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Abstract

We present two approaches to symbolically obtain isoptic curves
in GeoGebra in an automated, interactive process. Both methods
are based on computing implicit locus equations, by using
algebraization of the geometric setup and elimination of the
intermediate variables. These methods can be considered as
automatic discovery.
Our first approach uses pure computer algebra support of
GeoGebra, utilizing symbolic differentiation.
The second approach hides all details in computer algebra from the
user: the input problem is defined by a purely geometric way.
In both approaches the output is dynamically changed when using
a slider bar or the free points are dragged.
Programming the internal GeoGebra computations is an on-going
work with various challenges in optimizing computations and
to avoiding unnecessary extra curves in the output.



Isoptic curves

Let C be a plane curve. For a given angle θ such that
0 ≤ θ ≤ 180◦, a θ-isoptic curve (or simply a θ-isoptic) of C is the
geometric locus of points M through which passes a pair of
tangents with an angle of θ between them.
If θ = 90◦, i.e. if the tangents are perpendicular, then the isoptic
curve is called an orthoptic curve.
Isoptic curves may either exist or not, depending on the given
curve and on the angle.



Orthoptics of conics
Parabola

The orthoptic curve of
a parabola is its
directrix.
If the parabola has
equation y2 = 2px
(for p a non-zero real),
then its directrix has
equation x = p/2.

https://www.geogebra.org/m/pwrWy9dG

https://www.geogebra.org/m/pwrWy9dG


Orthoptics of conics
Ellipse

The orthoptic curve of
an ellipse is its director
circle.
If the ellipse is given by
the canonical equation
x2

a2
+ y2

b2
= 1, then the

director circle has the
equation
x2 + y2 = a2 + b2.

https://www.geogebra.org/m/SkQ5qxYr

https://www.geogebra.org/m/SkQ5qxYr


Orthoptics of conics
Hyperbola

The existence of an
orthoptic curve for a
hyperbola depends on the
eccentricity c/a, where
c2 = a2 − b2.
If it exists, the orthoptic
curve of the hyperbola
with canonical equation
x2

a2
− y2

b2
= 1 (i.e. the focal

axis is the x=axis) is the
circle whose equation is
x2 + y2 = a2 − b2, also
called the director circle.

https://www.geogebra.org/m/tZcGGrCm

https://www.geogebra.org/m/tZcGGrCm
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Examples of previous work
The orthoptic of a closed Fermat curve, x16 + y 16 = 1



Examples of previous work
45◦-isoptic of an astroid, x2/3 + y 2/3 = 1



Examples of previous work
135◦-isoptic of an astroid, x2/3 + y 2/3 = 1



Two novel approaches in GeoGebra
An overview

I Both
I can be considered as automatic discovery,
I deliver an algebraic output: a polynomial (with its graphical

representation) via Gröbner bases and elimination.

I The first approach
I uses pure computer algebra support of GeoGebra:

symbolic differentiation of the input formula,
I allows the output to be changed dynamically with a slider bar

(dynamic study),
I can do observations up to quartic curves

(due to computational challenges).

I The second approach
I hides all details in computer algebra from the user:

the input problem is given in a a purely geometric way,
I is a handy method for a new kind of man and machine

communication,
I works only for certain conics.
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The first approach

Let C be an algebraic curve given by an implicit equation
F (x , y) = 0.

1. Compute the derivatives dx = F ′x and dy = F ′y .

2. Consider points A(xA, yA) and B(xB , yB) that are assumed to
be points of the curve, that is,

F (xA, yA) = 0 (1)

and
F (xB , yB) = 0 (2)

hold.

