of (2.
The coordinates of this tripotent satisfy

Spe —iy = —i(sps —iz), t=E=p; =2 =0.

This implies that ¢p; = —z and ¢p3 = y. Since p = myyv = mo‘j—‘;, the
state corresponding to 1 describes a rotation about the z-axis with constant
angular velocity. This state behaves like a particle in a magnetic field in the
z-direction. But in this case, the meaning of t = E = 0 is not clear. Perhaps
this state must be considered as a limiting state.

The representation 7# of the Lorentz group has several advantages over
72, In general, a representation of the Lorentz Lie algebra consists of gener-
ators of rotations, interpreted as magnetic fields, and generators of boosts,
interpreted as electric fields. As we saw in chapter 1 (1.106), page 39, electric
and magnetic fields commute if and only if they are parallel. This implies that
the representations of Kj and J; must commute for each k. Commuting, in
general, is described mathematically by orthogonality. Thus, it is preferable
to represent the Lie algebra of the Lorentz group by a rank two symmetric do-
main, which is a spin factor. Only for dimension 4 is the Lie algebra dinv (S™)
a spin factor. Moreover, under the representation 7%, for any direction, the
generator of a rotation about this direction and the generator of a boost in
this direction, defined by (3.147) and (3.148), are orthogonal tripotents. In
the next section, we will encounter yet another advantage of 7%: modelling
spin 1/2 particles on S*.

3.6 Spin-; representation in dinv (§*)

3.6.1 The representation 7+ on S*

The elements Dj;, from dinv (S§%), together with the triple product (3.111),
form a spin grid, defined earlier on page 122. For example, the elements
(Do1, Do2, D23, D3q) form one of the odd quadrangles of this grid. For ele-
ments of an odd quadrangle, one may define a “sharp” operation which sends
each minimal tripotent to its orthogonal one. If we choose a TCAR, basis in
the spin factor dinv (§*), then this operation is complex conjugation, since in
a TCAR basis, the complex conjugate of a minimal tripotent is an orthogonal
minimal tripotent. The sharp operation is defined as follows:
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Df) = Da3, Dfy = D31, Dy = D1z, Dy = Do1, D}y = Doa, D}y = Dos

and is then extended to all of dinv (§*) conjugate linearly.

Under the representation %, constructed in the previous section, 72(.J;)
and 7%(K}) are minimal tripotents of dinv (§*). Recall that equation (3.114)
transforms a spin grid, which consists of minimal tripotents, into a TCAR
basis, which consists of maximal tripotents. In a similar way, we now use the
conjugation * to construct, from 7%, two representations 7t and 7, of the
Lorentz group using maximal tripotents. The representation 7% is defined to
be the self-adjoint, or real part of 7% on .J;, J2, J3 with respect to #, and the
skew-adjoint, or imaginary part, of 7% with respect to # on K, K, K3. To
be precise, we define

T () = 3 () + ()

1
T (Kk) = 5 (w5 (Kg) — 73 (Ky)?).
Note that 7t (Ky) = ir ™ (Jy) for k =1,2,3.
For example, the matrices of 77 (J1), 7% (J2) and 7«7 (J3) in the basis
ugp, u, ug, uz are the following multiples of 4 x 4 orthogonal matrices:

0

0
1 0
1

o O O

1 1
() = §(D01 + Do3) = 2

OO O

0
00-1

0010
000-1
-100 0 |~
0100

1
T (J2) = §(D02 + D3y) =

DN | =

0 001
0 010
0 —-100
-1 000

1
7t (Js) = §(D03 + Dig) =

N | =

In order to check that 7+ (Jg) satisfy the commutation relations (3.133),
we calculate the multiplication table for these elements. Direct calculation es-
tablishes Table 3.3 for 77 (.J;). The constant % is necessary if 77 is to satisfy
the commutation relations (3.133). Since 7 (K}) = in*(Jg), the commuta-
tion relations (3.134)-(3.137) also hold, and so 7 is a representation of the
Lorentz group. Note that for the representation 7%, the generators of the Lie
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21T (J1) | 207 (Jo) | 207 (J5)
2T (J1)| I [—2nT ()] 27T (J2)
27['+(J2) 27T+(J3) 7[ 7271'_‘—((]1)
21 (J3)| 2w " (J2)| 27T (J1) -1

Table 3.3. Multiplication table for 7 (Jz)

algebra of the Lorentz group are minimal tripotents, while for the represen-
tation 7T, the generators are maximal tripotents in dinv (S?%). From Table
3.3 and the fact that 77 (J,)* = =7 (Jy), it follows that

{2n (J1), 27t (1), 2n " (Ja)} =

27T+(J1) . 27F+(J1)* . 27T+(J2) + 27T+(J2) . 27T+(J1)* . 27T+(J1)

9 = 27T+(J2)

and
{27 (Jh), 277 (J2), 20T (J1)} = 27t (Jy) - 27 (Jo)* - 201 (Jy) = =27 (Ja).
Similar identities hold for the other indexes. Thus, the elements
{27nF(J1), 271 (Jo), 20" (J3)}  satisfy TCAR, (3.164)

as elements of the spin factor dinv (§*) = A4(C).

Notice also that 7+ (J1), 7% (J2), 77 (J3) each have two distinct eigenval-
ues, namely j:%. Note that if j denotes the spin value of a representation,
then the number of distinct eigenvalues is 25+ 1. In the above representation,
then, we have j = 1/2, implying that this is a spin % representation. This
is confirmed also by direct calculation of the exponent of the generators of
rotations. Since 7+ (J;) = —i[, the matrix exponent, defined by (3.140), is

exp(p(n(Jy))) = cos %I 4 sin %(H(Jk)).

For example, the matrix of the operator R3(¢) = exp(¢nt(J3)) in the TCAR
basis {ug, us, uz,usz} is

cos & 0 0 sin¥
0 cos? sin2 0
R3(p) = exp(pn ™ (J3)) = 2 2
0 —sinfcos? 0
—sing 0 0 cos¥

This shows that the angle of rotation in the representation is half of the
actual angle of rotation.
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3.6.2 Invariant subspaces of ©+

We will show now that the representation 7% is a direct sum of two copies
of the standard spin % representation in terms of the Pauli spin matrices oy,
k = 1,2,3. To do this, it suffices to identify the invariant subspaces under
the action of the rotations (exponents of 71 (J;)) and boosts (exponents of
7t (K%)) under this representation. Since 1 (Kj) = im™(Jy), it suffices to
consider only the restriction of 7% to rotations exp(m ™ (Jx)). Moreover, since
(m+(Jg))? = —I, the exp(n*(Jy)) belongs to the linear span of I and 7+ (Jy)
for k = 1,2,3. Thus, it is enough to find the subspaces of S* which are
invariant under all 7+ (Jy).

Let us replace the TCAR basis ug, u;, uz,us in S*, which consists of
maximal tripotents, with a basis vi, vy, v_1, v_o of minimal tripotents which
form an odd quadrangle, as in section 3.3.6. This basis is defined by

Vi1 = 0.5(110 + iU3), Vig = 0.5([12 + iul).

Using the definition of 7 (Jj) and the TCAR relations (3.14)-(3.16), we get

1 . 1 . 1.
7T+(J1)V:|:1 = Z(D()l + DQg)(ll() :l: leg) = Z(—ul :l: leg) = :t§ZV:t2,

1 . 1 . 1.
7T+(J1)V:|:2 = Z(D()l —+ D23)(112 :l: ’Llll) = Z(*llg :l: ’Lllo) = :I:izvil,

1 . 1 . 1
7t (J2)ve = Z(DOQ + D31)(ug + iug) = 1(—112 Fiug) = 5 Vi

1 . 1 , 1
7T+(J2)Vig = Z(D()Q + D31)(U.2 + ’LU.1) = Z(UO + ZU.3) = §V:|:1,

1 . 1 . 1.
7T+(J3)V:|:1 = Z(DOB + D12)(HO :l: leg) = 1(—113 :l: leo) = :I:izvil,

1 ) 1 . 1.
7T+(J3)Vj:2 = Z(D(B —+ Dlg)(ug + 7,111) = i(ul F lllQ) = ¢§zvi2.

Thus, in the basis v, vy, v_1,v_o of minimal tripotents, the matrices of
7T (Jy) are

0i 0 0
1lioo0 o

() = =

=35 1000 - |

00—z 0
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0100
1 -100 0
T
=51 0001
00-10
i 0 00
1{o=ioo0
+ I
U =5100 —io
00 0 i

This shows that the following two subspaces

Yy =spe{vi,va} and Y5 =spo{v_1,v_a}

are invariant under the representation 7. Note that from section 3.5.8, it
follows that 77 and 75 represent differently polarized states in parallel electric
and magnetic fields in the z-direction.

