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Abstract – Relativistic Newtonian Dynamics (RND) was introduced in a series of recent papers
by the author, in partial cooperation with J. M. Steiner. RND was capable of describing non-
classical behavior of motion under a central attracting force. RND incorporates the influence of
potential energy on spacetime in Newtonian dynamics, treating gravity as a force in flat spacetime.
It was shown that this dynamics predicts accurately gravitational time dilation, the anomalous
precession of Mercury and the periastron advance of any binary. In this paper the model is
further refined and extended to describe also the motion of both objects with non-zero mass and
massless particles, under a conservative attracting force. It is shown that for any conservative
force a properly defined energy is conserved on the trajectories and if this force is central, the
angular momentum is also preserved. An RND equation of motion is derived for motion under a
conservative force. As an application, it is shown that RND predicts accurately also the Shapiro
time delay —the fourth test of GR.

Copyright c© EPLA, 2017

Introduction. – A new relativistic model incorpo-
rating the influence of potential energy on spacetime in
Newtonian dynamics for motion of non-zero mass ob-
jects under a central force, named Relativistic Newtonian

Dynamics (RND), was introduced recently [1–3]. In these
papers it was shown that this dynamics was tested success-
fully to predict accurately the gravitational time dilation,
the anomalous precession of Mercury and the periastron
advance of any binary.

All the above tests of RND were connected solely with
the trajectories (not with the time dependence of the po-
sition on the trajectory) of massive objects moving under
a static conservative attracting central force vanishing at
infinity. Unlike in the above tests, the time delay caused
by the slowing passage of light as it moves over a finite dis-
tance through a spatially changing gravitational potential
(Shapiro time delay), must consider the time dependence
of the position on the trajectory.

In this paper the RND model is extended to derive
the equation of motion under a conservative attracting
force for both objects with non-zero mass and mass-

less particles. The energy conservation equation for any
conservative attractive force and the angular-momentum
conservation for such a central force, are derived. In its
present form, the model is capable to describe accurately
the position on the trajectory of the object/particle at
any given time. This extended model is then applied to

obtain the correct Shapiro time delay, the fourth test
of GR.

RND energy under a conservative force. – Con-
sider the motion under a conservative force with a negative
potential U(x) which is time independent in an inertial lab
frame K and vanishing at infinity. For example, U(x) may
be the Newtonian potential of a gravitational field gener-
ated by several planets or stars, in an inertial frame K
with its origin at the center of mass of this assembly. In-
troduce a vector field n(x) which at any space point x

is the normalized vector in the direction of the gradient
∇U(x), i.e.,

n(x) = ∇U(x)/|∇U(x)|. (1)

As suggested in [2], using an extended version of the
equivalence principle, the influence due to the potential
energy on local spacetime in the neighbourhood of some
point x can be quantified by the relativistic space contrac-
tion and time dilation due to the velocity (kinetic energy)
of the escape frame at x. Using this fact, it was shown
there that the potential energy influences time intervals
and space increments in the direction of n(x), while the
space increments transverse to n(x) are not influenced by
this potential energy.

By analogy to the principle of least action, a variational
principle that defines the path of motion as the path with
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the least value of some action, the motion in such an in-
fluenced spacetime can be viewed as the motion along a
geodesic (path with least distance) with respect to some
metric. By the above observation this metric is of the form

ds2 = f(x)(cdt)2 − g(x)dx2
n − dx2

tr, (2)

where the two vector projections of the space increment
in the parallel and transverse directions to n(x) are

dxn = (dx ◦ n)n, dxtr = dx − (dx ◦ n)n, (3)

respectively, with ◦ denoting the Euclidean dot product in
R3 and the positive valued functions f(x), g(x) describe
the influence of the potential energy on time intervals and
space increments in the n(x) direction.

Consider first the time dilation due to the influence of
potential energy of a clock resting at some point x in K.
Since for such clock dx = 0, from (2) ds =

√

f(x)cdt
implying that the time dilatation of such a clock is c dt

ds =
1√
f(x)

. Assume that this time dilation is the same as

that of a clock resting in the escape frame [2]. This time
dilation is defined by the gamma factor γ̃ of the escape
velocity ve, where

γ̃ =
1

√

1 − v2
e/c2

=
1√

1 − u
, u(x) =

−2U(x)

mc2
(4)

and u(x) is the negative of the dimensionless potential

energy. Thus,

f(x) = 1 − u(x). (5)

This formula is true according to the model for any grav-
itational field and in particular it reduces to the (experi-
mentally tested) gravitational time dilation in the vicinity
of a non-rotating massive spherically symmetric object, as
derived from the Schwarzschild metric.