3. Compute the partial derivatives px ,A = F ′x(xA, yA),
px ,B = F ′x(xB , yB), py ,A = F ′y (xA, yA) and py ,B = F ′y (xB , yB).
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The first approach
(cont’d)

4. Now, when speaking about orthoptic curves, we can assume
that

px ,A · px ,B + py ,A · py ,B = 0, (3)

otherwise, when speaking about θ-isoptics, the following
equation holds:

(px,A · px,B + py ,A · py ,B)2 = cos2 θ ·(p2x,A+p2y ,A)·(p2x,B +p2y ,B). (3’)



The first approach
(cont’’d)

5. When defining a point P(x , y) that is an element of both
tangents t1 and t2 to c , the points
A, A′ = (xA + py ,A, yA − px ,A) and P must be collinear;
for the same reason, also
B, B ′ = (xB + py ,B , yB − px ,B) and P are collinear.

So the following equations hold:∣∣∣∣∣∣
xA yA 1

xA + py ,A yA − px ,A 1
x y 1

∣∣∣∣∣∣ = 0, (4)

∣∣∣∣∣∣
xB yB 1

xB + py ,B yB − px ,B 1
x y 1

∣∣∣∣∣∣ = 0. (5)



The first approach
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The first approach
(cont’’’d)

6. Now we have 5 equations.

By eliminating all variables
but x and y we obtain an implicit equation whose graphical
representation is, at least partly, the θ-isoptic curve.
This technique (“elimination theory”, “automated geometry
theorem proving”, “automated discovery”) is discussed
in detail in:
I Cox, D., Little, J. and O’Shea, D.: Ideals, varieties and

algorithms. Third edition. Springer, 2007.
I Chou, S.-C.: Mechanical Geometry Theorem Proving,

Reidel Dordrecht, 1987.
I Abánades, M. A., Botana, F., Kovács, Z., Recio, T. and

Sólyom-Gecse, C.: Development of automatic reasoning tools
in GeoGebra. Software Demonstration at the ISSAC 2016
Conf. ACM Comm. in Comp. Alg. 50 (3), pp. 85–88. 2016.

Theoretically, the obtained implicit equation is a multiple of
the algebraic closure of the geometrically expected set.
That is, some factors of the obtained implicit equation will
contain the expected curve.
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Examples
The orthoptic of y = x4

The equations to consider are as follows:

x4A − yA = 0, (1)

x4B − yB = 0, (2)

4x3A · 4x3B + 1 = 0, (3)

−4x4A + 4x3Ax + yA − y = 0, (4)

−4x4B + 4x3Bx + yB − y = 0. (5)
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Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0. Both f1 and f2 are reducible
over C. After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has. Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0.

Both f1 and f2 are reducible
over C. After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has. Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0. Both f1 and f2 are reducible
over C.

After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has. Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0. Both f1 and f2 are reducible
over C. After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has.

Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0. Both f1 and f2 are reducible
over C. After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has. Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’d)

After eliminating all variables but x and y from this system by
using a CAS, we obtain the equation(
65536x6 + 196608x4y 2 + 196608x2y 4 − 41472x2y + 65536y 6 + 13824y 3 + 729

)
·

(16777216x6y 3 + 50331648x4y 5 + 5308416x4y 2 + 50331648x2y 7+

5308416x2y 4 + 559872x2y + 16777216y 9 − 1769472y 6 − 186624y 3 + 19683) = 0.

This can be written as f1 · f2 = 0. Both f1 and f2 are reducible
over C. After numerical and visual experiments, it turns out that f1
has no real geometrical meaning, but f2 has. Also, f2 has a divisor

f = x2y + y3 − 3/8 y2
3
√

2− 9 y
3
√

4

64
+

27

256
.

According to GeoGebra’s numerical precision the cubic f = 0 is
indeed the orthoptic of y = x4.