As we have seen, the representation 71 leaves the two two-dimensional
complex subspaces 17 and 15 invariant, and thus we obtain two two-dimen-
sional representations of the Lorentz group. These representations are related
to the Pauli matrices as follows:

1 /04 ) 1/0 — )
7T+(J1)‘T1 = 5 (Z 0) =101, 7T+(J1)|T2 = 5 (—i 0 ) = —1071. (3165)
Similarly,
1701 .
7t ()|, =77 ()|r, = 3 (_1 0) = iog, (3.166)

and

7 ()| = % (S _OZ> —ios, 7 (J)|r, = % ( X ?) — —iog. (3.167)

Hence, 7t defines the usual spin % representation on the subspace 17
via the Pauli matrices. This means that &;vy; + ve forms a spinor. On
the subspace 15, the representation 7 acts by complex conjugation on the
usual spin % representation. Hence n1v_1 +n2v_o forms a dotted spinor. This
is similar to the action of the Lorentz group on Dirac bispinors, and so the
basis {v1, Ve, v_1,v_2} of S* can serve as a basis for bispinors. Note that the
TCAR basis {ug, us, uz,us}, on the other hand, is a basis for four-vectors.
For a possible interpretation of the basis in 77,75, see section 3.5.8.

3.6.3 The representation 7w~

In addition to the representation 7 on S by maximal tripotents in dinv(S*),
we define a related representation 71—, which is the skew-adjoint part of 7



3.6 Spin-3 representation in dinv (S*) 145

with respect to f on Ji, Jo, J3 and the self-adjoint part of 7% with respect to
f on K1, Ky, K3. Thus,

_ 1 _ 1
T (Ji) = 5(7T3(Jk) — ()", T (Ky) = 5 (ms (K) + 75 (Ki)").
As for 7%, we have n7(K}) = in~(J}) for any k = 1,2,3. The connection
between the representations 7+ and 7~ is the same as obtained on the elec-
tromagnetic tensor by lowering the indices (see [51]).
The matrices of 7~ (J1), 7~ (J2) and 7~ (J3) in the basis ug, uj, uz, uz are

0-1 00

_ 1 1{10 00

() =50 =Do)=5149 1]
00 —-10
00-1 0

_ 1 11000 —1

™ (J2)=§(D31—D02)=§ 100 o |
01 0 O
000-1

_ 1 110010

T (J3)=§(D12—D03)=§ 0-10 0
1000

Comparing these matrices with the corresponding matrices for the represen-
tation 7+ from section 3.6.1, we see that 7~ can be obtained from 7+ by
space inversion or by time inversion. Conversely, 77 can be obtained from
7~ by space or time inversion.

The operators 7~ (J;) have a multiplication table similar to Table 3.3.
Thus, the 7~ (Ji) satisfy the commutation relations (3.133). The commuta-
tion relations (3.134)-(3.137) hold also for 7. Hence, 7~ is a representation
of the Lorentz group. Also here, the elements

{277 (J1),2n (J3),2n (J3)} satisfy TCAR, (3.168)
as elements of the spin factor dinv (S*) = A4(C). Moreover,
{271 (Jy), 277 (J2), 2m T (J3), 20~ (K1), 27 (K2), 27 (K3)} (3.169)
is a TCAR basis of dinv (§%) = A4(C).

3.6.4 The representation 7w~ in the basis of minimal tripotents

Let us represent the matrices of 7~ (Ji) in the basis of minimal tripotents
V41, Vo defined above. To do this, we have to calculate the action of these
matrices on this basis. Modifying the calculations in section 3.6.2, we obtain
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1. _ 1.
7T_(J1)Vi1 = :|:§7/V:F2, ™ (Jl)vig = :|:§’LV;|;1,

_ 1 _ 1
7 (J2)Var = FVE2 T (J2)vio = —5VFL,

_ 1. _ 1.
m (J3)ver = Fgivel, ™ (J3)via = Fgivie.
Hence, the two subspaces
7= spc{v_2,v1} and T, = spe{v_1,va}

are invariant under the representation 7—. Note that ?1,?2 are obtained
from the same spin grid that was used for defining the invariant subspaces
71,75 of the representation 7. In both cases, the invariant subspaces are
obtained by partitioning the set of four elements of the spin grid into two
pairs of non-orthogonal tripotents. Both possible partitions are realized in
the representations 7+ and 7.

In the basis v1, ve, v_1, v_s of minimal tripotents, the matrices of 7~ (J)
become

00 0
1100 —i0
m=310-io00|
i 0 00
000-1
_ 1{oo1o0
7T(J2):§ 0_100 )
1000
i 000
_ 110 -i00
=510 00
0 00i

The representation 7~ is also a spin % representation. The restriction

of = to the invariant subspaces fl and fg leads to the same Pauli spin
matrices as in (3.165)-(3.167). Thus, the representation 7~ is a direct sum of
two complex conjugate copies of the spin % two-dimensional representation
given by the Pauli spin matrices. Hence, 7~ is a representation of the Lorentz
group on the Dirac bispinors.

By direct verification, we can show that the commutant of {7 (Jy) :
k= 1,2,3} is spc[{n~(Jx) : & = 1,2,3} U {I}], which, when restricted
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to real scalars, is a four-dimensional associative algebra isomorphic to the
quaternions. This can be seen by examining the multiplication table 3.3. The
commutant of {7~ (Jx) : k = 1,2,3} is spo[{rT(Jx) : k = 1,2,3} U {I}],
which is also, after restriction to real scalars, isomorphic to the quaternions.
Thus, the two representations 7+ and 7~ commute.

The above construction of the representations 7+ and 7~ from the rep-
resentation 74 can also be done via the Hodge operator, also called the star

operator. Borrowing the definition from the theory of differential forms, we
define

ij Kk
*Djr = €kim9”” 9" Dim,

where {j, k,l,m} = {0,1,2,3}; gP9 is the Lorentz metric: ¢°° = 1, g"* = —1
for k = 1,2,3, and ¢?? = 0 if p # ¢; and €jpy, is the signature of the
permutation (j, k,l,m) — (0,1,2,3). Specifically,

*Do1 = Da3, *Doa = D31, *Doz = D2,

*Do3 = —Do1, *D3; = —Dga, *D13 = —Ds.

The representation 77 is then the skew-adjoint part of 7% with respect to
the Hodge operator, and the representation 7~ is the self-adjoint part of 7
with respect to the Hodge operator.

3.6.5 Action of the representations 7 and 7~ on dinv (5%)

We now lift the representations 7+ and 7~ from S* to an action on dinv (S%),
which can be identified with the spin factor S®. For a basis, we choose the
TCAR basis given by (3.169).

Fix an action A on S*. For any linear operator 7" on S*, we define, as in
(3.160), a transformation &(A) by

(AT = ATA™L.

From the definition of Dinv (§%), it follows that if A, 7" € Dinv (S%), then also
@(A)T € Dinv (S§4).

We define the action of the rotations of 7+ on dinv (S§*) by Ri(p) =
D (exp(ont(Jg))). Similarly, we define the action of the boosts of 7% on
dinv (§*) by Byi(¢) = ®(exp(pnt(Kj))). With respect to the basis (3.169)
of dinv (§%), we get

1 0 0 0
0 cosp sing 0
0 —sinp cosp 0
0 0 0 Iy

Ri(p) =

)
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1 0 0 0
| 0 coshy isinhe 0
Bile) = 0 —isinhp coshy 0 |’
0 0 0 I
cosp 0 —sing 0
01 0 0
Ra(p) = sinp 0 cosp 0 |’
0 0 0 I
coshy 0 —isinhy 0
0 1 0 0
Bafe) = isinhp 0 coshy 0 |’
0 O 0 I3
cosp sinp 0 0
| —sinpcosp0 0
0 0 01
coshy isinhp 0 0
| —isinhy coshy 0 0
0 0 013
This coincides with the spin 1 representation 73 from section 3.5.3 on the spin

factor 82, which is the complex span of {7 (J1), 7 (J2), 77 (J3)} € dinv (S§%).

3.7 Summary of the representations of the Lorentz
group on 83 and S*

Let us summarize the various representations of the Lorentz group on the
spin factors S and S*. It is important to understand the function of the
minimal and maximal tripotents under each representation. We will also give
a possible interpretation for the pure states represented by norm one func-
tionals corresponding to minimal tripotents. Since for any &, the generator of
rotation J; commutes with the generator of boosts K}, there are two ways to
represent them on dinv(S"™). The first one, based on results of section 3.4.2,
is to represent them by a pair of orthogonal minimal tripotents. The other
way is to define w(K}) = im(Jy).
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3.7.1 =3

3

2 is a representation of the action of the Lorentz group on

The representation 7
S3. The generators of this representation are elements of dinv(S*) = A3(C),
which as a space is equal to C3. The triple product is that of a domain of
rank 1, of type I, corresponding to 1 x 3 complex matrices. The generators
of rotation are represented by the basis elements of A3(C). For example,
73(J1) = Da3 and 73(K;) = im3(J;). We can associate with the elements of
83 an electromagnetic field strength F = E + icB, and the Lorentz group
properly transforms the components of the field under rotations and boosts.
A choice of a TCAR basis in S corresponds to the choice of the space axes.
The real part of the decomposition with respect to this basis is related to the
strength of the electric field, while the complex part of the decomposition
is related to the strength of the magnetic field. The extreme points of the
state space (unit ball of the dual ball) correspond to helicity eigenstates of a
photon.