The motion of an object of mass m > 0 along a time-like
geodesic X(λ) = (ct(λ),x(λ)) in spacetime is parameter-
ized by an affine parameter λ on the trajectory, chosen to
be the arc length s defined by (2). For massless objects
(photons) moving along light-like geodesics ds = 0, this
affine parameter is redefined as in [4], p. 575.

Since the metric (2) is independent of t, the vector K0 =
(1, 0, 0, 0) is a Killing vector ([4], p. 651) and the scalar
product Ẋ · K0 with respect to this metric is conserved
on the trajectory. Thus, on any trajectory there exists a
constant k related to the total energy on it such that

cf(x)ṫ = k, cṫ =
k

1 − u(x)
, (6)

where the dot denotes differentiation with respect to λ.
The four-velocity on the trajectory is Ẋ = dX

dλ = (cṫ, ẋ).
Using (2), (5) and (6) its norm is

Ẋ2 =
k2

1 − u(x)
− g(x)ẋ2

n − ẋ2
tr = ǫ, (7)

where ǫ = 1 for objects with non-zero mass and ǫ = 0
for massless particles. For objects with non-zero mass, by
multiplying eq. (7) by (1 − u(x)) one obtains

(1 − u(x))g(x)ẋ2
n + (1 − u(x))ẋ2

tr − u(x) = k2 − 1. (8)

This formula can be considered as the RND dimension-
less energy conservation equation on the trajectory. The
first two terms on the left side are the relativistically cor-
rected dimensionless kinetic energy and the third term is
the dimensionless potential energy. The right side is the
dimensionless total energy E = 2E/mc2 = k2 − 1.

Introduce a function Φ mapping velocities v = dx
dt at

some point x in the spacetime influenced by the poten-
tial energy to the corresponding velocity in the lab frame.
As shown in [2], Φ acts on the velocity components as
Φ(vn) = vn and Φ(vtr) =

√

1 − u(x)vtr. The relativisti-
cally corrected dimensionless kinetic energy (the first two
terms in (8)) is Φ(ẋ)2. Since ẋ = ṫv we obtain

Φ(ẋ)2 = ṫ2Φ(v)2 = ṫ2v2
n + ṫ2(1 − u(x))v2

tr

= ẋ2
n + (1 − u(x))ẋ2

tr.

Comparing this to (8) one obtains

g(x) =
1

1 − u(x)
, (9)

hence, the RND dimensionless energy conservation equa-
tion for an object with non-zero mass becomes

ẋ2
n + (1 − u(x))ẋ2

tr − u(x) = E . (10)

For a massless particle, the analysis is only applicable
when restricted to a gravitational potential. For such a
potential one can define a reduced potential or potential
per unit mass as

Û =
U

m
. (11)

For such a potential, the dimensionless potential defined
by (4) is u(x) = −2Û/c2 which is mass independent.

For a massless particle (ǫ = 0), by multiplying (7) by
(1 − u(x)) and using (9) one obtains

ẋ2
n + (1 − u(x))ẋ2

tr = k2. (12)

Even though gravitation does not act directly on the pho-
ton as a force, since its mass is zero, which is expressed in
the missing term −u(x) of (10), its momentum and angu-
lar momentum are not zero and its motion is affected by
the influence of the gravitational potential on spacetime
expressed by the relativistic term in (12).

Thus, the RND dimensionless energy conservation equa-
tion for both objects with non-zero mass and massless par-
ticles is

ẋ2
n + (1 − u(x))(ẋ2

tr + ǫ) = k2. (13)

In RND the reduced energy (obtained by multiplying the
dimensionless energy by c2/2)

H(x, ẋ) =
c2ẋ2

2
+ Û(x)(ẋ2 − (ẋ ◦ n)2) + ǫÛ(x) (14)
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is conserved on the trajectory. Note that the relativis-
tic addition to a classical reduced total energy, expressed
in the middle term on the right-hand side, depends both
on the potential at that point and on the velocity of the
moving object.

RND equation of motion under a conservative

force. – By use of (3) eq. (13) can be rewritten as

ẋ2 − ǫu(x) − u(x)(ẋ2 − (ẋ ◦ n)2) − ǫ = k2. (15)

The equation of motion is obtained by differentiat-
ing (15) by λ which leads to

2ẍ ◦ ẋ− ǫu̇− u̇ẋ2
tr − 2u(ẍ ◦ ẋ− (ẋ ◦n)(ẍ ◦n + ẋ ◦ ṅ)) = 0.

