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Abstract – Relativistic Newtonian dynamics, the simple model used previously for predicting ac-
curately the anomalous precession of Mercury, is now applied to predict the periastron advance of a
binary. The classical treatment of a binary as a two-body problem is modified to account for the in-
fluence of the gravitational potential on spacetime. Without curving spacetime, the model predicts
the identical equation for the relativistic periastron advance as the post-Newtonian approximation
of the general relativity formalism thereby providing further substantiation of this model.

Copyright c© EPLA, 2016

Introduction. – The predictions of the anomalous pre-
cession of Mercury, the periastron advance of the Hulse-
Taylor binary and of the most relativistic double pulsar
PSR J0737-3039A/B are considered amongst the major
proofs of Eintein’s theory of General Relativity (GR). In
this paper we apply the simple relativistic model termed
as Relativistic Newtonian Dynamics (RND) to predict the
periastron advance of any binary and its origin. This
model incorporates the influence of the gravitational po-
tential on spacetime in Newtonian gravity without the
need of curving the spacetime. The model was previously
explored in [1] and applied [2] to predict accurately the
anomalous precession of Mercury.

These two predictions indicate that RND can provide
an alternative to GR for problems involving gravitation.
Since in a gravitational field different objects positioned at
the same point in spacetime follow the same trajectory, the
RND trajectories can be viewed as geodesics in a curved
spacetime, as in GR (geometric theory of gravitation). As
was shown in [2], for planetary motion the RND trajec-
tories are the geodesics of the Schwarzschild metric. In
non-gravitational fields, however, where different objects
positioned at the same point in spacetime follow differ-
ent trajectories, such geometric model no longer applies.
The RND model, nevertheless, is also applicable to these
non-gravitational fields.

For gravitational fields it is known [3] that

1) the gravitational redshift (time dilation due to gravi-
tational potential), can be derived solely from energy
conservation and Planck’s equation;

2) the existence of the gravitational redshift shows that
a consistent theory of gravity cannot be constructed
within the framework of SR.

For non-gravitational fields

1) the energy conservation and Planck’s equation also
predict a time shift depending on the position in
space;

2) such time dilation cannot be described within the
framework of SR.

Indeed, SR defines time dilation due to velocity, but not
due to position. We believe that, for both the above fields,
SR does not explain the position-dependent time dilation,
for the reason that it does not consider the influence of
the potential energy on spacetime. This is the relativistic
basis of RND.

Classical two-body problem. – Consider two ob-
jects S1, S2 with masses m1 and m2 positioned in an
inertial system with position vectors r1 and r2, respec-
tively, with a force along the line joining them. Denote by
r = r2 − r1 the displacement vector between them and by
r̂ the unit vector in the direction r. Let F = F r̂ be the
force acting on the first object. By Newton’s third law the
force acting on the second object is −F. The accelerations
of these objects by Newton’s second law are, respectively,

r̈1 =
1

m1

F, r̈2 = − 1

m2

F. (1)
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Note that the reciprocal of the mass, the constant of
proportionality relating the force to the acceleration it
causes, expresses the “agility” of the object to be acceler-
ated. From (1), the relative acceleration of r is

r̈ = −
(

1

m1

+
1

m2

)

F. (2)

Since the accelerations of the two objects are in opposite
directions, the magnitude of their relative acceleration r̈

is the sum of the acceleration magnitudes of each object.
Furthermore, since the forces generating these accelera-
tions have the same magnitude, the agility of the object
pair is the sum of their respective agility, as seen from (2).

This agility of the object pair is the agility of a single
fictitious object P ′ with reduced mass

ρ =
m1m2

m1 + m2

. (3)

Thus, the evolution of the relative position r in the two
body problem can obtained from the dynamics of P ′ under
the force F.

