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Abstract – A general form of a metric preserving all symmetries of a spherically symmetric
gravitational field and angular momentum in spherical coordinates is obtained. Such metric may
have g01(r) �= 0. The Newtonian limit uniquely defines g00(r). Geodesic motion under such metric
exactly reproduces the precession of a planetary orbit, periastron advance of a binary, deflection
of light and Shapiro time delay if the determinant of the time-radial parts of the metric is −1. In
this model, the total time for a radial round trip of light is as in the Schwarzschild model, but it
allows for light rays to have different speeds propagating toward or from the massive object. The
value of g01(r) could be obtained by measuring these speeds. If g01(r) �= 0, the metric does not
satisfy Einstein’s field equations far from the source.

Copyright c© EPLA, 2019

Introduction. – In [1] Einstein proposed to represent
planetary motion as geodesic motion with respect to a
metric gµν on spacetime, which is spherically symmetric,
asymptotically flat and also satisfies the “equation of
the determinant” |gµν | = 1. He also assumed that g0j =
gj0 = 0, for j = 1, 2, 3. The Schwarzschild metric [2] is of
this type.

Using spherical coordinates, we describe all possible
metrics gµν on flat spacetime of a gravitational field of a
non-rotating spherically symmetric body. Such metrics,
which preserve all the symmetries of the problem and
preserve angular momentum for geodesic motion (defined
by Euler-Lagrange equations), are characterized by
g00(r), g01(r) and g11(r). The classical limit determines
the g00(r) component of the metric. The allowed transfor-
mations preserving the metric are only spatial rotations,
as in [1]. This limits the allowed transformations under
this model in comparison to the general relativity (GR)
model, and we cannot apply arguments, like in [3], to a
show that the metric of such a field could be transformed
to a diagonal form. Also, we do not want to assume
a priori that the speed of light toward and from the
massive object is the same, a property which was used
in [4] to show that the off-diagonal components of the
metric vanish. Thus, we do not assume g01 = 0, which is
not implied by the symmetry of the problem.

We will show that this model predicts the observed
anomalous precession of Mercury’s orbit, the periastron
advance of a binary, gravitational lensing and Shapiro time
delay if and only if the determinant of the metric in two
coordinates (ct, r) is −1, as is assumed in [1]. This is true
without specifying the components g01 and g11.

The total time for a radial round trip of light is as in the
Schwarzschild model, so round-trip experiments cannot
distinguish between our model and GR. But our model
allows for light rays to have different speeds propagating
toward or from the massive object. One of the metrics in-
troduced here is analytic at all points except the origin. In
this metric, the speed of light toward the object is always c,
but the speed of light from the object decreases with the
decrease of r and becomes zero at the Schwarzschild ra-
dius. If g01(r) �= 0, the metric does not satisfy Einstein’s
field equations far from the source.

The results presented here are based on the ideas of
relativistic Newtonian dynamics [5] and [6] applied to a
general, spherically symmetric gravitational field.

The spherical symmetric metric. – Consider a
gravitational field generated by a spherically symmetric,
non-rotating mass M. We define a metric on spacetime
under which the motion of an object is a geodesic with
respect to this metric.
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To define the spacetime, we place an imaginary observer
far away from the sources of the field. Since the observer is
not affected by the forces, we can assume that he measures
space increments and time intervals as in Minkowski space.
For convenience, we place the origin of our frame K at
the center of the symmetry of the field and use standard
spherical coordinates ct, r, θ, ϕ.

As known (see, for example, [7], p. 197), a spherically
symmetric stationary metric in K is of the form

ds2 = g00(r)c
2dt2 − g11(r)dr2 − 2cg01(r)dtdr

− l(r)r2(dθ2 + sin2 θdϕ2). (1)

Since the force is static, the metric coefficients do not
depend on t. By spherical symmetry, the functions
g00, g01, g11 and l cannot depend on ϕ or θ. Since spatial
rotation in spherical coordinates changes only ϕ and θ and
preserves the angular part of the metric, the metric (1) is
spherically symmetric.

For points far removed from the sources, we assume, as
usual, that the metric is the Minkowski metric. Hence,

lim
r→∞

g00(r) = lim
r→∞

g11(r) = lim
r→∞

l(r) = 1,

lim
r→∞

g01(r) = 0. (2)

The trajectory of an object with mass m is parame-
terized by proper time dτ = c−1ds. Its geodesic motion
is obtained by optimizing with respect to the Lagrangian
function L(x, ẋ) = mc ds

dτ (see [5]). As shown in [6], p. 3,
since the Lagrangian does not depend on ϕ and the angu-
lar momentum is conserved on any geodesic trajectory, one
obtains that l(r) ≡ 1. Thus, the metric is characterized
by g00(r), g01(r) and g11(r).

