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Abstract – Planck’s formula and General Relativity indicate that potential energy influences
spacetime. Using Einstein’s Equivalence Principle and an extension of his Clock Hypothesis, an
explicit description of this influence is derived. We present a new relativity model by incorporating
the influence of the potential energy on spacetime in Newton’s dynamics for motion under a central
force. This model extends the model used by Friedman and Steiner (EPL, 113 (2016) 39001) to
obtain the exact precession of Mercury without curving spacetime. We also present a solution of
this model for a hydrogen-like atom, which explains the reason for a probabilistic description.

Copyright c© EPLA, 2016

Introduction. – Newtonian dynamics describes prop-
erly the motion of objects in absolute space and time [1,2].
Relativistic dynamics can be considered as a modification
of Newtonian dynamics to describe the motion in influ-
enced spacetime [3]. Special Relativity (SR) dynamics [4]
time and space are influenced by velocity or equivalently
by the kinetic energy. Is the potential energy also influ-
encing spacetime and dynamic laws?

Planck’s formula indicates that time is influenced by any
type of energy. In General Relativity (GR), space and time
are influenced by the gravitational potential. As we will
show later the anomalous precession of the perihelion of
Mercury implies that space is also influenced by gravita-
tional energy. What about the influence on spacetime of
non-gravitational potentials?

There are several theories predicting universal [5,6] or
system-dependent [7] maximal accelerations and the influ-
ence of acceleration or potential energy on spacetime [8,9].
These theories predict [10] a new relativistic dynamics
which has interesting predictions for harmonic oscilla-
tions [11] and for a hydrogen-like atom [12]. Recently the
dynamic equation for planetary motion using the idea of
the influence of the gravitational potential on spacetime
which led to prediction of the accurate anomalous preces-
sion of Mercury without the need of curving spacetime
was obtained in [13]. However, the influence on time ex-
pressed by the time dilation factor, differs from the one
obtained in the maximal acceleration models. The recent
YARK model ([14] and references therein) also describes
the influence of potential energy on spacetime. But unlike
in [13], where this influence on space differs in different

directions (the cause of the precession), in YARK this in-
fluence, expressed by the metric (formula (17)), acts the
same way on all spacial directions.

In this paper we extend the Relativistic Newtonian
Dynamics (RND) introduced in [13] for planetary mo-
tion. We present the Relativistic Newtonian Dynam-
ics for particle motion under a conservative central force
in flat spacetime by incorporating the influence of the
potential (not only the gravitational one) energy on space-
time. This influence will be derived from the known prin-
ciples introduced by Einstein, but will not need curving
the spacetime.

Newtonian dynamics under conservative force. –

We will recall the description of motion of a mass particle
under a conservative force in Newtonian dynamics. Pick
an inertial lab frame K with coordinates x = (x1, x2, x3)
and time t. We denote the mass of the particle m, which
will be assumed to be constant (rest mass), and denote
the force F(x) and its potential U(x). The trajectory x(t)
of the motion of the particle is described by Newton’s
second law

m
d2x(t)

dt2
= F(x(t)) = −∇U(x(t)), (1)

where ∇U denotes the gradient of U .
From this equation it follows [2] that the total energy

E, which is a function of the state, defined by

E(x,v) =
m

2
v2 + U(x) (2)

is conserved during the motion. The first term on the
right-hand side is the kinetic energy and the second one is
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the potential energy. From (1), the potential U is defined
up to a constant. We will need a uniquely defined U with
the condition U(O) = 0 where the point O is defined by
∇U(O) = 0. For planetary motion or any inverse square
force potential, O is at ∞ and for a harmonic oscillator it
is at the origin of the oscillator.