From eqs. (1), m1r̈1+m2r̈2 = 0 implying that the center
of mass defined by

R =
m1r1 + m2r2

m1 + m2

(4)

moves uniformly in a straight line. We define a new inertial
frame by K by translating the origin of the original frame
to O = R. Thus, the relative position of each object in K
is given by

r̃1 = r1−R =
−m2

m1 + m2

r, r̃2 = r2−R =
m1

m1 + m2

r. (5)

The gravitational force between two objects in a bi-
nary with masses m1,m2, respectively, is given by F =
−Gm1m2

r2 r̂, where G is the gravitational constant. Equa-
tion (2) becomes

ρr̈ = −GMρ

r2
r̂, M = m1 + m2, (6)

which is the equation of motion of a fictitious planet P ′ of
mass ρ in the central gravitational force field of a massive
fictitious “Sun” S with mass M at the origin O of K and
relative position r.

Considering that the potential energy of the gravita-
tional field is U = −GMρ

r , the energy conservation equa-
tion is

ρ

2

(

dr

dt

)2

− GMρ

r
= E (7)

expressing that the total energy E (the sum of the kinetic
and potential energies) of P ′ is conserved on its orbit.

Note that from (3) and (5), the kinetic energy of P ′

ρ

2

(

dr

dt

)2

=
m1

2

(

dr̃1

dt

)2

+
m2

2

(

dr̃2

dt

)2

is the sum of the kinetic energies of the pulsar and its
companion in K and the potential energy of P ′

U(r) = −GMρ

r
= −Gm1m2

r
(8)

defines properly the force F.

Dividing eq. (7) by ρc2

2
, where c is the speed of light we

obtain the dimensionless energy conservation equation

1

c2

(

dr

dt

)2

− rs

r
= E , (9)

where

rs =
2GM

c2
(10)

is the Schwarzschild radius of S which is also the
Schwarzschild radius of the binary (the minimal distance
between the objects for which) the relative velocity to sep-
arate them is less than c). The dimensionless kinetic en-

ergy is 1

c2 (dr

dt )
2 = β2, where β is the known beta factor and

the absolute value of the dimensionless potential energy is

u =
2GM

rc2
=

rs

r
. (11)

Finally, we denote by E = 2E
ρc2 the dimensionless total

energy of the orbit.
Using (5)

ρr × ṙ = m1r̃1 × ˙̃r1 + m2r̃2 × ˙̃r2, (12)

showing that in K the angular momentum of P ′ and that
of the binary with respect to O are the same. From (6)
there follows that the angular momentum per unit mass
J of P ′ is conserved on the orbit implying that r is in the
plane perpendicular to J and from (5) the trajectories of
the two objects are in this plane.

We introduce polar coordinates r, ϕ in this plane with
origin O, where ϕ is the dimensionless polar angle, mea-
sured in radians. The conservation of the angular mo-
mentum per unit mass J , allows us to express the angular
velocity as

dϕ

dt
=

J

r2
(13)

and to decompose the square of the velocity of the planet
as the sum of the squares of its orthogonal radial and
transverse components

(

dr

dt

)2

=

(

dr

dt

)2

+
J2

r2
. (14)

Substituting this into (9) we obtain the classical dimen-

sionless energy conservation equation

1

c2

(

dr

dt

)2

+
J2

c2r2
− rs

r
= E . (15)

Using the definition (11) of u, and denoting its deriva-
tive with respect to ϕ by u′, it can be shown that

dr

dt
= − J

rs
u′. (16)
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Hence, eq. (15) becomes

J2

r2
sc2

(

(u′)2 + u2
)

= u + E . (17)

Multiplying this equation by 2µ, where µ is a unit-free

orbit parameter

µ =
r2
sc2

2J2
, (18)

we obtain

(u′)2 = −u2 + 2µu + 2µE . (19)

Differentiating this equation with respect to ϕ and di-
viding by 2u′ we obtain a linear differential equation with
constant coefficients

u′′ + u = µ. (20)

Its solution is

u(ϕ) = µ(1 + ε cos(ϕ − ϕ0)), (21)

where ε is the eccentricity of the orbit, and ϕ0 the polar
angle of the perihelion. This implies that

r(ϕ) =
rs/µ

1 + ε cos(ϕ − ϕ0)
(22)

and the orbit is a non-precessing ellipse. Since the minima
of r(ϕ), corresponding to the perihelion, occur when ϕ =
ϕ0 + 2πn, n = 0, 1, 2, · · · , the position of the perihelion
will not change with the revolution of the planet P ′.