Examples
The orthoptic of y = x4 (cont’’d)

https://www.geogebra.org/m/JvhNwAzF

https://www.geogebra.org/m/JvhNwAzF


Examples
The orthoptic of y = x4 − x

https://www.geogebra.org/m/mfrwfGNc

https://www.geogebra.org/m/mfrwfGNc


Examples
35◦-isoptic of a hyperbola



Examples
35◦-isoptic of a hyperbola (cont’d)

Algebraically, after elimination, GeoGebra obtains

2x14 − 2y14 − c2x12 − c2y12 − 10x2y12 − 18x4y10 − 10x6y8 + 10x8y6 + 18x10y4

+ 10x12y2 − 6c2x2y10 − 15c2x4y8 − 20c2x6y6 − 15c2x8y4 − 6c2x10y2 − 23x12

− 23y12 + 12c2x10 − 12c2y10 − 58x2y10 − 25x4y8 + 20x6y6 − 25x8y4 − 58x10y2

− 36c2x2y8 − 24c2x4y6 + 24c2x6y4 + 36c2x8y2 + 112x10 − 112y10 − 60c2x8

− 60c2y8 − 80x2y8 + 32x4y6 − 32x6y4 + 80x8y2 − 48c2x2y6 + 24c2x4y4 − 48c2x6y2

− 300x8 − 300y8 + 160c2x6 − 160c2y6 + 144x2y6 − 136x4y4 + 144x6y2 + 96c2x2y4

− 96c2x4y2 + 480x6 − 480y6 − 240c2x4 − 240c2y4 + 544x2y4 − 544x4y2 + 288c2x2y2

− 464x4 − 464y4 + 192c2x2 − 192c2y2 + 608x2y2 − 64c2 + 256x2 − 256y2 − 64 = 0,

where c = cos2
(

7
36π

)
.

After factorization this can be simplified to

cx4 + 2cx2y2 + cy4 − x4 − 2 x2y2 − 4cx2 − y4 + 4cy2 + 4c = 0,

that is, the isoptic curve is a quartic (containing also the set of
points for the 145◦-isoptic).
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Computational features of the first approach

I Fast computations for conics (dragging of θ is possible)

I Feasible (but slow) computations for certain quartics

I Infeasible computations for most quartics
and other higher degree polynomials

I GeoGebra’s CAS View is involved

I In most cases, the output contains additional factors that
have no geometrical meaning (“extended output”)

I GeoGebra’s Graphics View correctly plots the extended output

I Factorization of the extended output may be incomplete
in GeoGebra (Maple or Singular can be used for absolute
factorization): the minimal algebraic form of the curve is
difficult to determine



The second approach
A “dynamic geometry” approach

Let A and B be arbitrary points in the plane.
(A and B are called free points).

Where to put point P in the plane
to have the lengths AP and BP equal?

https://www.geogebra.org/classic

LocusEquation(f == g,P)

https://www.geogebra.org/classic
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The second approach
Orthoptic of a circle

https://www.geogebra.org/m/z2uNpHCU

LocusEquation(f ⊥ g,P)

https://www.geogebra.org/m/z2uNpHCU


Some features of the second approach

I GeoGebra’s CAS View is not involved

I Each type of input (circle, parabola, . . .) must be separately
implemented (=programmed) internally in GeoGebra

I Computations are feasible for orthoptics of circle and parabola
(moderately slow dragging of θ is possible)

I To obtain isoptics, the AreCongruent command must be used

I Computations are slow for isoptics of circle and parabola

I Isoptic curves may contain extra linear components
due to algebraic issues

I Other curves (ellipse, hyperbola and non-conics)
are not yet implemented

I The output may contain additional factors that have no
geometrical meaning (“extended output”)

I Finding the “best” equation system describing the geometric
setup can be tricky



Creating the equation system programmatically
GeoGebra’s source code is at https://github.com/geogebra/geogebra

https://github.com/geogebra/geogebra


Examples
Orthoptic of a parabola

https://www.geogebra.org/m/dtgzjzcj

https://www.geogebra.org/m/dtgzjzcj


Examples
45◦-isoptic of the circle

LocusEquation(AreCongruent(α,β),P)



Examples
135◦-isoptic of the parabola

LocusEquation(AreCongruent(α,β),P)



Conclusion

I No longer a researchers-only topic? Students can be involved!

I Another application of Gröbner bases and elimination
(for polynomial input)

I Experiments exploiting (computer) algebraic and
(dynamic geometric) graphical representations

I Further studies may involve more efficient computations
and further tricks



Thank you for your kind attention!
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