In what follows, we need the notion of a determinant
of the metric, defined as follows. Restrict spacetime tem-
porarily to the first two coordinates (ct, r). In these coor-
dinates, the matrix of the metric gαβ is

gαβ =

(

g00(r) −g01(r)
−g01(r) −g11(r)

)

. (3)

Denote by −g the determinant of this matrix, then

g = g00(r)g11(r) + g01(r)
2. (4)

The matrix of the inverse metric is

gαβ =
1

g

(

g11(r) −g01(r)
−g01(r) −g00(r)

)

. (5)

Implication of the classical limit on the metric.

– Consider radial motion. The trajectory of this motion
is optimized with respect to the function L(x, ẋ), which in
this case is

L(t, r, ṫ, ṙ) = mc

√

g00(r)c2 ṫ2 − g11(r)ṙ2 − 2cg01(r)ṫṙ,

(6)

where the · denotes differentiation by τ . The Euler-
Lagrange equation for the r coordinate is

∂L

∂r
− d

dτ

∂L

∂ṙ
= 0. (7)

The r-momentum is pr = ∂L
∂ṙ = −m(g11(r)ṙ + cg01(r)ṫ),

its τ derivative is

d

dτ

∂L

∂ṙ
= −m(g′

11(r)ṙ
2 + g11(r)r̈ + cg′

01(r)ṫṙ + cg01(r)ẗ),

(8)
and

∂L

∂r
=

m

2
(g′

00(r)c
2 ṫ2 − g′

11(r)ṙ
2 − 2cg′

01(r)ṫṙ). (9)

Equation (7), after cancellation of the term cg′
01(r)ṫṙ and

dividing by m/2, becomes

g′
00(r)c

2 ṫ2 + g′
11(r)ṙ

2 + 2g11(r)r̈ + 2cg01(r)ẗ = 0. (10)

We define now the function g00(r) from the Newtonian
classical limit. Let r0 be an arbitrary value of r. Con-
sider the radial motion of an object whose velocity at r0

is dr
dt (r0) = 0. Since ṙ = ṫdr

dt , also ṙ(r0) = 0. From (1) and
the definition of dτ , we have

ṫ =
1

√

g00(r) − g11(r)
c2

(

dr
dt

)2 − 2g01(r)
c

(

dr
dt

)

, (11)

implying that

ṫ(r0) =
1

√

g00(r0)
and r̈(r0) =

1

g00(r0)

d2r

dt2
(r0). (12)

Differentiating (11) and substituting r = r0 yields

ẗ(r0) =
1

2

1

g00(r0)
√

g00(r0)

2g01(r0)

c
√

g00(r0)

d2r

dt2
(r0)

=
g01(r0)

cg00(r0)2
d2r

dt2
(r0). (13)

Substituting this into (10) and multiplying this equation
by g00(r0)

2, we obtain

c2g00(r0)g
′
00(r0)+2

(

g00(r0)g11(r0) + g2
01(r0)

) d2r

dt2
(r0) = 0,

and, using (4), we have

d2r

dt2
(r0) = − c2

2g
g00(r0)g

′
00(r0). (14)

Let U(r) = −GM/r denote the classical Newtonian
gravitational potential of this field. The Newtonian ra-

dial acceleration in tensorial form is d2r
dt2 = m−1g1jU,j

(see [8]). Using (5) and that the gradient of U(r) is in
the radial direction, we have

d2r

dt2
(r0) = − 1

m

g00(r0)

g
U ′(r0). (15)
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Comparing this to (14) and using that r0 was arbitrary,
we obtain

g′
00(r) =

2

mc2
U ′(r). (16)

Integrating and using (2), this implies that

g00(r) = 1 − u(r), u(r) = −2U(r)

mc2
=

rs

r
, (17)

where rs = 2GM
c2 is the Schwarzschild radius.

Precession of planetary orbits. – Now we return to
general motion (not radial) of an object in the spherically
symmetric gravitational field. The motion is by a geodesic
with respect to the metric

ds2 = g00(r)c
2dt2 − g11(r)dr2 − 2cg01(r)dtdr

− r2(dθ2 + sin2 θdϕ2), (18)

with g00(r) defined by (17). From the symmetry of the
problem, it follows that the trajectory is in a plane passing
through the center of the gravitational field. This plane
is determined by the initial position of the object and its
initial velocity. Thus, without loss of generality we will
assume that the motion is in the plane θ = π/2.