For any energy associated with a mass particle we de-
fine its unit-free dimensionless energy as the ratio of this
energy to 1

2
mc2, where c the speed of light. The dimen-

sionless kinetic energy (DKE) is 1

c2 (dx

dt )2 = β2, where β

is the known beta-factor. The DKE is less then one, if we
assume v2 ≤ c2. For any point in space, denote by u the
dimensionless potential energy (DPE)

u(x) = −2U(x)

mc2
. (3)

Finally, denote by E = 2E
mc2 dimensionless total energy

(DTE) of the orbit.
Dividing eq. (2) by 1

2
mc2 of the particle we obtain

the unit-free equation expressing the dimensionless energy

conservation on the trajectory

v2

c2
− u(x) = E . (4)

It follows from (1), that the acceleration a of a free moving
particle under the given potential satisfies

a = − 1

m
∇U =

c2

2
∇u . (5)

Thus,

u(x) =
2

c2

∫

x

O

a(x(τ)) · dx(τ), (6)

where the integral is over some free motion curve x(τ)
connecting O —the zero of the potential energy— to x.
Note that DKE is defined by the velocity at the given
time, while DPE is the integral of the acceleration over
the trajectory.

The DPE can be expressed by the use of the notion of es-
cape velocity ve(x), defined as the minimum speed needed
for a mass particle at x to “break free” (if possible) from
the attraction defined by the potential. More particularly,
it is the velocity (speed away from the starting point) at
which the sum of the particle’s kinetic and its potential
energies is equal to zero. Thus,

u(x) =
v2

e(x)

c2
, ve = −c

√
u

∇u

|∇u| . (7)

We will define the Schwarzschild region the region S de-
fined by

S = {x : v2

e(x) ≤ c2}. (8)

Any particle positioned in S is attracted by the source of
the potential. Thus, any free motion of a mass particle is
outside S.

We will say that a force is central if there is a fixed
point in space, called the center of the force, such that the

force on a mass particle is always in the direction of the
center. We choose the origin of our coordinate system to
be at the center of the force and denote the position vector
with respect to the origin by r, its length by r. Thus, the
potential of a central force is dependent only on the radial
distance and is of the form U(r) = U(r).

Let r(t) be the trajectory under a central force of a
massive particle. In this case the angular momentum is
conserved [3]. This implies that the motion is in the plane
perpendicular to the angular momentum and we may use
polar coordinates for the position in this plane. Denote by
J the angular momentum per unit mass on the trajectory.
The angular velocity on the trajectory is

dϕ

dt
=

J

r2
, (9)

and we can decompose the square of the velocity of the
particle as the sum of the squares of its orthogonal radial

and transverse components

(

dr

dt

)2

=

(

dr

dt

)2

+
J2

r2
. (10)

Substituting this into (4) we obtain the classical dimen-

sionless decomposed energy conservation equation

1

c2

(

dr

dt

)2

+
J2

c2r2
− u(r) = E , (11)

where the first and second terms express the radial and
transverse components of DKE, respectively.

For an inverse-square law force the potential is U(r) =
−k

r , and by use of (7) and (3)

βe =
ve

c
=

√
u =

√

2k

rmc2
, (12)

and the radius rs of the Schwarzschild region is

rs =
2k

mc2
and β2

e = u =
rs

r
. (13)

From (1) the acceleration of the particle is a = k
mr2 and

from (8) we obtain a ≤ k
mr2

s

= c2

2rs

. This implies that for

such a motion there is an upper limit am on the accelera-
tion (depending on the potential) with

am =
c2

2rs
and u = β2

e =

√

a

am
. (14)

For the harmonic oscillator F = −kr with potential

U(r) = k
2
r2. Using (3), this implies that u(r) =

ω2

0
r2

c2

where ω0 =
√

k/m is the natural frequency of the os-
cillator. Since the acceleration in this case is a = −ω2

0r,
the expression for u is now

u =
ω2

0r
2

c2
=

a2

a2
m

with am = cω0. (15)

Note, that for the harmonic oscillator there is no notion
of an escape velocity.
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Influence of the central force potential on space-

time. – Relativistic Newtonian Dynamics (RND) is a
modification of the Newtonian dynamics by transforming
it from absolute space and time to spacetime influenced
by energy.