Substituting u(x) = −2Û/c2 and its derivative u̇ =

− 2∇Û◦ẋ

c2 , one obtains

ẍ +
2Û

c2
ẍtr = −ǫ∇Û

c2
− ∇Û ẋ2

tr

c2
+

2Û

c2
(ẋ ◦ ṅ)n. (16)

Decomposing this vector equation into the parallel and
perpendicular components to n, the perpendicular com-
ponent is

(

1 +
2Û(x)

c2

)

ẍtr = 0, (17)

implying that ẍtr = 0 for x outside the Schwarzschild
horizon defined as the surface where the escape veloc-
ity is c.

This implies that the acceleration with x twice differen-
tiated with respect to the affine parameter λ is in the di-
rection of the force n. Indeed, this property is specific only
for the affine parameters, as follows. Let λ̃ = f(λ) be any
other parameter on the trajectory. Then dx

dλ = f ′(λ)dx
dλ̃

and d2
x

dλ2 = f ′′(λ)dx
dλ̃

+ f ′(λ)2 d2
x

dλ̃2
, implying that d2

x

dλ̃2
is in

the direction of n only if f ′′(λ) ≡ 0. This condition im-
plies [4] that λ̃ is an affine parameter.

Thus, for motion outside the Schwarzschild horizon the
RND equation of motion for any object/particle is

c2ẍ = −ǫ∇Û − ẋ2
tr∇Û + 2Û(x)(ẋ ◦ ṅ)n. (18)

Noting that d
dλ = k

c(1−u)
d
dt from (6) and remembering that

v = dx
dt one obtains the RND equation of motion in the

space and time with respect to the lab frame K as

k2

1 − u

d

dt

(

v

1 − u

)

=

−ǫ∇Û − k2v2
tr∇Û

c2(1 − u)2
+

2k2Û

c2(1 − u)2

(

v ◦ dn

dt

)

n. (19)

Note that the acceleration d2
x

dt2 is not in the direction of n,
as expected, since, as implied by (6), time t is not an affine
parameter.

The first relativistic correction depends on −∇Û —the
classical acceleration caused by the force— and the second

one depends on the reduced potential Û . Unlike in the
classical Newtonian equation of motion involving only the
force F, the RND equation involves both the potential
U (as in the Schrödinger quantum dynamics equation) as
well as ∇U .

RND under a central force. – Let U(r) be a poten-
tial of a central force which is attractive and static in an
inertial lab frame K with the origin at the center of the
force. Assume that U(r) is negative and vanishes at in-
finity. As shown in [2], in this case the time intervals and
the radial space increments are influenced by the potential
energy, while the space increments transverse to the radial
direction are not affected.

Introduce the spherical coordinates r, ϕ, θ in K. In this
case n defined by (1) is the radial direction and thus ẋn =
ṙ. Using the results of the second section, the influence of
the potential energy on spacetime in the neighbourhood
of any point is described by the metric

ds2 = (1 − u(r))(cdt)2 − 1

1 − u(r)
(dr)2

−r2((dθ)2 + sin2 θ(dϕ)2). (20)

As above, assume that the motion of an object/
particle is along the geodesic in spacetime X(λ) =
(t(λ), r(λ), ϕ(λ), θ(λ)) parameterised by the affine param-
eter λ. Then the four-velocity is Ẋ = dX

dλ = (cṫ, ṙ, ϕ̇, θ̇).
It can be shown [5], pp. 172, 173, that if initially the po-
sition and velocity of the object/particle are in the plane
θ = π/2, they will remain in this plane during the motion.
Thus, one may chose the coordinate system so that that
θ = π/2, θ̇ = 0.

Using that the metric is independent of ϕ, the vector
K3 = (0, 0, 1, 0) is a Killing vector implying that

J = r2ϕ̇ (21)

remains constant on the trajectory, where cJ has the
meaning of angular momentum per unit mass for objects
with non-zero mass and J has units of length.

This implies that ẋ2
tr = J2

r2 and one can rewrite the RND
dimensionless energy conservation equation (13) as

ṙ2 + (1 − u(r))

(

J2

r2
+ ǫ

)

= k2. (22)

Using (21) and (22) one obtains the parameter-free equa-
tion for the trajectory r(ϕ)

(

J

r2

dr

dϕ

)2

+ (1 − u(r))

(

J2

r2
+ ǫ

)

= k2. (23)

This equation with ǫ = 1 was used in the previous pa-
pers [1,2] and [3] for objects with non-zero mass.