To be able to handle motion of both massive objects
and massless particles, introduce a symbol ε with value 1
for massive objects and 0 for massless particles. Since, for
massless particles, the line interval ds defined by (18) is
zero, dividing (18) by dτ2 we obtain

c2ε = g00(r)c
2 ṫ2 − g11(r)ṙ

2 − 2cg01(r)ṫṙ − r2ϕ̇2. (19)

Since our metric (18) is independent of ϕ, the momentum
corresponding to this variable is conserved, implying

r2ϕ̇ = J, (20)

where J has the meaning of angular momentum per unit
mass.

Since our metric (18) is also independent of t, the
momentum

pt = g00(r)cṫ − g01(r)ṙ (21)

is conserved. Using (19), (20) and (4) we obtain

p2
t = g2

00(r)c
2 ṫ2 − 2cg00(r)g01(r)ṫṙ + g2

01(r)ṙ
2 =

g00(r)(c
2ε + g11(r)ṙ

2 + 2cg01(r)ṫṙ + r2ϕ̇2)

−2cg00(r)g01(r)ṫṙ + g2
01(r)ṙ

2 =

c2εg00(r) + (g00(r)g11(r) + g2
01(r))ṙ

2 + g00(r)
J2

r2
=

c2εg00(r) + gṙ2 + g00(r)
J2

r2
.

Using (17), this implies that

gṙ2 = −(1 − u)

(

c2ε +
J2

r2

)

+ p2
t . (22)

We will solve the last equation for u(ϕ) on the trajec-
tory. From (17) and (20), it follows that

u′ =
du

dϕ
= − rs

r2

dr

dϕ
= − rs

r2

ṙ

ϕ̇
= −rs

J
ṙ

and ṙ = − J
rs

u′. Substituting this into (22), using that

ε = 1, multiplying by
r2

s

J2 and denoting 2µ =
c2r2

s

J2 , we
obtain

gu′2 = (u−1)(u2+2µ)+p2
tr

2
s/4J2 = u3−u2+2µu+const.

(23)
Consider now the case in which the orbit is bounded. In
this case, there are two points on the orbit corresponding
to the perihelion and aphelion on the trajectory, where u′

vanishes. These are two of the roots of the cubic polyno-
mial in u on the right side of the above equation. From
this, by standard arguments, one shows that the solution
is a precessing ellipse. The precession is the one predicted
by GR if and only if g = 1.

As shown in [9], the same derivation leads to the correct
formula for the periastron advance of a binary if g = 1.

Gravitational lensing and the Shapiro time delay.

– Gravitational lensing and the Shapiro time delay (or
gravitational time delay) describe the deflection of a light
ray and the slowing of a light pulse (ε = 0) as it moves
from a point A to a point B in the gravitational potential
of a spherically symmetric massive object of mass M . For
light propagation, eq. (22) becomes

gṙ2 = −(1 − u)
J2

r2
+ p2

t . (24)

Consider now the trajectory r(ϕ) of the light ray. Us-
ing (20), we obtain ṙ = dr

dϕ
J
r2 . Substituting this into the

above equation and dividing by p2
t yields

g

(

dr

dϕ

J

ptr2

)2

= −(1 − u)
J2

p2
t r

2
+ 1. (25)

Denote by r0 the position on the trajectory closest to the
center of the massive object. Then dr

dϕ(r0) = 0, and, from
the above,

J

pt
=

r0
√

1 − u(r0)
= b. (26)

To obtain the formula for gravitational lensing, substi-
tute this into (25), which yields

g

(

r0

r2

dr

dϕ

)2

+
(

1 − rs

r

) r2
0

r2
= 1 − rs

r0
. (27)

For any angle ϕ on the trajectory, one may associate an
angle α(ϕ) for which r(ϕ) = r̄(α), where r̄(α) = r0

sin α is
the straight-line approximation of the trajectory at the
point P , chosen to be the x-direction. This suggests the

substitution r = r0

sin α , which implies dr
dϕ = − cosα r2

r0

dα
dϕ

and

dϕ

dα
=

√
g

(

1 − rs

r0

(

sin α +
1

1 + sin α

))−1/2

. (28)
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If g = 1, this equation is the same as obtained for gravi-
tational lensing in [10].