3.7.2 7r§

4 is a representation of the Lorentz group on S*. The

generators of this representation are elements of dinv(S*) = A4(C) = S°.
The factor S* is the only one among the spin factors S” for which the space
dinv(S8") is also a spin factor. This allows us to define different representations
for the generators of the Lorentz group, based on two types of bases in S -
the TCAR basis and the spin grid.

The representation 7# represents the generators of the Lorentz group by

The representation 7

minimal tripotents from a spin grid in dinv(S*) = 8. For example, i (J1) =
Ds3 and wﬁ(K 1) = iDp1. This representation has two invariant subspaces M;
and M, each of which can be associated with four-vectors. The restriction
of the representation to the invariant subspaces acts in the same way as the
Lorentz group acts on four-vectors. For example, if we interpret M7 as the
space-time continuum, then the restriction of 72 to M; is the usual Lorentz
space-time transformations.

Similarly, we may interpret M, as four-momentum. In this case, the
restriction of 74 to My is the usual Lorentz transformations of the four-
momentum, and we can interpret the real span of the generators of the group
as the electromagnetic field tensor. We propose to interpret S* as the rela-
tivistic phase space, by representing space-time in M; and four-momentum
in Ms. At this point, the meaning of the pure states in this representation is
not so clear.

Another possibility is to add to the four-momentum description on one
invariant subspace an analog of a four-angular-momentum on the other in-
variant subspace. In this case, the conserved quantity would be J?2, which
is a function of the spin of the particle and the zero-component connected
with the angular energy of the particle. This interpretation corresponds to
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the interpretation of electromagnetic field strength F' = E + icB, where E
is the generator of the changes of momentum, and B is the generator for
angular momentum changes.

3.7.3 nt and =~

The representations 7 and 7~, like 72,

group on S*. The generators of the representation 7

are representations of the Lorentz
4 are minimal tripotents
in dinv(S*) = &5. The generators of the representations 7+ and 7~ are
also represented by tripotents of dinv(S4) = 8% but they each use only
three out of the six elements of a TCAR basis, which consists of maximal
tripotents. For example 77 (.J;) = 1(Das+ Do1) and 7~ (J1) = 3(Daz — Do1).
For any k = 1,2,3, we have 7% (K}) = in®(Jy). Switching between the
representations 7+ and 7~ is equivalent to space or time reversal.

Both representations 77 and 7~ have two two-dimensional invariant sub-
spaces. To describe these subspaces, one selects a spin grid basis in S*, con-
sisting of minimal tripotents. The invariant subspaces are the span of two
non-orthogonal tripotents of the grid. There are two possible way to parti-
tion the grid into two such pairs. For each of the two representations, one
of the partitions is invariant. We have seen that the action of 7% and 7~
on the invariant subspaces is the action of the Lorentz group on spinors or
dotted spinors. This implies that the space S* with the spin grid basis can
be considered as the Dirac bispinors representing the relativistic state of an
electron, while the representations 7+ and 7~ properly represent the action
of the Lorentz group, including space inversion, on the Dirac bispinors.

The representations 7+ and 7~ on 8* induce an action on dinv(84) =S5,
The latter can be decomposed into two subspaces, each of them equal to S3,
which are related by space reversal. Both representations induce spin one
representations on each of these subspaces. More precisely, the group acts
on each subspace like the representation 72, which is the way the Lorentz
group acts on the electromagnetic field strength F' = E + icB. Thus, for
instance, we can use this space to represent the state of a photon. A major
advantage to our approach is that one mathematical object can be used to
represent both spin 1 and spin 1/2 particles and can thus serve as a model
for supersymmetry.

Another interesting observation is that adding an additional symmetry
with respect to the Hodge operator (or the sharp operation) to the represen-
tation %, which is an extension to S* of the regular Lorentz group representa-
tion on four-vectors, leads to the representations 7+ and 7~ on the bispinors.
It will be interesting to find the physical meaning of this observation.
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3.8 Notes

The complex spin factor as a bounded symmetric domain was introduced
be E. Cartan [12]. Another approach to the spinors, which is closer to the
one used in this chapter, can be found in Dirac [17]. The connection of the
spin domain and the triple product can be found in [69]. The possibility of
embedding the spin factor as operators on a Hilbert space is described in [7]
and [8].

The approach presented in this chapter is further development of the
results of [37], which is a continuation of [15].






4 The Classical Bounded Symmetric Domains

The definition of bounded symmetric domains is geometric in nature and
does not seem, at first glance, to be connected to the category of operators
on Hilbert spaces. Nevertheless, we have already seen in the previous chapter
that the spin factor has certain properties found in operator spaces, such
as spectral decomposition, representation by Pauli matrices, and Pierce de-
composition. Surprisingly, most BSDs are unit balls of operator spaces. Such
domains are called classical domains. They provide a familiar setting in which
to introduce some of the more abstract concepts connected with BSDs.

This chapter introduces the three “classical” bounded symmetric domains
- types I, II and III of the Cartan classification. Some authors include the
spin factor (Cartan type IV) among the classical BSDs, but we have treated
the spin factor separately, since it differs from types I, II and III in both its
underlying set and its triple product.

Type I, IT and III BSDs can each be realized as a unit ball (in the operator
norm) of a subspace of L(H, K), the space of all bounded linear maps between
two Hilbert spaces H and K. Harris and Potapov discovered that these unit
balls, are, in fact, BSDs. Note that L(H, K) does not admit a binary product
unless H = K. Moreover, even when H = K and there is a binary product,
type II and ITI domains are not closed under this product. In other words, the
binary product of two elements of the domain is not necessarily an element
of the domain. The triple product, on the other hand, does not have either of
these shortcomings. It can be defined even in the general case H # K, and
type II and III domains are closed under this product. In this chapter, we
will study subspaces of L(H, K) which are closed under the triple product.
These are called JC*-triples.

In Quantum Mechanics, the set of observables is represented by self-
adjoint operators on a Hilbert space. The state space of a quantum system
is the predual of this space. Hence, we are interested in studying the non-
commutative geometry of these domains. The geometric structure of the state
space is related to the measuring process for quantum systems. However, in
order to be able to define a binary structure on the set of observables, one
must introduce an order on this set. If the existence of an order is not justified
by the physical reality, then assuming closure under a binary operation will
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lead to non-physical consequences. On the other hand, for the definition of
the triple product, we do not need order. We need only geometry.

In this chapter, we use ideas from Transmission Line Theory (TLT) to
show that the classical domains are bounded symmetric domains. TLT studies
the transformation of signals in a transmission line with two inputs and two
outputs. The theory treats the line as a linear black box. Analysis of the
line provides explicit formulas for the analytic automorphisms of the domain
which map the origin of the domain to any other given point.

Transmission Line Theory is similar to scattering theory in Quantum Field
Theory. In scattering theory, the inputs consist of the states of particles before
interaction and are considered to be elements of a complex Hilbert space.
The inputs are transformed by an interaction, considered as a black box,
into output states. Also in this case, it is natural to consider two types of
Hilbert spaces H and K. For example, the Hilbert space H may be used
to represent bosons, while K represents fermions. Another possibility is to
have H represent states of particles and K represent antiparticles. As in
Transmission Line Theory, the S-matriz is assumed to be linear and even
unitary. Until now, we are not aware of any use of the fact that the existence of
such a transformation establishes the homogeneity of the domain associated
with the above model.

In this chapter, we will also study the Pierce decomposition for JC*-
triples. This provides a model of filtering projections in the quantum mea-
suring process. We will define functions of operators in L(H, K) and describe
their derivatives, which are needed for perturbation theory. We will describe
the geometry of the unit ball of both a JC*-triple and its dual. We will also
define a natural basis for the classical domains and, for the infinite dimen-
sional case, define the type of closure needed to ensure that the closure of the
span of the basis is the entire domain.

4.1 The Classical domains and operators between
Hilbert spaces

4.1.1 Definition of the classical domains

Let H and K be finite or infinite-dimensional complex Hilbert spaces, en-

dowed with the usual Euclidean norm, denoted by |- |. Let a be a linear map
from H to K. As usual, we define the operator norm of a by
lall = sup{la(&)[ = &€ H, [] <1} (4.1)

We say that a is bounded if ||a]| < co. We denote by L(H, K) the space of
all bounded linear operators from H to K, with the above operator norm. In
the particular case H = K, we write L(H) instead of L(H, H).