The orbit constant µ, as we shall see later, plays a major
role for precession of the orbit. It has both a physical and
geometric meaning. From eq. (21)

µ =
1

2π

∫ 2π

0

u(ϕ)dϕ, (23)

the absolute value of the angular average dimensionless
potential energy of P ′ on the orbit. Moreover, from (22)
µ = rs

L , where L is the semi-latus rectum of the orbit of P ′.
From (11), the u values on the orbit achieve their maxi-
mum and minimum values up and a ua at the perihelion
and aphelion, respectively. Thus, from (21)

µ =
up + ua

2
. (24)

Hence, from (5), the orbits of the two objects are non-
precessing ellipses, see fig. 1. The apastron separation of
the binary (the maximum distance between the two ob-
jects) is the same as the apogee (maximal distance of P ′

from O). Similarly, the periastron separation (the mini-
mum distance between the two objects) is the same as the
perigee (minimal distance of P ′ from O).

-15 -10 -5 5

A'

-5

5

A1A2 O

P'

S2

S1

Fig. 1: (Colour online) The orbits of the two objects S1, S2 (red
and green solid lines) and the trajectory of the fictitious planet
P ′ (black dashed line). The apastron separation |A1, A2| of the
binary equals the apogee A′ of P ′. Point O is the center on
mass R for the binary and position of S.

Potential energy as the source of precession. –

The classical Newtonian solution for a binary does not ac-
count for the periastron advance. In fact, the observed
Hulse-Taylor pulsar’s periastron advance in one day is
approximately as the one observed previously for Mer-
cury in 100 years. Nowadays, there are ten neutron star
binaries for which the advance of periastron has been mea-
sured. Among all those, the double pulsar PSR J0737-
3039A/B is the most relativistic with a periastron advance
of 16.899 degrees/year. We will show that the periastron
advance is a result of the influence of the gravitational
potential (8) on the spacetime.

Rather than proposing an a priori postulate for such
influence, we will be guided by the Einstein’s Equivalence
Principle and Clock Hypothesis. Einstein’s Equivalence
Principle states [4] the complete physical equivalence of
a gravitational field and a corresponding accelerated sys-
tem. To be able to use this principle effectively, we use
the notion of escape velocity and escape trajectory. For
any displacement r of a binary, the escape velocity ve(r)
is the minimal relative velocity needed to separate the
binary. From symmetry consideration ve(r) is in the di-
rection of r. Define the escape trajectory as an imaginary
(de)accelerated trajectory of a test object starting at point
P0 positioned at r with escape velocity ve(r), and pro-
gressing freely in a decreasing potential field U(r) to the
ultimate point P∞ with zero potential. Note that on this
trajectory we have the equality of the kinetic and potential
energies.

Using the Equivalence Principle the effect of gravita-
tion on the spacetime is modeled by the (de)accelerating
system attached to the escaping test object. Denote by
K0,K∞ the comoving spacetime reference frames at P0

and P∞, respectively. Note that K∞ is an inertial (lab)
frame resting in K, hence with the same spacetime. Using
an extension of Einstein’s Clock Hypothesis, (extending
the time to spacetime transformation) introduced in [5,6],
we can interconnect the spacetime transformations be-
tween the two accelerated frames at P0 and P∞ by use
of the Lorentz transformation from K0 to K∞.