Thus, if points A and B are very remote from the mas-
sive body (αA ≈ π, αB ≈ 0) and rs/r0 ≪ 1, the weak
deflection angle becomes

δφ ≈ 2rs

r0
=

4GM

c2r0
, (29)

which is identical to the angle given by Einstein’s formula
for weak gravitational lensing using GR [4,11].

To obtain the formula for the Shapiro time delay, us-
ing (20), (21) and (26), we obtain

dϕ

dt
=

ϕ̇

ṫ
=

Jg00(r)c

r2(pt + g01(r)ṙ)
=

bg00(r)c

r2(1 + g01(r)ṙ/pt)
.

Formula (24) yields

ṙ

pt
= ± 1√

g

√

1 − g00(r)
b2

r2
,

where the sign in this formula is the sign of ṙ. Thus,

dϕ

dt
=

bg00(r)c

r2

(

1±g01(r)√
g

√

1 − g00(r)
b2

r2

)

and

cdt =
r2

bg00(r)

(

1±g01(r)√
g

√

1 − g00(r)
b2

r2

)

dϕ.

For a signal traveling from A to B and back, we in-
tegrate each point twice, one time when ṙ > 0 and the
second time when ṙ < 0. Thus, in the above formula,
the term including g01(r) is added once and subtracted
once. This implies that the delay is exactly as for the
Schwarzschild metric. Thus, the Shapiro time delay for a
signal traveling from A to B and back is approximately

rs ln
4xB |xA|

r2
0

, (30)

which is the known formula for the Shapiro time de-
lay [4,11], confirmed by several experiments.

Conclusion: If the determinant of the metric g defined
by (4) is equal 1 and g01(r) ≪ 1, the geodesic motion with
respect to the metric (18), satisfying the Newtonian limit
expressed by (17), passes all classical tests of GR.

Velocity of the light in the radial direction. – For
light propagating in the radial direction of a spherically
symmetric gravitation field, we will denote its speed at r
in the inertial frame K by v↑(r), if the light moves away
from the source of the field, and by v↓(r) if the light moves
toward the source. We are not assuming that these speeds
are the same. Since for light ds = 0, these velocities satisfy

g00(r)c
2 − g11(r)v

2 − 2cg01(r)v = 0,

and using (4), this implies that

v↑(r)=
c

g11(r)
(
√

g−g01(r)), v↓(r)=
c

g11(r)
(
√

g+g01(r)).

(31)
Thus, by measuring the values of v↑(r) and v↓(r) and as-
suming g = 1, one is able to identify the full metric.

Note that from (2), it follows that as r approaches infin-
ity, both speeds become the speed of light c in an inertial
frame, as expected. Moreover, at radius rs̃, when

g01(rs̃) =
√

g, (32)

there is no light propagating away from the center of the
field at any point with r ≤ rs̃.

Let us check the time T that it takes for light to go
radially from r1 to r2 > r1 and return:

cT =

∫ r2

r1

dr

v↑
+

∫ r2

r1

dr

v↓

=

∫ r2

r1

(

1√
g − g01(r)

+
1√

g + g01(r)

)

g11(r)dr

=

∫ r2

r1

2g11(r)
√

g

g − g2
01(r)

dr = 2

∫ r2

r1

√
g

g00(r)
dr.

Since g00(r) defined by (17) is the same as in the
Schwarzschild metric, the time of a round trip for light
is the same as in the Schwarzschild metric if the determi-
nant g = 1.

Example of an analytic metric of a spherically

symmetric gravitational field. – Define a metric of a
gravitational field of a spherically symmetric static object
of mass M positioned at the origin as

ds2 = (1 − u(r))c2dt2 − (1 + u(r))dr2 − 2cu(r)dtdr

− r2(dθ2 + sin2 θdϕ2), (33)

where u(r) = − 2GM
rc2 = rs

r . In the first two coordinates
(ct, r) the matrix of the metric gαβ is

gαβ =

(

1 − u(r) −u(r)
−u(r) −(1 + u(r))

)

. (34)

This metric is analytic everywhere except at the origin.
Since for this metric g = 1 and g01(r) ≪ 1, the geodesic
motion with respect to this metric passes all classical tests
of GR. Note that the radius rs̃, defined by (32) is the
known Schwarzschild radius rs. The two directional radial
light velocities are

v↑(r) =
1 − u(r)

1 + u(r)
c and v↓(r) = c, (35)

showing that for this model the speed of light v↑ vanishes
at the Schwarzschild radius, while v↓ is not affected by the
gravitational field.
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Einstein’s field equation for non-diagonal solu-

tion. – Assume that our metric is not diagonal and the
determinant g = 1. We can write the metric in spherical
coordinates as

gαβ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − u g01(r) 0 0

g01(r)
g2
01(r) − 1

1 − u
0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (36)

for u(r) = rs/r as in (17). The inverse metric is

gαβ =

⎛

⎜

⎜

⎜

⎜

⎝

1 − g2
01(r)

1 − u
g01(r) 0 0

g01(r) u − 1 0 0
0 0 −r−2 0
0 0 0 −r−2 sin−2 θ

⎞

⎟

⎟

⎟

⎟

⎠

.