In SR the time passage of a moving clock as observed
in the laboratory frame is altered by the Lorentz γ factor
depending only on its velocity (or DKE) with respect to
the lab frame K. On the other hand in GR, the rate of
a rest clock is altered by the gravitational time dilation
factor γ̃ depending on the gravitational potential at that
point.

It is known that if a velocity is tangent to a trajectory
(smooth manifold), the motion remains confined to the
trajectory. Thus, time modification alone will not change
the classical trajectory, since such modification changes
only the magnitude of the velocity, which was tangential to
the trajectory, without changing its direction. The anoma-
lous precession of Mercury shows however that in fact the
real trajectory of the planet differs from the classical one.
Thus, a relativistic model which will be able to predict
the observed precession must also modify space. In SR,
modification of time in a system moving uniformly comes
together with a modification of one of the directions in
space, the direction of the velocity, which we will call the
influenced direction.

The observed anomalous precession of Mercury, for ex-
ample, is significantly larger than the one predicted by SR
which considers the influence of the kinetic energy only.
Thus, in RND, we must also consider the influence of the

potential energy on spacetime in the neighbourhood of any
point in spacetime. We will compare the modified space-
time with respect to the flat spacetime of a locally inertial
lab frame with zero force (potential) at its origin. To sim-
plify the model we will require that our potential in the
lab frame is independent of time.

Rather then proposing an a priori postulate for such
influence, we will be guided by the well known princi-
ples introduced by Einstein for the gravitational poten-
tial. Firstly, by using Einstein’s Equivalence Principle, we
study the influence of the potential energy in our system
by considering instead the influence of acceleration of a
system in free space. This is justified, since both potential
energy and acceleration produce the same effects inside
these systems. Secondly, by using the notion of a comov-

ing frame associated to a given point in an accelerated
frame as an inertial frame with the same velocity as the
instantaneous velocity of this point, and an extension of
Einstein’s Clock Hypothesis, we express the interconnec-
tion between the spacetimes in the neighbourhood of two
points in an accelerated system, via the Lorentz transfor-
mations between the comoving frames at these points.

Einstein’s Equivalence Principle (1907) states [15] “we
[. . .] assume the complete physical equivalence of a grav-
itational field and a corresponding acceleration of the
reference system”. To be able to use this principle ef-
fectively, we must specify the meaning of “Corresponding

Accelerated System”. Obviously, such system will depend
on r0, the position in space outside the Schwarzschild re-
gion S. Our accelerated system will be described by the
collection of spacetime frames Kr0

(u) parameterized by u
(DPE defined by (3)) attached to an accelerated observer.

Define the escape trajectory as the (de)accelerated tra-
jectory starting at r0 corresponding to DPE u0 of a mass
particle with escape velocity ve, defined by (7), and pro-
gressing freely with decreasing potential to the ultimate
point O with zero potential. We propose that the Corre-
sponding Accelerated System in the Equivalence Principle
is Kr0

(u), the collection of Frenet frames [16], defined by
this escape trajectory, starting with K ′ = Kr0

(u0) and
ending with K = Kr0

(0), the inertial lab frame.
On the escape trajectory the total energy in Kr0

(u0)
is E = 0 by the definition of ve and remain, by energy
conservation, zero in all Kr0

(u). Thus, the velocity of the
mass particle at each point of this trajectory is equal to
the escape velocity at this point. For a central force the
direction of this velocity is constant and equal to the radial
direction r0/r0, hence from (7)

dve

dt
=

dve

du

(

∇u · dr

dt

)

= − c

2
√

u
∇u(−c

√
u) =

c2

2
∇u,

(16)
which is by (5) the acceleration under the given potential.
The escape trajectory provides a connecting road between
the frame K ′ at r0 with potential in it and the inertial lab
frame K at O with zero potential.

Note that the frames Kr0
(u) are inertial frames in the

presence of the gravitational field, but they are accelerated
with respect to K if the gravitational potential is ignored.
Finally, by using an extension of Einstein’s Clock Hypoth-
esis, introduced in [16,17] and [18,19], we can interconnect
the spacetime transformations between the two acceler-
ated frames K ′ and K by use of the Lorentz transfor-
mations between the comoving frames associated to their
origins.