A Type I domain is the unit ball
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Dy ={aeL(HK): |a] <1} (4.2)

of L(H,K). In the finite-dimensional case, where, say, dimH = n and
dim K = m, we can identify a € L(H, K) with an m x n complex matrix
by choosing an orthonormal basis in each Hilbert space. Hence, the dimen-
sion of L(H, K) is m - n.

The domains of type II and III are subspaces of L(H). To define these
domains, we need the idea of conjugation. A conjugate-linear map @ : H — H
is called a conjugation if ||Q|| < 1 and Q? = I, the identity map on H. Let
@ be a conjugation on H. For a € L(H), we define a* € L(H) by

a' = Qa*Q, (4.3)

where a* is the operator adjoint to a. Recall that the adjoint a* of an operator
a € L(H, K) is defined as an operator a* € L(K, H) such that

(€la™n) = (agln) (4.4)

forall ¢ € H, n e K.

For the finite-dimensional case, if dim H = n and dim K = m, then, by
choosing an orthonormal basis {ej,es,...,e,} of H and {f,fs,...,f,} of K,
we can identify any a € L(H, K) with an m x n complex matrix. The entries
ay; of this matrix are given by

ar; = (fiae;).

Then, from (4.4), the entries (a*),; of the adjoint operator satisfy (a*);r =
Qy;, where the bar denotes complex conjugation. If H = K is a finite-
dimensional Hilbert space and @ is complex conjugation, the matrix of a'
is the transpose of the matrix of a. To see this, consider the case when H is
of dimension 2. Then

t %1 * 21 a1 a1 Z1 a1 a21 21
a = Qa = ()= .
(Zz > @a"Q (22 > @ (a12 a22 ) <22 ) <a12 a22 ) <Z2 >
Thus, the matrix representing the operator a?, defined by (4.3), is the trans-

pose of the matrix representing a.
A Type II domain has the form

Dy ={a€ L(H):ad" = —a, ||a]| <1}, (4.5)
and a Type III domain has the form
Ds={a€ L(H):a"=a, |a|| <1}. (4.6)

The domains Dy and Dj are the intersections of the domain Dy of L(H) with
the subspaces
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Ey={a€LH): a'=-a} (4.7
and

Es={acLH): a'=a}, (4.8)

respectively, where the transpose af is defined by (4.3) and depends on the
conjugation @. If @ is complex conjugation with respect to some basis and
dim H = n, then the domain Dy of type II is the unit ball in the operator
norm of the space A4, (C) of n x n complex antisymmetric matrices, while
the domain Dg of type III is the unit ball in the operator norm of the space
Sp(C) of n x n complex symmetric matrices.

Note that the velocity ball D, from chapter 1 is the real part of a type
I domain, where H represents the time and K the space displacement of a
motion with constant velocity. We showed that D, is a BSD with respect to
the group Aut,(D,) of projective automorphisms of D,,. For another example,
take the unit ball DJ"" in the space M, 1(C) of all n x 1 matrices over C,
which can be identified with L(C,C™), the linear maps from C to C™. It
is a bounded symmetric domain with respect to the group Auta(D?’l) of
analytic automorphisms of D?’l. In fact, as we will show in the next section,
every Type I domain D is a bounded symmetric domain with respect to
Auty(D). Note that D, is the real part of the domain D', and Aut,(D,) is
the restriction of Aut,(D") to this real part.

4.1.2 The JC*-triples
The space L(H, K) is closed under the map a — aa*a. To see this, note first
that aa*a maps H to K, as seen from the following diagram:

*

H—* K >3 H >, K.

Moreover, since the product of linear operators is linear and the product of
bounded operators is bounded, the operator aa*a belongs to L(H, K).

Note that since (ab*c)t = ct(b?)*a’, both subspaces E; and E3 are invari-
ant under the map a — aa*a. Thus, all three classical domains Dy, Dy and
D3 are unit balls of a subspace E of L(H, K) which is closed under the map
a — aa*a.

A subspace F of L(H, K) which is closed under the map a — aa*a is called
a JC*-triple. The name derives from the fact that any JC*-triple admits a
triple product. Our next goal is to derive the triple product on a JC*-triple
E. For any a,b € E and complex number A, the operator

(a + Ab)(a* + \b*)(a + \b) € E.
Expanding this expression, we get

aa*a+\aa*b + ba*a)+xab*a+ *ba*b+ |A[*(ab*b + bb*a)+ A\|A|?bb*b € E.
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Since ) is arbitrary, we must have
aa*b+ba*a € E and ab*a € E.

From this, it follows that for any a,b,c € E and any complex number \, we
have

(a+ Ab)(a* + Ab*)c + c(a* + \b*)(a+ \b) € E,

implying that the coefficient ab*c + cb*a of X also belongs to E. Thus, we
have shown that the JC*-triple E C L(H, K) is closed under the map {-,-,-} :
Ex Ex E — L(H, K) defined by

ab*c + cb*a
5 .

This map is called the t¢riple product on the JC*-triple E.

Since L(H, K) and Es, E5 are JC*-triples, they are closed under the triple
product (4.9). Therefore, for any pair of elements a,b € E, we can define the
following two real linear maps from E to E. The first one, denoted by D(a, b),
is also a complex linear map and is defined by

{a,b,c} = (4.9)

ab*z + zb*a

D(a,b)z ={a,b,z} = 5

(4.10)

We write D(a) instead of D(a,a). The second map, Q(a,b), is a conjugate
linear map defined by

Q(a,b)z ={a,z,b} = W. (4.11)
We write Q(a) instead of Q(a,a). Note, in particular, that
Q(a)z =Q(a,a)z = {a,z,a} = az"a. (4.12)

4.1.3 The absolute value operator of a € L(H, K)

The theory of self-adjoint operators is well known to physicists, since they
represent observables of quantum systems. The theory of non-self-adjoint
operators, however, has fewer applications and is less familiar to scientists. To
be able to show that the classical domains are bounded symmetric domains,
we need to review some of the basic theory of non-self-adjoint operators. If
H # K, an operator a € L(H, K) cannot be self-adjoint. Nevertheless, using
the triple product on L(H, K), we can still obtain results for non-self-adjoint
operators similar to those for self-adjoint operators.
Recall that a linear operator b € L(H) is positive if

(bl¢) >0 forall e H. (4.13)
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If b is positive, then b* is also positive, since (b*¢|€) = (£|b*€) = (bE|E) > 0.
Note that a positive operator has non-negative spectrum. Let a € L(H, K).
Since for any £ € H we have

(a”agl€) = (&|a*ag) = (ag|ag) = |a&]* > 0,

the operator a*a € L(H) is a positive operator.

It is well-known that any positive operator b € L(H) has a spectral de-
composition, defined as follows. For each 0 < A < ||b||, define an orthogonal
projection py(b) from H onto a subspace H) (b), with the following properties:

A <A = H)\l (b) - H)\z (b) and Py (b)p)\2 (b) = DX (b), (414)
§e Hy(b) = (b§[E) <A, (4.15)

and
Hy(b) is the maximal subspace safisfying (4.15). (4.16)

The family of projections py(b) is called the spectral family of b.
For any partition 0 = Ao < Ay < ... < A, = ||b]|, we define an integral
sum

S =D XLpa(b),
j=1

where Ajpx(b) = pa, (b) —pa,_, (b) is an orthogonal projection. Moreover, for
any j # k, we have

2gpa(D) Dpa(b) = 85 D pa(b), (4.17)

where 5;? denotes the Kronecker delta. A family {A;px(b)} satisfying (4.17)
is called an algebraically orthogonal family of orthogonal projections. It is
obvious that S, is a positive operator belonging to L(H). The limit of S, as
AX — 0 is equal to b, and we write

lloll
b:/A Ndpa(h) - (4.18)

=0

Equation (4.18) is called the spectral decomposition of the positive operator
b.

If dim H < oo, the spectral decomposition becomes a discrete decompo-
sition

b= Aip, (4.19)
J
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where \; are the eigenvalues of b, and p; is the orthogonal projection from H
onto the subspace consisting of all \;-eigenvectors of b. Formula (4.19) also
holds when dim H = oo, if the spectrum of b is discrete.

Fix a positive operator b with spectral decomposition (4.18). For any
real-valued function f which is defined on the interval [0, ||b||], we define the
operator f(b) € L(H) by

lloll
fb) = f(X) dpxa(b). (4.20)
A=0
This definition of a function of an operator is consistent with the operations
on operators. For example, if p(z) is a polynomial in z, then f(b) is equal to
the operator p(b) obtained by substitution of b into the polynomial p. It is
known that if f is positive on [0, ||b]|] and monotone increasing, then

1F @I = fllol)- (4.21)

We end this subsection with the definition of the absolute value operator.
For any a € L(H, K), apply the function f(z) = +/z to the positive operator
b = a*a and define

la| = f(b) = (a*a)l/z. (4.22)

The operator |a| is also positive and is called the absolute value operator of
a. Note that if uw € L(K) is a unitary operator, then

lua| = ((ua)*ua)*? = (a*u*ua)'’? = (a*a)'/? = |al. (4.23)

In other words, left multiplication of an operator by a unitary operator does
not change its absolute value.