(37)
Ignoring the cosmological expansion, Einstein’s empty-

space field equations outside the gravitating object
become

Rαβ = 0, (38)

also known as the Ricci flatness condition. Here,

Rαβ = ∂ρΓ
ρ
αβ − ∂βΓρ

ρα + Γρ
ρλΓλ

βα − Γρ
βλΓλ

ρα (39)

and

Γρ
αβ =

1

2
gρλ(gλα,β + gλβ,α − gαβ,λ). (40)

Since our metric depends only on r, from eq. (39), the
first Einstein’s field equation is

R00 = ∂1Γ
1
00 + Γ1

10Γ
0
00 + Γ2

21Γ
1
00 + Γ3

31Γ
1
00

− Γ1
00Γ

0
10 − (Γ1

10)
2 = 0. (41)

Using that u′ = −u/r and u′′ = 2u/r2, from (40) we
obtain

Γ1
00 =

u − u2

2r
, ∂1Γ

1
00 =

3u2 − 2u

2r2
,

Γ1
11 =

u

2r

g2
01 − 1

1 − u
= −Γ0

10, Γ2
21 = Γ3

31 =
1

r

and Γ1
10 = Γ0

00. Substituting this in (41) yields

3u2 − 2u

2r2
+

u − u2

2r

(

u

r

g2
01 − 1

1 − u
+

2

r

)

= 0,

which after multiplication by r2/u becomes g01 = 0.
Thus, a non-diagonal metric does not satisfy Einstein’s

vacuum equations far from the source.

Discussion. – In his work [1] on the motion of the
perihelion of Mercury, Einstein proposed (in current ter-
minology) to represent planetary motion as geodesic mo-
tion with respect to a metric gµν on spacetime, which is
sphericallysymmetric, asymptotically flat and also satisfies

the “equation of the determinant”

|gµν | = 1. (42)

He also assumed that g0j = gj0 = 0, for j = 1, 2, 3. Ein-
stein posed a problem to find a metric satisfying all these
requirements. He showed that such a metric leads to New-
ton’s second law in the first approximation, and the second
approximation correctly reproduces the known anomaly in
the motion of the perihelion of Mercury. The metric found
by Schwarzschild [2] was such a metric.

If we use spherical coordinates (t, r, φ, θ) with respect
to an inertial lab frame with the origin at the center of
the spherically symmetric massive object, we may assume
that g01 �= 0 and preserve the spherical symmetry of the
field. We have shown that the classical limit defines g00,
as given by (17). If the “equation of the determinant” (42)
(or in our notation g = 1) is satisfied, the model repro-
duces the known anomalous precession of the perihelion of
Mercury, periastron advance of a binary, the deflection of
light and Shapiro time delay. Moreover, the orbits of mas-
sive objects and massless particles are exactly the same
in our model as in GR. For massive objects, this follows
from (23), and for massless particles, from (24). Also,
the delay for a round trip of light is the same as in GR.
Thus, any PPN parameters, based on measured trajecto-
ries and the Shapiro time delay, will be the same for our
model and GR.

There is nowadays a great interest in alternative grav-
ity theories, motivated by the possibility of explaining the
flattening of the rotation curves of galaxies without the
need for dark matter and energy and the accelerated ex-
pansion of the Universe. For circular orbits, unfortunately,
our off-diagonal term does not produce corrections to GR
orbital velocities, since when ṙ = 0, our formula for ṫ is
the same as in GR. Thus, to handle the flattening, we
may need a modification of g00 and g11, as is done in [12].

In this model, the total time for a radial round trip
of light is as in the Schwarzschild model, but unlike the
Schwarzschild model, it allows for light rays to have
different speeds propagating toward or from the massive
object. Measuring these speeds allows to identify the
components of the metric. We also presented an analytic
non-diagonal metric with interesting properties of light
propagation. If g01(r) �= 0, the metric does not satisfy
Einstein’s field equation.

∗ ∗ ∗
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