For a central force potential, the frame K ′ moves with
escape velocity ve in the radial direction with respect to
K. If we choose the first spacial coordinate in the ra-
dial direction, and denote by β2

e = v2
e/c2, the spacetime

transformation (Lorentz transformations) from K ′ to our
reference frame K is

ct = γ̃(ct′ + βex
′

1), x2 = x′

2,

x1 = γ̃(βet
′ + x′

1), x3 = x′

3, (17)

where

γ̃ =
1

√

1 − v2
e/c2

=
1√

1 − u0

(18)

is the known gravitational time dilation factor.
The time dilation factor γ̃ at any given point r depends

on the DPE, defined by the potential energy with the
boundary condition, which is a non-local property. We
can sometime define it explicitly from a measurable value
on the trajectory, the acceleration, but it will differ for
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different types of force dependence. For example for an
inverse-square law force using (14) this factor is

γ̃ =
1

√

1 −
√

a
am

, (19)

which differs significantly from the time dilation factor in
all models of maximal acceleration [6–10].

To define the influence of the potential energy for a har-
monic oscillator the escape trajectory is replaced by a tra-
jectory of a particle with 0-velocity at r0 moving freely
to the origin of the oscillator O. Using (15), the velocity
v0 at O on this trajectory will be in the radial direction
with magnitude v0 = ω0r. For this trajectory, the above
arguments nevertheless remain valid if one interchanges
ve with v0. Thus, the time dilation factor in this case,
using (15), is

γ̃ =
1

√

1 − a2

a2
m

, (20)

which is the time dilation factor in all models of maximal
acceleration.

From the transformation formulas (17) we get

dt = γ̃dt′, dx1 = γ̃dx′

1, dx2 = dx′

2, dx3 = dx′

3,
(21)

implying that the 3D velocity transformations between
these systems is

(v1, v2, v3) = (v′

1, γ̃
−1v′

2, γ̃
−1v′

3). (22)

Thus the influence of acceleration or potential energy at
x0 on any velocity is expressed by multiplication of the
component of this velocity transverse to ∇U(x0) by γ̃−1,
where the time dilation factor γ̃ is defined by (18).

RND equations of motion under a central force.

– For a central force, the direction influenced by the po-
tential energy is the radial direction implying that the ra-
dial velocities are not affected by this influence, while the
transverse ones should be multiplied by γ̃−1 =

√

1 − u(r).
This implies, that in our lab frame K the decomposition
of the square of the velocity of the particle as the sum of
the squares of its orthogonal radial and transverse compo-
nents, given by (10), should be modified to

(

dr

dt

)2

=

(

dr

dt

)2

+
J2

r2
(1 − u(r)). (23)

Thus, considering the influence of the potential energy, the
dimensionless energy conservation equation (11) becomes

1

c2

(

dr

dt

)2

+
J2

c2r2
(1 − u(r)) − u(r) = E . (24)

This equation together with eq. (9) form a first-order sys-
tem of differential equations with respect to r(t), ϕ(t).
They are the RND equations of motion under a central

force.

For an inverse-square law force, using known methods
(see for example [3] and [1]) we can obtain the trajectory
of the motion by solving eq. (24) for the function u(ϕ).
If we denote u′ = du

dϕ , then from (13) and (9) we obtain
dr
dt = − J

rs

u′. Substituting this in the above equation gives

J2

c2r2
s

(u′)2 +
J2u2

c2r2
s

(1 − u) − u = E . (25)

Multiplying this equation by 2µ, where

µ =
c2r2

s

2J2
, (26)

we obtain
(u′)2 = u3 − u2 + 2µu + ẽ (27)

for some constant ẽ. As it was shown in [13] this equation
defines a precessing trajectory with precession 3πµ radians
per revolution, with µ as the average value of u on this
trajectory and is also equal µ = rs

L , where L is the semi-
latus rectum of the orbit.