4.1.4 Polar decomposition in L(H, K)

Let a € L(H, K). In order to define the polar decomposition of a, we have to
define first its right and left supports. To do this, we first define the kernel
of a, denoted ker a, by

Hi=kera={{ € H: a =0}.

Next, decompose H into a direct sum H = Hy ® Hy. The summand Hy is
called the right support space of a. We denote the orthogonal projection from
H onto Hs by r(a). Any element £ € H can be decomposed as £ = &1 + &o,
where & € Hy and & € Hy. Then

af = a(&1 + &) = aly + ale = ap = ar(a)§, (4.24)

which shows that a = ar(a). The projection r(a) is called the right support
projection of a. Note that r(a) is the smallest projection satisfying a = ar(a),
where the order between projections is defined by inclusion of their images.
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The left support of a is defined similarly. First define the image of a,
denoted Im a, by

Ima={af:£{ € H}.

The orthogonal projection from K onto Im a, denoted I(a), is called the left
support projection of a. Since a& = l(a)af for any £ € H, we have

a=l(a)a.

Note that I(a) is the smallest projection satisfying this identity.
For arbitrary £ € H, using the self-adjointness of |a|, we have

[ale*= (lal¢] lale) = (€[ la€) = (€la*ag) = (aglag) = |ag®.  (4.25)

It is easy to show that the image H = {n = |a|¢ : £ € H} of |a| is dense in
Hs. Thus, there is a unique map v € L(H, K) which vanishes on Hy, and on
H, continuously extends the map

v(n) = a€ for neH, n=lal.

From (4.25), it follows that v is an isometry from Hs, the support subspace
of a, to the image Im a of a and vanishes on the kernel H; of a. The map v
is called the support tripotent of a. The decomposition

a = vlal (4.26)

is called the polar decomposition of a.
Since, for any n € H, we have |vn| = |n]|, it follows that

(nln) = (vnlvn) = (nlv*vn).

This implies that v*v is the identity on H and, by continuity, also on Hos.
From this, it follows that

{v,v,v} =vv*v =. (4.27)

An operator v satisfying this identity is called a partial isometry and a tripo-
tent of the triple product (4.9). Thus, the polar decomposition decomposes
an operator a into the product of a non-negative operator |a| (its absolute
value operator) and a partial isometry v (its support tripotent).

Since v*v is the identity on Hy and vanishes on H;, the orthogonal com-
plement of Hs, the map v*v is an orthogonal projection from H onto Hs.
Thus,

where r(a) is the right support projection of a. Note that r(a) is both the
right and left support of |a|. Thus,
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v*vla| = |a| = a = v|a| = vv*v|a| = (vv*)v|a| = vvFa,

implying that the left support {(a) of a is equal to vv*.
JFrom the polar decomposition, it follows that

a® ={a,a,a} = v|a||a|v* v|a| = v|al®. (4.28)

Since multiplication by an isometry v on the support r(v) does not change
the norm, and since the function f(z) = 3 is positive and monotone on
[0, ||a]|], from (4.21) it follows that

la®]| = Jlalf*. (4.29)

This is the so-called star identity. It connects the norm and the triple product.

4.1.5 Singular decomposition

Let a € L(H,K). The spectral values of |a| are called the singular val-
ues of a. The geometric meaning of the polar decomposition for the finite-
dimensional case is as follows. The positive operator |a| has a set of eigen-
vectors eq, €s, ..., €,, corresponding to the eigenvalues s1, s3, ..., $,,, Which are
the singular values of a. We may and will assume that

81 2 82 2 ... 2 Sp.

By a well-known theorem, the eigenvectors of a self-adjoint operator (for
example, the positive operator |a| ) corresponding to different eigenvalues
are orthogonal. Thus, we may assume that ey, es, ..., e, form an orthonormal
basis of H. The operator |a| transforms any vector ¢/e; into ¢/sje;, which
amounts to changing the scale in each direction e; by a factor s;. Such an
operator transforms the unit ball of H into an ellipsoid with semi-axes e; of
length s;. Then the support tripotent from the polar decomposition rotates
the vectors eq, es, ..., e, to the vectors vi,vsy, ..., v,, which are the semi-axes
of the ellipsoidal image of the unit ball under the map a (see Figure 4.1).

To introduce a singular decomposition of an operator a € L(H, K), we
will apply the spectral decomposition (4.18) to the positive operator |a| on
the Hilbert space H. This yields

[lal
o] = / sdps(lal). (4.30)

Apply now the polar decomposition (4.26) to obtain a decomposition

llall llall
a=vla| = / sd(vps(lal)) = / sdvs(a), (4.31)

=0 s=0

where, for any 0 < s < ||a||, the partial isometry vs(a) = vp;(|a|) € L(H, K).
We call the decomposition (4.31) the singular decomposition of a.
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Fig. 4.1. Meaning of the polar decomposition a = v |a|. (1) A section of the unit
ball with a grid on it. We choose the directions of the grid parallel to the eigenvectors
e1, e of the operator |a|. (2) the transform |a| of this grid. The semi-axes of the
ellipse are e1, ez, multiplied by the singular values s1, s2 of a. (3) the grid from part
(1) transformed by a, which is equal (by the polar decomposition) to rotation of
the grid from part (2) by the tripotent v.

If the spectrum of |a| is discrete, then, by (4.19), the singular decomposi-
tion becomes

a= Z 55V, (4.32)
J

where the s;’s are the singular numbers of a and the v;’s are an algebraically
orthogonal family of tripotents, a concept we define now. A family {v;} of
tripotents is said to be algebraically orthogonal if their right and left supports
are mutually orthogonal, meaning that for any j # k, we have

r(v;)r(vg) =0 and I(v;)l(vi) = 0. (4.33)
Note that if the tripotents v; and vy are algebraically orthogonal, then
{vj, vk, d} =0 (4.34)
for any d € L(H, K).

Note that vf(a)vs(a) = ps(|al) is the right support r(vs(a)) of vs(a) from
the decomposition (4.31). Note also that v,(a) is equal to the support
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tripotent v of a. From (4.14), it follows that the family vs(a) is an increasing
family of partial isometries in the following sense. Let 0 < s < ¢ < ||la||. Then
the projection p;(|a|) can be written as a sum of two algebraically orthogonal
projections p;(|a|) = ps(|al) + (p+(|a]) — ps(|Jal)). This implies that the partial
isometry v:(a) can be written as a sum v(a) = vs(a) + v(p:(|al) — ps(|al))
of two algebraically orthogonal tripotents. In this case, we say that vi(a) is
larger (or extends) vs(a) and that vs(a) is dominated by vi(a), and we write
vs(a) = ve(a). The increasing family v,(a) of tripotents is called the singular
family of a.

4.1.6 Functions of operators a € L(H, K)

We can now define functions of an element a € L(H, K) with singular de-
composition (4.31). Let f be a continuous function on the interval [0, ||all].
Define

llall
fla) = (s) dvs(a). (4.35)

s=0

If f(x) = 2% and |a| has a discrete spectrum, implying that a has the singular
decomposition (4.32), then, using (4.34), we get

aa*a = {a,a,a} = {(Y_ 5;05), O swvr), O sivn)}

= Zs?{vj,vj,vj} = Zs?vj = f(a) == d®. (4.36)

Note that if |a| does not have a discrete spectrum, we can modify our argu-
ment and show that (4.36) holds in this case as well.
Similarly, if f(x) is a polynomial of odd degree 2n + 1, then

flx) = Z cpa?tl =g Z et = xg(x?), (4.37)
k=0 k=0

where g is an n-th degree polynomial. Then

fla) = z”: cpa®™ ™ = ag(a*a) = glaa*)a.
k=1

Any continuous function f on the interval [0, ||a]|] can be extended to the
interval [—||a||, ||a||] by setting f(—x) = —f(x) and obtained as a limit of
odd polynomials f,. If we denote by g, the polynomial corresponding to f,
in (4.37) and let g = lim g,,, then f(z) = zg(2?) and

f(a) = ag(a*a) = g(aa*)a. (4.38)
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4.2 Classical domains are BSDs

In this section, we show that domains of types I, II, and IIT and, even more
generally, any unit ball D of a JC*-triple are, in fact, bounded symmetric
domains with respect to the analytic automorphisms. The analytic map which
sends an operator to its negation is a symmetry about the point 0 of D.
Therefore, to show that D is a bounded symmetric domain with respect to
Aut,(D), it is enough to show that D is homogeneous. This will follow if
for any operator a € D, we construct an analytic automorphism ¢, of D
such that ¢,(0) = a. For the construction of ¢,, we will use ideas from
Transmission Line Theory. We will prove this result for type I domains first
and then extend it to the unit ball D in an arbitrary JC*-triple.

