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Abstract – In a recent series of papers, the authors introduced a new Relativistic Newtonian
Dynamics (RND) and tested its validity by the accurate prediction of the gravitational time dila-
tion, the anomalous precession of Mercury, the periastron advance of any binary and the Shapiro
time delay. This dynamics incorporates the influence of potential energy on spacetime in New-
tonian dynamics and, unlike Einstein’s General Relativity, treats gravity as a force without the
need to curve spacetime. In this paper, this dynamics is applied to derive the gravitational deflec-
tion of both objects with non-zero mass and of massless particles passing the strong gravitating
field of a massive body. Equations for the trajectory and the resulting analytical expressions for
the deflection angle, in terms of the distance and velocity at the point of closest approach to
the massive object, were derived in both cases. It is shown that with a carefully defined limit, the
trajectory of a massless particle is the limiting case of that of an object with non-zero mass. In
the “weak” deflection limit, the derived expression for the deflection angle of a massless particle
(photon) reproduces the experimentally tested Einstein’s formula for weak gravitational lensing
of a light ray, thereby providing another test for the validity of the RND.

Copyright c© EPLA, 2017

Introduction. – Although Einstein’s theories of rela-
tivity originate in the logical incompleteness of Newton’s
laws of motion, that incompleteness itself has not been
understood completely, as yet, and, therefore, there are
still global and chronic problems which still need further
clarification. It is the belief of the authors that this in-
completeness arises from the fact that the classical New-
ton’s theory does not consider the influence of energy on
spacetime.

This suggested the development of a new Relativistic
Newtonian Dynamics (RND) which incorporates the influ-
ence of any energy (gravitational or non-gravitational) on
spacetime into classical Newtonian dynamics using some
of the well-established principles of relativity without any
a priori assumptions. Unlike in Einstein’s GR, this dy-
namics treats gravity as a force without the need for curv-
ing the spacetime. The RND model for motion of objects
with non-zero mass in an attractive conservative force field
was developed in [1–3] and further extended for massless
particles in [4]. All the calculations in this dynamics are
performed in an inertial (lab) frame K with origin at the
center of the force.

The accurate prediction of gravitational time dilation,
orbit precession and Shapiro time delay are considered as

three tests of GR. As shown in [1] for the accurate anoma-
lous precession of Mercury, in [3] for the periastron ad-
vance of any binary and in [4] for the Shapiro time delay,
the new RND passed all these tests with flying colours.

Einstein’s prediction for deflection of light by mas-
sive objects (gravitational lensing), the remaining test of
GR, was verified experimentally with high accuracy [5–8].
Thus, any valid relativistic theory must also predict the
lensing formula predicted by Einstein.

In this paper, the RND is applied to calculate the deflec-
tion angle of objects with non-zero mass and of massless
particles passing the strong gravitating field of a massive
body. For an object with non-zero mass, the expression
for the deflection angle reduces to that of a massless ob-
ject as its speed approaches the maximal transverse speed
(smaller than the speed of light c) at the point of closest
approach to the massive body. This is not to be expected
a priori since the transition from the dynamics of an ob-
ject with non-zero mass to that of a massless particle is by
no means a continuous process. This point is incorrectly
overlooked in the literature by taking the mathematical
limit for a non-continuous process.

In the “weak” deflection limit, the derived deflection
angle for a massless particle (photon) yields Einstein’s
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formula for gravitational lensing [9–11], thereby passing
also the fourth remaining test of GR.

Furthermore, the derivation of the deflection for both
objects with non-zero mass and massless particles using
RND is direct and produces exact analytical formulae for
the deflection angle without any approximations [9] or
assumptions like the wave nature of both particles and
objects [12] quoted in the literature.

RND for motion in a central gravitational

field. – Consider a central gravitational force field with
reduced gravitational potential (potential on an object
with unit mass) Û(r) vanishing at infinity, in an iner-
tial frame K with time and spherical space coordinates
(t, r, ϕ, θ) and origin at the center of the force. Using the
symmetry of the problem, assume that the motion is in
the plane θ = π/2. Furthermore, for convenience, define
the dimensionless reduced potential as

u(r) = −
2Û(r)

c2
. (1)

As shown in [4], in order to describe the influence of
potential energy on spacetime in K, a metric expressing
this influence is introduced. Using an extension of the
equivalence principle, this influence in the neighbourhood
of a point x0 in K is quantified via the influence of the
velocity and acceleration on the escape trajectory at x0.
Hence, this metric can be defined from u(r).

