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The response of piezoelectric plates and rods are generally treated in the form of “equivalent” electric
circuits. When the actual mechanical displacements and strains are of interest, such equivalent circuit
treatment may be inconvenient. In the present paper the response of a loaded piezoelectric plate to an
arbitrary electric input signal is derived on the basis of certa.m idealizations which are closely approximated

by practical systems.

A. INTRODUCTION

HE present exposition is an attempt to analyze
the response of a piezoelectric plate to any applied
field, when this plate is in contact with other acoustic
media. A rigorous solution of this problem is, of course,
too complex to attempt here. But it seems that by
introducing a degree of idealization, the situation may
be reduced to a very simple one-dimensional boundary
value problem, whose solution will not differ greatly
from the results to be expected in an actual system for
a wide variety of practical conditions. As a result of
this simplification the solution will, with minor modifi-
cations, be applicable also to other electromechanical
transducers.

A survey of the literature shows considerable work
on loaded piezoelectric crystals such as done primarily
by Langevin and Biquard' and by Mason.? Compare
also May.? But the former work was strictly on sinu-
soidal signals and all the later work seems to have been
by the use of “equivalent electric circuits,” which are
highly appropriate when only the electrical charac-
teristics are of interest, but are less readily applicable
when the mechanical effects are being investigated. It
is therefore hoped that the results presented here will
serve a useful purpose.

The following simplifying assumptions will be made:

1. We are dealing with a transducer plate whose
lateral dimensions far exceed its thickness, so that fields,
strains, and stresses may all be considered plane.*

2. The shearing stress introduced by a compressional
strain and the compressional stress introduced by a
shearing strain will be negligible compared to the cor-
responding compressional and shearing stresses, respec-
tively.’

* Work done for Fairchild Camera and Instrument Company,
Syosett, New York, and sponsored by the Johns Hopkins Univer-
sity, Applied Physics Laboratory, Silver Sprmgli Maryland.

T Consulting Physicist, New York, New Yor!

1P, Biquard, Rev. d’Acoustique 3, 104 (1934).

*W. P. Mason, Electromechanical Transducers and Wave Filters
(D. Van Nostrand Company, Inc., Princeton, New Jersey, 1942),
2nd ed., p. 230.

1. G. May, Jr., J. Acoust. Soc. Am. 26, 347 (1954).

4In order for this assumption to apply rigorously the results
must be limited to time intervals short with respect to the lateral
dimension divided by the velocity of strain propagation in the
transducer.

8 This is rigorously true, certainly for homogeneous
strictive transducers, but also for the most common piezo

eto-
ectric

3. The losses within the transducer are negligible
compared to the energy radiated into the surrounding
media.

4. The transducer is surrounded by homogeneous
acoustic media, extending to infinity.

5. The displacements are maintained low enough, so
that the transducer does not separate from the medium
during any part of the cycle and that the elastic and
electromechanical effects may be considered to be linear.

Although the foregoing conditions may seem rather
ideal and will never be fully realized in a practical
situation, the deviation will be negligible in many prac-
tical applications. In particular, the results will be
applicable to many  systems where high frequency
acoustic energy is used for information purposes, as in
ultrasonic delay lines and ultrasonic light modulators.
They are further justified by the fact that they make
these situations readily amenable to an analysis which
would otherwise probably be not practical.

Since the above conditions reduce the problem to a
one-dimensional one, only the following parameters
need be considered :

1. The compressional and shear strains (2d) intro-
duced by a unit signal under static conditions with the
transducer clamped laterally.

2. The restoring stress introduced by a unit com-
pressional or shear strain, both in the transducer and
in the media, i.e., the appropriate moduli of elasticity.

3. The densities (p) of the transducer material and
the media.

4, The thickness (2D) of the transducer.

In the following, the ratio of the elastic modulus to
the density is written as % since it equals the square
of the velocity with which a local disturbance would be
propagated.

As a result of the above simplifying assumptions, a
single differential equation results for each medium,
namely (8%a/0%)—v*(8%e/9x*)=0, where a is the dis-
placement in the particular medium.