For a central force potential, the frame K0 moves with
escape velocity ve in the radial direction with respect
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to K. We choose the first spatial coordinate in the ra-
dial direction, and denote by β2

e = v2
e/c2 = u, where u

is defined by (11). Then, the spacetime transformation
(Lorentz transformation) from K0 to K∞ is

ct = γ̃(ct′ + βex
′

1), x2 = x′

2,

x1 = γ̃(βet
′ + x′

1), x3 = x′

3,
(25)

where

γ̃ =
1

√

1 − v2
e/c2

=
1√

1 − u
(26)

is the known gravitational time dilation factor.
From the transformation formulas (25) we get

∆t = γ̃∆t′, ∆x1 = γ̃∆x′

1, ∆x2 = ∆x′

2, ∆x3 = ∆x′

3

(27)
implying that the 3D velocity transformation between
these systems is

(v1, v2, v3) = (v′

1, γ̃
−1v′

2, γ̃
−1v′

3). (28)

Thus, the influence of the acceleration or potential energy
at x0 on any velocity is expressed by the multiplication of
the component of this velocity transverse to ∇U(P0) by
γ̃−1, where the time dilation factor γ̃ is defined by (26).

Relativistic Newtonian dynamics application to

binaries . – Relativistic Newtonian Dynamics (RND) is a
modification of the Newtonian dynamics by transforming
it from absolute space and time to spacetime influenced
by energy. For a central force, the direction influenced
by the potential energy is the radial direction implying
that the radial velocities are not affected by this influ-
ence, while the transverse ones should be multiplied by
γ̃−1 =

√

1 − u(r). This implies that in our lab frame
K the decomposition of the square of the velocity of the
particle as the sum of the squares of its orthogonal ra-
dial and transverse components, given by (14), should be
modified to

(

dr

dt

)2

=

(

dr

dt

)2

+
J2

r2
(1 − u(r)). (29)

Our model also reveals the source of the precession of
the planetary orbit. As mentioned above, in NG, the ra-
dial and the transverse periods are identical, resulting in
a non-precessing orbit. In SR, both the radial and trans-
verse components of the velocity are altered, resulting in
unequal periods with relatively small difference between
them and hence a small precession. In our model, only

the radial component of the velocity is influenced, while
the transverse (angular) component is not. This, in turn,
accentuates the difference between these periods, resulting
in the observed precession, as follows. Thus, considering
the influence of the potential energy, the dimensionless
energy conservation equation (15) becomes

1

c2

(

dr

dt

)2

+
J2

c2r2
(1 − u(r)) − u(r) = E . (30)

Fig. 2: (Colour online) The precessing orbit of the fictitious
planet P ′ in red. The classical orbit in green.

This equation together with eq. (13) form a first-order
system of differential equations with respect to r(t), ϕ(t).
They are the RND equations of motion under a central

force.
For an inverse-square law force, using known methods

(see, for example, [7,8] and [2]) we can obtain the tra-
jectory of the motion by solving eq. (30) for the function
u(ϕ). If we denote u′ = du

dϕ , then substituting (16) in the
above equation gives

J2

c2r2
s

(u′)2 +
J2u2

c2r2
s

(1 − u) − u = E . (31)

Multiplying this equation by 2µ, where µ is defined
by (18), we obtain

(u′)2 = u3 − u2 + 2µu + 2µE . (32)

This equation is identical to (19) in NG, except that it
has a very small (since u ≪ 1) additional term u3 on the
right-hand side. This result is the same result as that of
GR.

We seek a solution of this equation in the form general-
izing (21),

u(ϕ) = µ(1 + ε cos α(ϕ)) (33)

for some function α(ϕ), see fig. 2. As before, two roots of
the cubic on the right-hand side of (32), are the u values
up and ua of the perihelion and aphelion, respectively.
Moreover, since the coefficients of this cubic are constant
for a given orbit, these values will not change from one
revolution to the next. We denote the third root of this
cubic by ue. Thus, eq. (32) can be factorized as

(u′)2 = −(u − up)(u − ua)(ue − u). (34)

From eq. (33), (u′)2 = (α′)2µ2ε2 sin2 α(φ), up = µ + µε
and ua = µ − µε. Moreover, since the sum of the roots of
this cubic is 1,

ue = 1 − (up + ua) = 1 − 2µ. (35)

Substituting these into (34), yields after simplification

α′ =
dα

dϕ
= (1 − 3µ − µε cos α(ϕ))1/2.
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This allows us to obtain the dependence of ϕ on α as

ϕ(α) = ϕ0 +

∫ α

0

(1 − 3µ − µε cos α̃)−1/2dα̃. (36)

As we have shown in [2] and [1], this yields the preces-
sion 3πµ rad

rev
of P ′. As mentioned above, this is also the

relativistic periastron advance per revolution of the binary,
the object we are looking for. Hence, the commonly used
non-Keplerian parameter ω̇, i.e., the periastron advance
per unit of time or time rate of change (precession) of the
longitude of the periastron, is

ω̇ = 3π
µ

Pb
, (37)

where Pb is the orbital period of the binary per same unit
of time.