By analogy to the principle of least action (a variational
principle that defines the path of motion as the path with
the least value of some action), the motion in RND can
be viewed as the motion along a geodesic (path with least
distance) with respect to this metric.

Since the field expressed by u(r) is time and ϕ indepen-
dent in K, on any trajectory parameterized by an affine
(metric-dependent) parameter λ, there exist two isolating
integrals of motion k and J such that

c(1 − u(r))
dt

dλ
= k (2)

and

r2 dϕ

dλ
= J, (3)

where k and cJ are related to the total energy and angular
momentum on the trajectory, respectively.

Combining eqs. (2) and (3) one obtains the affine pa-
rameter and metric free energy-angular momentum rela-
tion depending only on the spacetime coordinates in K

cJ

k
=

r2

1 − u(r)

dϕ

dt
. (4)

In terms of these integrals of motion, the affine
parameter-free RND equation for the trajectory r(ϕ) is

(

J

r2

dr

dϕ

)2

+ (1 − u(r))

(

J2

r2
+ ǫ

)

= k2, (5)

Fig. 1: (Colour online) The bending trajectory, the straight
line approximation and associated angles ϕ, α.

where ǫ = 0 for a massless particle and ǫ = 1 for an object
with non-zero mass. In both cases this equation reduces to
the classical Newtonian equation for the trajectory when
the coefficient (1−u(r)) of the second term of this equation
is replaced by 1.

RND equation for the trajectory around a spher-

ically symmetric massive body. – Consider now the
motion in inverse square law gravitational field of a spher-
ically symmetric massive body of mass M (e.g., Sun) in
an inertial frame K, defined as above. The Newtonian re-
duced gravitational potential in this case is Û(r) = −GM

r
with the dimensionless form

u(r) =
2GM

c2r
=

rs

r
, rs =

2GM

c2
, (6)

where rs is the Schwarzschild radius of the massive body.
Suppose that a massless particle or an object with non-

zero mass passes the gravitational field of this massive
body from an emitter at point E to a receiver at point R.
Denote by r0 the distance from the point P on the trajec-
tory closest to the massive body, (see fig. 1). For simplic-
ity, rotate the plane of motion so that r0 = r(π/2).

1) Massless particles (ǫ = 0). In terms of rs the equation
of the trajectory (5) becomes

(

J

r2

dr

dϕ

)2

+
(

1 −
rs

r

) J2

r2
= k2. (7)

Since dr
dϕ = 0 at the point of closest approach P , one

obtains
J2

k2
=

r2
0

1 − rs

r0

. (8)

Substituting this into (7) yields the (integrals of motion
free) equation for the trajectory of massless particles

(

r0

r2

dr

dϕ

)2

+
(

1 −
rs

r

) r2
0

r2
= 1 −

rs

r0
(9)

in terms of r0.
2) Objects with non-zero mass (ǫ = 1). In terms

of rs, the equation of the trajectory (5) of an object with
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non-zero mass becomes
(

J

r2

dr

dϕ

)2

+
(

1 −
rs

r

)

(

J2

r2
+ 1

)

= k2. (10)

At the point of closest approach P , dr
dϕ = 0 implying that

the velocity v of the object at P , as measured in K, is
transverse to the radial direction and v = r0

dϕ
dt , whence

from (4) one obtains

J

k
=

r0

1 − rs/r0

v

c
, (11)

which upon substitution into (10) yields
(

1 −
rs

r0

)

k2

(1 − rs/r0)2

(v

c

)2

+ 1 −
rs

r0
= k2. (12)

From this equation, the integral of motion k, in terms of
the distance and velocity at the point of closest approach,
becomes

k2 =
(1 − rs/r0)

2

1 − rs/r0 − (v/c)2
. (13)

Since k2 > 0, this imposes a limitation on the speed of
the object at P

v < cp, cp = c
√

1 − rs/r0, (14)

where cp denotes the maximal transverse speed at the
point P in K. It was shown in [2,3] that v =
v0

√

1 − rs/r0, where v0 is the speed of the moving ob-
ject in the local frame at P influenced by potential energy.
Hence, the above limitation reveals that v0 = v√

1−rs/r0

<

c, i.e., in the local frame the speed of an object with non-
zero mass is limited by the speed of light c.