Shapiro time delay. – The Shapiro time delay (or
gravitational time delay), the fourth test of GR, describes
the slowing of light as it moves over a finite distance
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Fig. 1: (Colour online) The bending trajectory of a massless
particle, the straight line approximation and the associated
angles ϕ, α.

through a change in the gravitational potential of a mas-
sive object M .

Consider the motion of a massless photon (ǫ = 0) from
a point A to a point B in the gravitational field of a spher-
ically symmetric massive object of mass M . Denote by r0

the distance from the point P on the trajectory closest to
the massive object (Sun) (see fig. 1).

By introducing the Schwarzschild radius rs = 2GM
c2 , the

dimensionless potential energy, defined by (4), is

u(r) =
rs

r
. (24)

Since dr
dϕ = 0 at the point P , from (23) the integrals of mo-

tion relation J/k (independent of the parametrization) is

J

k
= − r0

√

1 − rs/r0

= −b, (25)

where b is called the impact parameter of the trajectory.
Using this and eqs. (6) and (21) one obtains

dϕ

dt
=

ϕ̇

ṫ
= −

(

1 − rs

r

) cb

r2
, (26)

implying that

cdt =
−r2

(1 − rs/r)b
dϕ.

The time of passage from the point P to B is

c(TB − TP ) =

∫ π/2

ϕB

r2

(1 − rs/r)b
dϕ.

For any angle ϕ on the trajectory one may associate an
angle α(ϕ) for which r(ϕ) = r̄(α), where r̄(α) = r0

sin α is
the straight-line approximation of the trajectory at the
point P (see fig. 1). This suggests the substitution r =

r0

sin α which implies

c(TB − TP ) =
r2
0

b

∫ π/2

αB

1

sin2 α(1 − rs

r0

sin α)
dα =

r2
0

b

∫ π/2

αB

(

1

sin2 α
+

rs/r0

sin α
+

r2
s/r2

0

(1 − rs

r0

sin α)

)

dα =

r2
0

b

(

cot αB +

∫ π/2

αB

r2
s/r2

0

(1 − rs

r0

sin α)
dα

)

+
r0

b
rs ln

∣

∣

∣

∣

1

sin αB
+ cot αB

∣

∣

∣

∣

.

This expression is exact.
The integral in parenthesis can also be evaluated ana-

lytically but using rs/r0 ≪ 1 and 1 − rs

r0

sin α ≥ 1 − rs

r0

, it
is significantly smaller then its counterpart cotαB when
αB ≪ 1 and may be neglected. Thus, the time propaga-
tion between P and B is

c(TB − TP ) ≈ r0

b

(

xB + rs ln
rB + xB

r0

)

, (27)

where xB denote the x coordinate of B. Using the above
approximation and rB ≈ xB, the Shapiro time delay for a
signal traveling from A to B and back is

rs ln
4xB |xA|

r2
0

, (28)

which is the known formula [4,6,7] and [8] for the Shapiro
time dilation. This formula has been confirmed experi-
mentally by several experiments, see [9].

Summary. – In this paper we further refined the RND
model introduced earlier. The model treats gravity as a
force and incorporates the influence of potential energy on
spacetime in Newtonian dynamics, without curving space-
time as in Einstein’s GR. It is assumed that the potential

energy is the classical one defined by Newton’s (linear)
equation for the gravitational potential.

For a gravitational potential U(x) which is static in
some inertial frame and vanishes at infinity, its influence
in the neighbourhood of a space point is expressed by a
local metric (2) preserving the symmetry of the influence.
This metric is uniquely defined from U(x) by assuming
that this influence is the same as the influence of the ve-
locity of the escape frame on spacetime. The connection
between time and the affine parameter on the trajectory is
defined via the conservation law using the Killing vector.

The RND kinetic energy is almost the classical mv2

2 with
the difference that the norm of the velocity is altered due
to the influence of the potential, and the differentiation
is with respect to the affine parameter on the trajectory
instead of time. The RND energy equation (14) is now
derived for both objects with non-zero mass as well as for
massless particles. The equations of motion with respect
to the affine parameter (18) and with respect to time (19)
are derived from the conservation of the total energy on
the trajectory. For a central force the RND model predicts
also conservation of angular momentum.

In our previous papers we have shown that the RND
passed successfully the first two tests of GR. In this paper
we have shown that RND also predicts accurately the
Shapiro time delay —the fourth test of GR. The gravita-
tional deflection of any object/particle passing the strong
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gravitating field of a massive body will be treated in a
forthcoming paper.
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