We express this formula in terms of the Keplerian pa-
rameters of the orbits of the two objects of the binary.
From (11) and (24)

up =
2GM

rpc2
, ua =

2GM

rac2
⇒ µ =

GM

c2

(

1

rp
+

1

ra

)

,

where rp, ra denote the periastron and apastron separa-
tions, respectively.

As evident from (5) the eccentricity of P ′ is the same as
that of the eccentricity of each object. Hence, we can ex-
press rp and ra in terms of a1, a2 which are the semimajor
axes of objects 1 and 2, respectively, as

rp = (1 − ε)(a1 + a2), ra = (1 + ε)(a1 + a2),

implying that

1

rp
+

1

ra
=

2

a
(1 − ε2)−1, (38)

where a = a1 + a2 is the semimajor axis of P ′. From
Kepler’s formula for P ′,

Pb = 2π

√

a3

GM
, ⇒ a = (GM)1/3

(

Pb

2π

)2/3

.

Substituting all these into (37)

ω̇ = 3π
2GM

c2Pb
(GM)−1/3

(

Pb

2π

)

−2/3

(1 − ε2)−1

and

ω̇ = 3
(GM)2/3

c2(1 − ε2)

(

Pb

2π

)

−5/3

, (39)

which is the post-Keplerian equation for the relativistic
advance of the periastron ω̇, given, for example, in [9–11]
and [12].

This formula can be used to provide the total mass M of
the system, which, combined with the theory-independent
mass ratio, yields the individual masses of the system.

Summary and discussion. – We have derived the
periastron advance formula (39) of any binary by the use
of our Relativistic Newtonian Dynamics (RND) which in-
corporates the influence of the potential energy on flat
spacetime. This formula is the same as the one obtained
using the first-order Post-Newtonian (PN) approximation
(1PN) of GR.

The PN approximation is effectively an expansion of
Einstein’s theory in powers of a small parameter ṙ2/c2 ∼
GM/(c2r). The periastron advance of a binary using the
2PN approximation was obtained in [13] by employing a
second PN reduced Hamilton function Ĥ in isotropic co-
ordinates in the center-of-mass system. The 3PN approx-
imation for this advance was derived in [14].

The difference between the RND and the PN approach
is best seen by comparing our RND reduced Hamilton
function Hrn in flat space in the center-of-mass system,
with the corresponding Ĥ. As evident from (30) and (11),

Hrn(r, ṙ,M) =
ṙ2

2
− GM

r
− GM

rc2

(

ṙ2 − (ṙ · n)2
)

, (40)

where n is a unit vector in the radial direction.
Unlike Ĥ, our Hrn is derived from the principles of our

model and is not an approximation. The relativistic con-
tribution in Hrn embodied in the last term of (40) re-
sembles similar 1PN terms of Ĥ, however Ĥ involves two
extra 1PN terms with complicated coefficients. The differ-
ence in the complexity between Ĥ and Hrn results partly
by the use of isotropic coordinates instead of flat space-
time, and partly by the parametrization of the trajectory
by proper time instead of time. Since the parametrization
of the trajectory does not affect the formula for the peri-
astron advance, one may use any parametrization which
may simplify the solution.

As was shown in [15], for more relativistic binaries such
as a neutron star with a 10-solar-mass-black-hole compan-
ion, the 2PN approximation and the leading-order spin-
orbit coupling term could have significant contributions
to the periastron advance of such binaries. Actual obser-
vations of such binaries, once available, will provide the
real test for the accuracy of RND.