Since the velocity of a massless object belongs to the
boundary of the domain of relativistically admissible ve-
locities for objects with non-zero mass, the speed of a pho-
ton moving transversely to the radial direction at P is c in
this local frame and cp < c in the inertial frame K. This
observation explains the Shapiro time delay measured in
the inertial frame K where the speed of light in the prox-
imity of the massive body is smaller than c.

Note that eq. (11), relating the integrals of motion for
objects of non-zero mass, reduces to its counterpart (8)
for a massless particle in the limit v → cp (with cp

defined in (14))

J

k
= lim

v→cp

r0

1 − rs/r0

v

c
=

r0
√

1 − rs/r0

. (15)

Dividing (10) by k2, substituting (11), (13) and mul-
tiplying by (c/v)2(1 − rs/r0)

2 = (cp/v)2(1 − rs/r0), one
obtains the (integrals of motion free) equation for the tra-
jectory of objects with non-zero mass

(

r0

r2

dr

dϕ

)2

+
(

1−
rs

r

)

(

r2
0

r2
+

(cp

v

)2

−1

)

=
(cp

v

)2
(

1−
rs

r0

)

(16)

in terms of r0 and v.

It is worth noting that although, in terms of the inte-
grals of motion, the trajectory equations (7) and (10) for
massless particles and objects with non-zero mass are dif-
ferent, their resulting counterparts (9) and (16) with the
integrals of motion expressed in terms of the distance and
velocity at the point of closest approach are identical in
the limit v → cp. Thus, the trajectory of a massless parti-
cle can be obtained by applying this limit to the trajectory
of an object with non-zero mass.

Gravitational deflection by a massive body in

RND. – Equation (16) can be rewritten as

(

r0

r2

dr

dϕ

)2

=
(cp

v

)2 rs

r0

(r0

r
− 1

)

+
(

1 −
rs

r

)

(

1−
r2
0

r2

)

=

1 −
r2
0

r2
−

rs

r0

(

r0

r
−

r3
0

r3
+

(cp

v

)2 (

1 −
r0

r

)

)

. (17)

Using the method for the description of the periastron
advance in binaries presented in [3], for any angle ϕ on
the trajectory one associates an angle α(ϕ) for which
r(ϕ) = r̄(α), where r̄(α) = r0

sin α is the polar form of
the straight line approximation of the trajectory at the
point P (see fig. 1).

This defines the trajectory as r(ϕ) = r0

sin α(ϕ) , suggesting

the natural substitution

r =
r0

sin α
, (18)

which implies
dr

dϕ
= − cosα

r2

r0

dα

dϕ
. (19)

Substituting these into (17), taking the square root and
dividing by cosα, one obtains

dϕ

dα
=

(

1 −
rs

r0

(

sinα +
(

cp

v )2

1 + sin α

))−1/2

(20)

with the positive sign chosen since ϕ increases with α.
Hence, the angular change in moving from E to R is

φ =

∫ αR

αE

(

1 −
rs

r0

(

sin α +
(

cp

v )2

1 + sin α

))−1/2

dα,

where αE , αR are the α values of the points E and R,
respectively. Assuming that these points are very remote
from the massive body and subtracting the angular change
for the motion along the straight line (the path if the mas-
sive object was not present), yields finally the exact RND
analytical expression for the deflection angle of an object
with non-zero mass moving from E to R,

δφ =

∫ αR

αE

(

1 −
rs

r0

(

sinα +
(

cp

v )2

1 + sin α

))−1/2

dα − π.

(21)
For an unbounded trajectory the speed of the object v is

comparable with cp. The “weak” deflection limit assumes
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rs

r0

≪ 1 (less than 4 · 10−6 for the Sun). For E and R
very remote from the massive body, αE ≈ 0 and αR ≈ π.
Thus, in this limit eq. (21) is

δφ =

∫ π

0

1 +
rs

2r0

(

sin α +
(

cp

v )2

1 + sin α

)

dα − π. (22)

Using that
∫ π

0 sin αdα =
∫ π

0
1

1+sin αdα = 2, the weak de-
flection angle of an object with non-zero mass is

δφ ≈
rs

r0

(

1 +
c2
p

v2

)

=
2GM

r0

(

1

c2
+

1

v2
0

)

, (23)

which is the known formula [10] and [12] for the weak
deflection of an object with non-zero mass.