4.2.1 Mathematical formulation of Transmission Line Theory

One of the major engineering projects at the beginning of the 20th century
was the laying of the transatlantic telephone line connecting Europe and
America. During the final stages, when the entire line was finally in place, it
had to be tested. The amount of noise produced by such a long line was so
large that it was impossible to recognize the speech transmitted through the
line. At first, all of the attempts to improve the quality of the transmission
ended in failure. Due to the environmental conditions surrounding the ca-
ble, the characteristics of the noise were constantly changing. The engineers
working on the project came up with the original solution of treating the
transmission line as a linear black box. After the experimental study of the
properties of this black box transformation, they were able to build devices
which corrected the output signal to match the input signal.

The mathematical formulation of Transmission Line Theory is as follows.
Refer to Figure 4.2. A signal sent into the line at port H; on side 1 causes
the appearance of two new signals: a signal at port Ha on side 2, called the
transmitted signal, and a signal at port K on side 1, called the reflected
signal. Likewise, a signal sent into the cable at port K3 on side 2 causes the
appearance of two new signals: a transmitted signal at port K on side 1 and
a reflected signal at port Hs on side 2. We assume that the input signal §; at
port Hy is an element of a Hilbert space H; and that the input signal 72 at
port K3 is an element of a Hilbert space K3. Similarly, we assume that the
output signals n; at port K; and & at port Hy belong to the Hilbert spaces
K7 and Hs, respectively.

It is natural to model the set S of all signals on the same side of the line
and in the same direction as a complex Hilbert space because, in fact, such
signals are complex-valued functions f(t) (¢ = time) and have a natural linear
structure. Any linear combination of the signals on the same side of the line
and in the same direction is also a signal on this side and in this direction.
The integral [ |f(¢)|?dt is the energy of the signal, which is assumed to be
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§ieH by &€H
Side 1 u Transmission ¢ Side 2
r Line !
- n;€ K dr . n€ K
K K

Fig. 4.2. Input and output signals of a Transmission Line. The circle represents
a black box. An input signal &1 sent into the line at port Hi of side 1 produces
a transmitted signal at port Hs on side 2 and a reflected signal signal at port K1
on side 1. Similarly, a signal 72 sent into the line at port K> of side 2 produces a
transmitted signal at port K3 on side 1 and a reflected signal at port Hs on side 2.
The operators a, and e, describe the reflection of the two input signals, while the
operators b, and d, describe the transmission of these signals.

finite. This allows one to define an inner product on S, making S a Hilbert
space.

Signals going in different directions may have different physical charac-
teristics, such as frequency. On the other hand, we assume that signals going
in the same direction are of the same nature, even if they appear on op-
posite sides of the line. This means that the corresponding Hilbert spaces
are identical, and we have Hy = Hy = H and K; = Ky = K. Hence,
1,8 € H, n1,m2 € K, and the distinction between the sides of the line is
expressed through the subscripts of the vectors &, 7.

The total input signal into the line, which consists of the contributions of
both & and 72, may now be represented by an element (7571) of the direct

2
sum H & K. Similarly, the total output signal of the line may be represented
by the vector (7572 of H & K. With this notation, the action of the line is
1

described by a transformation U : H K — H @ K, where

U @) = (fi) . (4.39)

This combination of the input and output signals is called the hybrid connec-
tion and was introduced and studied in section 1.1.4 of chapter 1.

TLT normally deals with linear transmission lines, that is, lines for which
the corresponding transformation U is a linear operator. In this case, the
operator U may be naturally decomposed as

U=a+b+e+d,
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where
QZPKUPH, bZPHUPH, EZJDHUJDK7 dZPKUPK, (440)

and Py and Px = 1 — Py are the projections of the direct sum H ¢ K onto
H and K, respectively. Alternatively, we may write the operator U as a block
matrix, and equation (4.39) becomes

v (%) - (Z 2) (f;) = (gf) : (4.41)

where the operators
a--H—-K, b,:H—H, e, : K—-H,d.: K—>K

are the natural restrictions of the operators a, b, e and d, respectively.

Later we shall see that the operators a, b, e and d are the ones which have a
natural physical meaning, since only they may be determined through direct
measurements on a real transmission line, rather than a,,b,, e, and d,., the
ones usually used in TLT. Nevertheless, we suppress the subscript r, since
it will always be clear from the context whether we are referring to a or a,..
The operator a is called the reflection operator of the transmission line.

4.2.2 The signal transformation in a lossless line

If the total energy of the output signals is equal to the total energy of the
input signals, the transmission line is called energy conserving, or lossless. In
our notation, this means that

€117 + m2)? = [&f + [m|? (4.42)

or, equivalently,

(&P = Im|? = &) — . (4.43)

Equation (4.42) implies that the transformation U is an isometry with respect
to the natural norm in H & K. Hence, both the operators a, b, e, d, defined by
(4.40), and their natural restrictions have operator norm less than or equal
to one.

We show now that U is unitary with respect to the inner product of HG K.
First note that for any &, € H ® K, we have

[UE+n)? =¢+n)?

since U is an isometry. Hence,

UE|* + 2Re(UE|UD) + [Un|* = [¢]* + 2Re(€]n) + 1],
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and so, by multiplying £ by a unimodular A, we obtain
(UEUn) = (&lm)-
But from this, it follows that
€lurun) = (€ln)-

Therefore, U*U = I, and U is unitary.
Since U is unitary, we have

(2 2) ) (2 2) =1, (4.44)
() @)= (5 ) (1

where Iy and Ik are identity matrices of size dim H and dim K, respectively.
From (4.45), we obtain the four equations

or, equivalently,

b*b+a*a= Iy (4.46)
be+a*d=10 (4.47)
b+ da=0 (4.48)

e'e+d'd=Ig. (4.49)

(From (4.46), it follows that |b] = y/1 —|a|?, and by use of (4.26), we
get b = vy/1 — |a|? for some tripotent v € L(H). Similarly, equation (4.49)
implies that d = u+/1 — |e|? for some tripotent v € L(K). Substitute these
expressions into (4.47) to obtain

V1—la]?2v'e = —a"ur/1 — |e|?. (4.50)

Note that since |ja]] < 1 and |le|| < 1, the operators /1 — |a]? and
v/1 —|e|? are positive. If they are not invertible, then, by replacing them
with \/1+¢ — |a|]? and /1 + ¢ — |e]?, with € > 0, they become invertible,
and we can perform all of the calculations and then take the limit as ¢ — 0.
Hence, we will assume without loss of generality that the above operators are
invertible.

Equation (4.50) implies that
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ve(1 — [e[2) 7112 = —(1 - |af?)/2a"u,
and, using (4.23), we get
ve(l — urel?) V2 = (1 — | — ua) V2 (u a)",
which, by (4.38), becomes
(1= ') )20t = —(1 — | —u’af’) " (u'a)".
Note that the function f(z) = (1 — 22)~'/2 is invertible. In fact, its inverse

is f~l(y) = Q/%. Applying f~' to both sides of the above equation, we

get v*e = —(u*a)*, implying that e = —va*u and

d = u\/1— |a*ul? = u\/1 — u*|a*|2u.

By the definition of the operator function, we have /1 — u*|a*|?2u = u*{/1 — |a*|?u.

Thus,

d = uu\/1—|a*]?u = /1 — |a*|2u.
Hence, by substituting

b=vy1—lal?, e = —va*u, d = /1 —|a*|?u (4.51)

into (4.41), the signal transformation for a lossless line becomes

o) = (T ) () () e

Note that by rotating the basis in Hy (the Hilbert space H on side 2), we
can take v = Iy. Similarly, by rotating the basis in K5, we can take u = I.

4.2.3 Homogeneity of type I domains

We will now prove that type I domains are homogeneous. As mentioned at the
start of this section, it is enough to construct, for each operator a € D, a map
©q € Aut,(D) such that ¢,(0) = a. We connect a device called a reflector
to side 2 of the line (see Figure 4.3). The reflector receives the output from
port H, as input and sends its output to port G. The action of the reflector
is described by a linear operator z € L(H, K). We assume that the reflector
does not increase the energy of a signal, which means that the operator norm
of z is less than or equal to one. The “new” line (the line with the reflector)
now has one input (at port H 1) and one output (at port él) Hence, the new
line also behaves like a reflector itself. This implies that there is an operator
w € L(H, K) which transforms the input signal & € H at H, into the output
signal n; € K at G,. Thus, w(&) =m.
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Fig. 4.3. Transmission line with a reflector. The added reflector receives as input
the signal & (an element of H) which is the output from port Hs. The reflector
linearly transforms this signal and sends its output 72 (an element of K') to port G
of the transmission line. The action of the reflector is described by a linear operator
z€ L(HK).