It is known [3] that the gravitational redshift, can
be derived from energy conservation (and using Planck’s
equation) and that “an argument of A. Schild yields an
important conclusion: the existence of the gravitational
redshift shows that a consistent theory of gravity cannot
be constructed within the framework of special relativity”.
This is because special relativity does not consider the in-
fluence of potential energy on spacetime. RND predicts
accurately both the anomalous precession of Mercury [2]
as well as the periastron advance of any binary. This in-
dicates that RND provides an alternative to General Rel-
ativity (GR) for problems involving gravitation.

Note that in both problems that we considered, there
exists a preferred reference frame: for a central force this
is the frame attached to the center of the force, while for a
binary this is the frame attached to the center of mass of
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the binary. Thus, in order to simplify the solution, we can
work in these frames and use space and time separately,
without using the 4D formulation. Only for deriving the
influence of the gravitational potential on spacetime we
have to use the 4D formulation.

Since in gravity different objects positioned at the same
spacetime follow the same trajectory, the RND dynamics,
which considers the change of the spacetime at any point
in space, can be expressed as curving of spacetime, as in
GR (geometric theory of gravitation). As was shown in [2]
for planetary motion the RND trajectory is the same as
the geodesic under a Schwarzschild metric.

For non-gravitational potentials for which different
objects positioned at the same spacetime follow different
trajectories, the geometric model does not express the in-
fluence of these potentials on spacetime. As stated in Liv-

ing Review Relativity [16], if one were to use Einstein’s
GR for non-gravitational fields, it is currently assumed
that the non-gravitational laws of physics are written in
the language of Special Relativity (SR).

However, energy conservation and Planck’s equation
predict a time dilation depending on the position in space
also for non-gravitational potentials. Thus, there should
be also an influence of the non-gravitational potentials on
spacetime. This is achieved by the RND model. We expect
that this theory will be able to describe properly dynamics
for the microscopic region (which differ significantly from
the classical one) because of extremely high acceleration
and non-gravitational forces playing the main role there.
The observed precession and non-linearity of the dynam-
ics equation of a binary predicts [1] chaotic motion of an
electron in a hydrogen-like atom.

∗ ∗ ∗

We wish to thank the referee for his valuable suggestions
that helped to improve the paper considerably. Many

thanks to Dr Richard Manchester of the Australia
Telescope Facility for providing information about the
double pulsar. Finally, we wish to acknowledge Dr Rose-

mary Mardling of Monash University for suggesting to
test our model for the Hulse-Taylor pulsar’s periastron
advance.

REFERENCES

[1] Friedman Y., EPL, 116 (2016) 19001.
[2] Friedman Y. and Steiner J. M., EPL, 113 (2016)

39001.
[3] Misner C. W., Thorne K. S. and Wheeler J. A.,

Gravitation (Freeman and Co.) 1973.
[4] Einstein A., Jahrb. Radioakt. Elektron., 4 (1907) 411.
[5] Mashhoon B., Phys. Lett. A, 143 (1990) 176.
[6] Mashhoon B., Phys. Lett. A, 145 (1990) 147.
[7] Kopeikin S., Efroimsky M. and Kaplan G., Relativis-

tic Celestial Mechanics of the Solar System (Wiley-VCH,
Berlin) 2011.

[8] Grøn Ø. and Sigbjørn H., Einstein’s General Theory

of Relativity: With Modern Applications in Cosmology

(Springer) 2007.
[9] Kramer M., Stairs I. H., Manchester R. N.,

McLaughlin M. A., Lyne A. G., Ferdman R. D.,

Burgay M., Lorimer D. R., Possenti A., D’Amico

N., Sarkissian J. M., Hobbs G. B., Reynolds J. E.,

Freire P. C. C. and Camilo F., Science, 314 (2006) 97.
[10] Lorimer D. R., Living Rev. Relativ., 11 (2008) 8.
[11] Weisberg J. M., Nice D. J. and Taylor J. H., Astro-

phys. J., 722 (2010) 1030.
[12] Damour T. and Deruelle N., Ann. Inst. Henri
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