For massless particles the weak deflection angle is ob-
tained by substituting v = cp in (23), resulting in

δφ ≈
2rs

r0
=

4GM

c2r0
(24)

which is identical to Einstein’s formula [9,11] and [12] for
weak gravitational lensing using GR.

Results and discussion. – The Relativistic New-
tonian Dynamics (RND) was presented by the authors
in [1,2] and [3] and further refined in [4]. This dynamics in-
corporates the influence of potential energy on spacetime
in Newtonian dynamics and unlike Einstein’s GR, treats
gravity as a force without the need to curve spacetime.
This dynamics was successfully validated by the accurate
prediction of the gravitational time dilation, the anoma-
lous precession of Mercury, the periastron advance of any
binary and by the Shapiro time delay —three known tests
of Einstein’s GR.

In this paper the RND is further validated by applying
it to the problem of gravitational deflection of both mass-
less particles (gravitational lensing) and of objects with
non-zero mass, passing the strong gravitating field of a
massive body —the remaining test of GR. In both cases,
the equations for the trajectory in the gravitational field of
a spherically symmetric massive body with Schwarzschild
radius rs were first obtained in terms of the integrals of
motion (7) and (10).

Then, expressing these integrals of motion in terms of r0

—the distance of the point of the closest approach— and
the velocity v at this point, the trajectory equations (9)
and (16) were expressed in terms of these conditions.

We discovered that the speed of an object with non-
zero mass moving transversally to the radial direction
at a point P is limited by the speed of light c in the
local frame influenced by the potential energy, and by cp,

defined in (14), which is smaller than c, in the inertial lab
frame. It is worth noting that although, in terms of the
integrals of motion, the trajectory equations for massless
particles and objects with non-zero mass are different, the
integrals of motion free trajectory equation for an object
with non-zero mass reduces to that of a massless ray of
light in the limit v → cp. As a consequence, this is is also
true for the deflection angle.

From eq. (16), an exact analytic expression for the de-
flection angle for an object with non-zero mass (21) was
derived. By applying the above limit, this yields the exact
analytic expressions for the deflection angle for a massless
particle. Finally, using these exact expressions, the cor-
responding formulae (23) and (24) in the weak deflection
limit rs

r0

≪ 1 were obtained using the first-order approxi-
mation in rs

r0

. Formula (24) is identical to Einstein’s for-
mula for weak lensing, which further confirms the validity
of the RND.

In the paper we clarified why the trajectory of a massless
particle is an appropriate limiting case of that of an object
with non-zero mass. This cannot be assumed a priori (as
commonly assumed in the literature) since, as shown in
this paper, the transition from the dynamics and integrals
of motion for an object with non-zero mass to that of a
massless particle is not a continuous process, hence taking
such mathematical limit should be justified.

REFERENCES

[1] Friedman Y. and Steiner J. M., EPL, 113 (2016)
39001.

[2] Friedman Y., EPL, 116 (2016) 19001.

[3] Friedman Y., Livshitz S. and Steiner J. M., EPL,
116 (2016) 59001.

[4] Friedman Y., EPL, 117 (2017) 49003.

[5] Will C. M., Living Rev. Relativ., 17 (2014) 4.

[6] Lambert S. B. and Le Poncin-Lafitte C., Astron.

Astrophys., 529 (2011) A70.

[7] Lebach D. E., Corey B. E., Shapiro I. I., Ratner

M. I., Webber J. C., Rogers A. E. E., Davis J. L.

and Herring T. A., Phys. Rev. Lett., 75 (1995) 1439.

[8] Shapiro S. S., Davis J. L., Lebachand D. E. and Gre-

gory J. S., Phys. Rev. Lett., 92 (2004) 121101.

[9] Rindler W., Relativity, Special, General and Cosmolog-

ical (Oxford University Press) 2001.

[10] Misner C. W., Thorne K. S. and Wheeler J. A.,
Gravitation (Freeman and Co.) 1973.

[11] Kopeikin S., Efroimsky M. and Kaplan G., Relativis-

tic Celestial Mechanics of the Solar System (Wiley-VCH,
Berlin) 2011.

[12] Unnikrishnan C. S., Curr. Sci., 88 (2006) 1155.

59001-p4