We can calculate n; from &; directly via the infinite sum

m = (a4 dzb+ dzezb + dzezezb + - - - )&;. (4.53)

Here, the terms of the form dzez - --ezb correspond to multiple “reflections”
of the signal between the reflector and side 2 of the line. These terms are
obtained from the following passes through the line:

H =G
R
Hy = Hy = G2 = G
02l 2GS 2 Gy Gy
Hence, the linear operator w : H — K defined by w&; = 1, is given by
w=a+dzb+ dzezb+ dzezezb+--- = a+ dz(Z(ez)”)b. (4.54)
Using the formula for the sum of a geometric series, we obtain
w(z) = a+dz(1 —ez) " 'b. (4.55)

If the transmission line is lossless, we substitute (4.51) into (4.55) and
obtain

w(z) = a+ /1 —|a*2uz(1 +va*uz) " vy/1 —|al?. (4.56)

By adjusting the bases in the Hilbert spaces on side 2, we may take u = I
and v = I'y. Since w depends only on a and z, we rename it ¢, (z). Hence,

va(2) = a4+ /1 —a*]22(14+a*2)" /1 —|a]?. (4.57)
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Clearly, ¢, (0) = a. We call ¢,(2) a translation in D;. Note that

1 1

uz(l+va*uz) v =uzv — uzva*uzv + ... = uzv(l + a*uzv) " .
Hence, the general transformation w(z) of a lossless transmission line with a
reflector is given by

w(z) = 4 (uzv). (4.58)

Note that the map z — wzv, where u is a unitary operator on K and v is a
unitary operator on H, is an isometry (or a rotation) on L(H, K). Thus, the
general transformation w(z) of a lossless transmission line with a reflector is
a composition of a rotation and a translation.

Fix a now and consider ¢, as a function of z. Since z € L(H, K) and
has norm less than or equal to one, the map ¢, is a map from the unit ball
D, of L(H,K) into L(H, K). Since the line is lossless, the operator norm of
wa(z) is less than or equal to one. So, in fact, ¢, is a map from Dy to Dj.
We claim that ¢, is an analytic automorphism of D;. Equation (4.54) shows
that ¢,(z) is the sum of a converging series of homogeneous polynomials in
z and, thus, is an analytic map of Dy (by the definition of analyticity). See
chapter 5 for details. To show that the map ¢, is one-to-one, we will show
later that its inverse o, ! exists and equals ¢_,. For this, we will have to
study the signal transformation in a composite transmission line.

4.2.4 Composition of two lossless lines

Consider now the signal transformation in a line composed of two lossless
transmission lines. In Figure 4.4, we see a sequential composition of two
transmission lines TL1 and TL2. We choose the bases of the Hilbert spaces
on side 2 so that the unitary operators u, v from (4.52) for the line TL1 are
identity operators. Similarly, we choose the bases of the Hilbert spaces on
side 3 so that the unitary operators w,v from (4.52) for the line TL2 are
identity operators. The two lines can be considered as one line TL12 with
inputs & € H and n3 € K and outputs &3 € H and n; € K.
We will assume that the two transmission lines are lossless. Thus,

&1+ [m2]? = &2 + Im|?,

and

&2 + [ns|® = |€3]* + 2.

Adding these two equations, we get

&1 + [ns|® = |€51% + Imu)?,

implying that the line TL12 is also lossless.
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Fig. 4.4. A composite transmission line. The two transmission lines TL1 and
TL2 can be considered as one line TL12 with inputs &; € H, n3 € K and outputs
& € H, m € K. A reflector z transforms &3 € H to ns € K.

The reflection operator a1 of the line TL12 is, by definition, the operator
which transforms the input signal £&; € H into the output signal ; € K, when
the other input n3 = 0. This is exactly the transformation by the line TL1
with reflector as. Thus,

a2 = ¢a, (a2).

If we add now a reflector z, transforming {5 € H to n3 € K, then the operator
mapping &; to 7y, transformed by TL12 and the reflector is, by (4.58),

w(z) = Qa,, (uzv). (4.59)

Note that we cannot assume now that u,v are identity operators, since we
fixed the bases of the Hilbert spaces at an earlier stage.

We can regard the transformation w(z) as the transformation of the line
TL1 with a reflector Z which maps & to 5. But by formula (4.57), applied
to TL2, we get £ = @q, (2). Therefore,

w(z) = ¢a, (2) = Pa, (Pa,(2)) = oy, (az) (W2V). (4.60)

We will use this formula to compute the inverse of ¢,.

4.2.5 The inverse of ¢,
We will show now that ¢, ! = ¢_,. Actually, we will show that
P—aPa = 1. (461)

Consider now the composite line of the previous section with a = ay = —ay.
In this case, we have

a12 = p_ala) = —a++/1—|a*2a(l — a*a)"*\/1 —|al?.
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This can be written as

a1z = —a++/1—|a*Pa(l - |a*)"V23(1 — |af*)"/2\/1 ~ [af?.
By use of (4.38), we get
a12 = —a++/1—|a*2(1 = |a*>) "2 a=-a+a = 0.
Thus, from (4.59), we get
w(z) = @o(uzv) = uzv,
and from (4.60), it follows that

Y—a(pa(z)) = uzv, (4.62)

which is an isometry of L(H, K). This already implies that ¢, is invertible.
In order to show that p_, = ¢, !, we will show that u and v from (4.62) are,
in fact, identity operators.

For this, we calculate the derivative of the map o, at an arbitrary point
2o in the direction dz. From the definition (4.57) of ¢,, it follows that

d

agoa(zo)dz =+/1—la*|? (%z(l + a*z)_1|z:ZOdz)\/1 — lal?.
But

d
$z(1 +a*2) o dz = dz(1 4 a*2) ™t — 20(1 4+ a*2) ta*dz(1+a*z) "t

Thus, using (4.38), we get

d
T¥al20)dz = V1 — o P(1 = 200" (14 200") " )d2(1 4 a”20) " /1 — Jal*,
Finally, we arrive at the following formula for the derivative of ,:

d

d—goa(zo)dz = /1 —|a*2(1 4 20a*) " 'dz(1 4+ a*z) " */1 — |af2.  (4.63)
2

If zo = 0, we get

d
00z = /T~ [ Pday/T— [aP,
z
and if zg = —a, we get
d
T al—a)dz = (1-[a") " 2d2(1 — Jaf?) /2

Thus,

d d d
%Qpﬂﬁpa(o)d'z = %‘Pfa(a)(gwa (0)dz)

=(1- |a*|2)—1/2\/1 _ |a*|2dz\/1 —la2(1 - |a\2)*1/2 — da.

But from (4.62), “£¢_,¢4(0)dz = udzv. This can be only if u and v are
equal to the identity. This completes the proof that ¢_, = ¢, ! and that the
type I domain D, is a bounded symmetric domain with respect to Aut, (D).
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4.2.6 Homogeneity of a unit ball in a JC*-triple

We will now show that the domains Dy and D3 of type II and III are also
homogeneous domains. Since both domains are unit balls of the JC*-triples
E5 and Es5 defined by (4.7) and (4.8), we will prove the more general state-
ment that the unit ball D of a JC*-triple F is homogeneous. More precisely,
we will show that for each a € D, the map ¢,

0a(2) =a+ (1 —aa*)"?2(1 +a*2)"1(1 — a*a)'/? (4.64)

defined above in (4.57) is an automorphism of D, implying that D is homo-
geneous with respect to the analytic bijections.

To show that the map ¢, maps D into D, we will write ¢, in terms of
the triple product (4.9). This will imply that ¢, maps E into itself. From the
results of the previous section, this will imply that ¢, is an automorphism of
D.

In order to express ¢, in terms of the triple product, we now define, for
each a € L(H, K), the following two operators on L(H, K). The first operator
is t4, defined by t,(z) = a + z, a translation by a. The second operator is
t, and is defined by #,(2) = z(1 — a*2)~!. Note that t, can be expressed in
terms of the triple product as

{a(z) =z+ {Zﬂ a, Z} + {Z,CL, {Za a, Z}} + {Z7a7 {Za a{z,a, Z}}} +oee
and, thus, if a, z € E, then also #,(z) € E.
We also define, for each a,b € L(H, K), the Bergman operator B(a,b) by
B(a,b)(z) = (1 —ab*)z(1 —b*a) = z — 2{a, b, z} + {a, {b, z,b},a}. (4.65)

Note that B(a,b)(z) is a linear map in L(H, K), and if a,b, z € E, then also
B(a,b)(z) € E. If ||a]| < 1, then B(a,a)z = (1 — |a*|?)2(1 — |al?), and, since
both 1 — |a*|? and 1 — |a|? are positive operators, the map

B(a,a)%z = /1 —Ja*[22/1 — |a|?

is well defined. Since B(a, a)% can be approximated by polynomials in B(a, a)
which map E into E, B(a,a)? also maps E into E. Now equation (4.64)
becomes

0a(2) = tq 0 Bla,a)? of_q(z). (4.66)

Thus, ¢.(2) is a product of maps from F to E, which implies that ¢, also
maps F to F.