The Schwarzschild radius of the Sun is rs = 2953.25 m,
for Mercury L = 5.546 ·1010 m implying that µ = 5.32497 ·
10−8. Thus, our model predicts a 5.01866·10−7 radians per
revolution precession of the perihelion of Mercury, which
is exactly the currently observed one.

RND of hydrogen-like atom. – Consider a system of
two particles, a proton with mass mp = 1.7 · 10−27 kg and
an electron with mass me = 9 · 10−31 kg. Denote by rp, re

the positions of the proton and the electron, respectively
and the relative position of the electron with respect to the
proton by r = (re − rp). We will ignore the interaction
of the particles with the fields and restrict ourselves only
to the Coulomb force. The force of the field of the proton
acting on the electron is thus F1 = −kr/r3, with k =
2.3 · 10−28 Nm2, while the electric force of the electron
acting on the proton is F2 = kr/r3 = −F1.

The center of mass of this two-particle system is posi-
tioned at or close to the proton, and the electron moves
around the more or less stationary proton. The motion of
the electron is a motion under an inverse-square law force
of the Coulomb field of the proton with potential

U(r) = −k

r
. (28)

The dimensionless potential energy u and the
Schwarzschild radius rs defined by (13) are

u(r) =
2k

mec2r
=

rh

r
, rs =

2k

mc2
= 5.7 · 10−15 m. (29)

Since the typical distances between the proton and the
electron are of the order r0 = 0.5A = 0.5 ·10−10 m, we can
estimate the value of µ defined by (26) as the value of u
at this average distance

µ ≈ rs

r0

=
5.7 · 10−15

0.5 × 10−10
≈ 10−4 . (30)
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Fig. 1: (Colour online) Electron and proton trajectories in ERD
hydrogen-like atom.

Thus, from the previous section, the precession of the tra-
jectory is approximately

Δϕ = 3πµ ≈ 10−3 rad/rev. (31)

The period of the orbit by [3] is T = 2πr
3/2

0
/
√

k/me =
0.55 · 10−14 s, implying that the number of revolutions
per second is 2 · 1014. Thus, the precession per second
is 2 · 1011 rad and the precession per nanosecond is 200
radian. Since a typical measurement of distance takes
nanoseconds, the electron will cover a full area between
the two radial distances r1 and r2 depending on the initial
conditions, see fig. 1. Thus, the RND model reveals that
the dynamics of the electron in the hydrogen-like atom is
chaotic. This explains the quantum mechanics probabilis-
tic model its description. In general, our solution is not
a closed path, but for certain discrete initial values, the
solutions will be periodic.

Discussion. – Based on Einstein’s Equivalence Princi-
ple for the gravitational potential and an extension of his
Clock Hypothesis, we proposed a description of the influ-
ence of the potential energy on spacetime by (17) and (18).
For the harmonic-oscillator potential, the dependence of
the time dilation factor on acceleration is given by (20)
and is similar to the factors used in other models [6–9]
considering the influence of acceleration (the gradient of
the potential) on spacetime. But for other types of poten-
tials it differs significantly. For example for inverse-square
law force potential this dilation factor is given by (19).

For a conservative central force potential we obtained a
relativistic extension of Newton’s dynamics (RND) by in-
corporating the influence of the potential energy on space-
time into the relative energy conservation equation (24)
and use of the angular momentum conservation equa-
tion (9). Applied to motion under inverse-square law force

this dynamics, as in [13], predicts precessing trajecto-
ries and predicts the exact precession of Mercury. For a
hydrogen-like atom it explain the probabilistic behaviour
of the orbit.

We plan to extend the model to motion under a general
force. For this model we need to derive an expression for a
Doppler-type shift caused by the potential. Such shift was
observed recently in experiments [20] and [21] testing Ein-
stein’s Clock Hypothesis by use of a rotating Mössbauer
absorber and synchrotron radiation. By use of RND we
will try explain the experimental results of [22] of testing
the Clock Hypothesis by use of Mössbauer spectroscopy.
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