The analytic automorphisms ¢, (z) defined by (4.64) are a generaliza-
tions of the Mobius transformations of the unit disk. This generalization
was obtained by Potapov for a space of operators and by Harris for JC*-
triples. The automorphisms ¢, (2) are called Mobius-Potapov-Harris transfor-
mations. Note that by the use of the Bergman operator, we can now rewrite
formula (4.63) for the derivative of ¢, as
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(20)dz = B(a,a)? o B(z, —a) 'dz. (4.67)

4.2.7 The Lie group Aut,(D) and its Lie algebra

Let D be the unit ball in a JC*-triple E. Denote by Aut,(D) the group of
analytic automorphisms of D. Define a set of maps

&= {p,(u-v): aeD,veU(H), ueU(K)}, (4.68)

where @q(u - v) maps z € E to @.(uzv), ¢, is defined by (4.57) and
U(H),U(K) denote the set of unitary operators on H and K, respectively.
By (4.58), @ is a subset of Aut, (D). By (4.60), @ is closed under composition,
and by section 4.2.5, it is closed under inverses. Hence, @ is a subgroup of
Aut, (D).

Let ¢ € Aut,(D). Let a = (0) and consider the map ¢ = ¢_,1. Clearly,
¢ € Aut,(D) and ¢(0) = p_a1¥(0) = p_sa = 0. By a theorem that we will
prove in the next chapter, ¢ is a linear isometry of E. Thus, Aut,(D) is gen-
erated by the Mobius-Potapov-Harris transformations ¢, and the restrictions
of linear isometries of F.

In [4], it was shown that an isometry on L(H) has the form z — uzv or
z — uz'v, with u,v unitary on H. A similar result holds for L(H, K). For
the connected component Aut) (D) of the identity of Aut,(D), the isometry
must have the form z — wzv. Thus, for the domain D; of type I defined in
(4.2) as the unit ball of L(H, K), we have

Aut®(Dy) = &.

For type II and IIT domains, the isometry must also preserve the subspaces
E5 and E5 defined by (4.7) and (4.8). Thus, for these domains, we must
satisfy

(uzv)t = uzv, for 2'=+z.
This implies that uzv = v'zu! holds if and only if v = w!. Thus, if D is a
domain of type II or III, we have

Aut®(D) = {pa(u-u'): a € D, uc U(H)}.

The Lie algebra aut, (D) of the Lie group Aut,(D) consists of the gener-
ators of one-parameter groups of analytic automorphisms. These generators
can be obtained by differentiating smooth curves g(s) from a neighborhood
Iy of 0 into Aut,(D), with g(0) = I. For a domain Dy of type I, such a curve
is given by

g(S) = Pa(s) (u(s) : ”U(S)),
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where a(s) : Iy — D is a smooth map such that a(0) = 0, u(s) : [y — U(K)
is a smooth map such that u(0) = Ix and v(s) : Iy — U(K) is a smooth
map such that v(0) = I'y. Denote b = a’(0), A = u/(0), B = v'(0). Note that
be L(H,K) and A* = —A, B* = —B. By differentiating g(s) at s = 0 and
using (4.57), we get

5(2) = S pugay(uls) - () oo

=b+ Az+2B—2b"2=b+ Az + zB — {z,b, 2},
for any z € E. Thus,
aute(D1) = {0(z) =b+ Az + zB — {z,b, 2} }, (4.69)

where b ranges over L(H, K), A ranges over {A € L(K) : A* = —A} and B
ranges over {B € L(H) : B* = —B}. Note that the generators are polynomial
functions of z of order less than or equal two.

For a domain D of type II or III, we get

aut,(D) = {§(z) = b+ Az + zA" — {2,b, 2}}, (4.70)

where b ranges over L(H,K) and A ranges over {A € L(H) : A* = —A}.
We have just characterized the Lie algebra aut, (D), where D is an arbitrary
classical BSD. This establishes an intimate connection between Lie algebras
and the triple product. And the connection goes both ways. Given a Lie
algebra aut, (D) of a classical BSD, one can find the unique triple product
{#,b, z} such that aut,(D) is given by (4.70). Moreover, the triple product
constructed from the Lie algebra will depend solely on the geometry of D
and will not change if we perform an isometry on the JC*-triple F of which
D is the unit ball.

4.3 Pierce decomposition in JC*-triples

The geometry of the state space of a quantum system must reflect the mea-
suring process for such systems. Filtering projections which prepare states
with a given definite value of some observable play a major role in the mea-
suring process. In the category of bounded symmetric domains, the analog
of a filtering projection is the Pierce decomposition, which is the subject of
this section.

4.3.1 The operator D(v)

Let E C L(H,K) be a JC*-triple. Recall that F is equipped with the triple
product defined by (4.9). Consider now the properties of the tripotents, the
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basic elements of this product. The element v € E is called a tripotent or a
partial isometry if it satisfies equation (4.27):

v ={v,v,v} = vv*v.

For any tripotent v, the right support of v, defined in section 4.1.4, is the
operator r(v) = v*v, because v = vr(v). Note that r(v) is a projection from
H onto a subspace of H. Indeed,

(r())? = r(v)r(v) = (v*v)(v*v) = v*(vv*v) = v*v = r(v).

Similarly, the left support of v is the operator I(v) = vv*, because v = [(v)v.
Like r(v), the operator I(v) is also a projection, but from K onto a subspace
of K.

We will see that v is a partial isometry in the sense that it is an isometry
between a subspace of H and a subspace of K. The projection r(v) maps H
onto a subspace H,, and [(v) maps K onto a subspace K;. Let £ € H,, so
that & = r(v)€. Then

[0g[* = (vElvg) = (€lvTve) = (Elr(v)€) = (€[6) = [&I7,

so |[v€| = [¢]. Since v = vv*v, we have v€ = (vv*)v€ = [(v)v€, implying that
v€ € K. Thus v is an isometry between H, and K;. Note that v vanishes
on the orthogonal complement of H,., since for any n € H:-, we have vn =
v(l —=r())n = (v—or())n = (v—uv)n=0. Moreover, dim H, = dim K; and
is equal to rankwv.

Let v be a tripotent in a JC*-triple E. Then, for any z € F, the operator
D(v) = D(v,v) can be decomposed as

vv*z + zv*v 1

D)z ={v,v,2z} = — = g(l(v)z + zr(v))
1 1
= l)zlr(v) + (1 = r()] + S [l(v) + (1 = U(v))]er(v)
=l(v)zr(v) + %[l(v)z(l —r()) 4+ (1 = 1(v))zr(v)]. (4.71)
Write z in block matrix form as
where 217 = [(v)zr(v), z12 = [(v)z(1 — r(v)), 221 = (1 — (v))zr(v), and

! );
299 = (1 = 1(v))2(1 — r(v)). Then equation (4.71) implies that

1 1
D(v)z = <f“ 2'812> . D(v)%z= <f” 4'812> . (4.72)

5421 7721
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4.3.2 Pierce decomposition
Note that the eigenvalues of D(v) are 0, 3, and 1. Let Ej;(v) denote the
j-eigenspace of D(v), for j € {0, %, 1.} The natural projections P;(v) onto
E;(v) are called the Pierce projections associated with the tripotent v. From
(4.72), it follows that

Py (v)(z) = l(v)zr(v), (4.73)
Py jo(v)(2) = 1(v)z(1—r(v))+(1—l(v))2r(v), (4.74)
Po(v)(z) = (1—=1(v))z(1—r(v)). (4.75)

(From (4.72), we also have

Py (v) = 2D(v)* — D(v),

Py 5(v)=4D(v)— 4D(v)?,
and
Py(v) = 2D(v)* —=3D(v) + I,

which implies that the Pierce projections map F into itself. It is obvious that
Py (v)+ P j2(v)+FPo(v) = I. Thus, we have arrived at the Pierce decomposition
of E with respect to a tripotent v:

E =P (v)E+ Py jp(v)E+ Py(v)E = E1(v) + Ey/5(v) + Eg(v).  (4.76)

Since the norm of a projection on a Hilbert space equals one, and the norm
of the product of operators is less than or equal to the product of norms, the
Pierce projections P;(v) and Py(v) are contractions, meaning that for any
z € E, we have ||P;(v)(2)|| < ||z]|. To show that P;/,(v) is a contraction, we
introduce a symmetry S, which depends on v and is defined by

Sy(2) = (21(v) — D)z(2r(v) — 1).

Since the operators 2l(v) — 1 and 2r(v) — 1 are unitary maps, S, is norm-
preserving. But
I1-5,

2 )

Pyj(v) =

which implies that Py /,(v) is a contraction.

In Quantum Mechanics, the notion of compatible observables plays an
important role. They represent physical quantities that can be measured si-
multaneously, meaning that measuring one quantity does not affect the result
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of measuring the other quantity. This property is equivalent to the commuting
of the spectral projections of the operators representing the compatible ob-
serva