This set of differential equations will be solved for a
unit-step input, since for this case the boundary con-
ditions are most obvious physically. Differentiating the
result with respect to time, yields the impulse response.

transducers, such as the x-cut quartz crystal where ¢;5 and ¢
vanish
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The convolution of this with any arbitrary input signal,
will yield the corresponding response.

One set of boundary conditions is due to the fact that
the displacement must be continuous across a boundary,
as must be the stress (which equals p1?9a/8x). The
system will be considered to be at rest with a negative
unit potential applied across the crystal electrodes
producing strain, d. The electrodes are then short
circuited at time /=0. The resulting vibrations will
then be strictly elastic ones, since the mechanical effects
of the locally created ‘electric polarization are included
m the moduli of elasticity, pr>. Thus the initial unit
strain is assumed to be —d/D in the transducer and
vanishing elsewhere. The displacement at all finite times
vanishes for infinite |2| (or, in view of our boundary
conditicns at ¢=0), this displacement remains at d).

B. DERIVATION OF IMPULSE AND STEP-FUNCTION
RESPONSES

Our system consists of three media, limited in the x
direction and infinite in the yz plane. Let the magnitude
of vibration in these media be g, &, ¢, where @ refers
to the piezoelectric transducer; p and », with the appro-
priate subscripts, refer respectively to the density of the
medium and to the velccity of the disturbance for the
three regions. Let 2D be the transducer thickness and
2d the initial total strain.

We have then the following equations and boundary
conditions:

—w g —D:
(9%/02%)— (1/ws?) (8%/ 0)=0; (1)
b(0,x)=+d; @)
b(0,2)=0; - (3)
b(t, —=)=d; (4)
—D<x<D:
(8%a/95*)— (1/v) (9°a/ 3)=0; (5)
a(0,%)=—xd/D; (6)
a(0,x)=0; (7)
D<z<o:
(9%/32%) — (1/ve) (8%/ 8)=0; (8)
c(0,x)=—d; (9)
é(0,2)=0; (10)
c(t,0)=—d; (11)
x=—D:

a(t, —D)=b(t, —D); (12)
pavd da(t, —D)/dx]=pyu*[ 3b(t, — D)/ ax]; (13)
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x=D:
a(t,D)=c(t,D);

pa¥a’[ 8a(t,D)/dx]= pv [ dc(t,D)/ 9x].
Note that the Laplace transforms are

£(0%/08)=s*A—s5a(0,2)—d(0,%) ;
£(90/312) =4/ 922.

(14)
(15)

Thus Egs. (1), (5), and (8) become, respectively,

@B/ dx*— (s*B—sd) /0= 0, (16)
04 /3x*— (s*A+-sxd/D) /v, =0, (17)
9*C/ 35— ($*C+sd) /v2=0. (18)

The solutions are, respectively, of the form
B=pior=i-t B eimt-ds, (19)
A=a,et*Itat-qye4*l%—xd /5D, (20)
C=ry1er=/vetypgsaloe—g/s, (21)

where the a, 8, v represent functions of s determined
by the boundary conditions. From conditions (4) and
(11) it is apparent that 8s=7:=0. From Egs. (12) and
(14), by substituting Egs. (19)-(21), we find

aye*PlvatogePlvaf (d/s)=Be~*Plm4 (d/s),

or ﬁz[ale_mm_l_mg.pm]gwm_ (22)
Similarly,

ayePivet-qyeDlv— (d/5) =yetDIva— (d/5),
i y=lawontaoleene,  (23)

where we have set 8;=8 and y,=v. Again, from Eqgs.
(13) and (15), substituting Egs. (19)-(21), we find

Pata’[ (s/va)ere % — (s/vs)ase*PI%— (d/sD)]

= o (5/ o820/
or, letting

Pala/ psts= 1y, (24)
B=mi[ese~Dina—quePln— (3,4/D)Jel, (25
Similarly,
Paa’[ ($/va)a1e*P/%— (s/v,)aze~PI%— (d/sD) ]

= p [ — (s/ve)yePI*]
or, letting

Pawa/ﬂcwc'—_ My, (26)
y=ms[ —aeP/% -y PI% - (9,d/s°D) Je*Plv=,  (27)
Equations (22), (23), (25), and (27) involve four

unknown functions of s: ai, @s, 8, v. Solving for these
functions we obtain, after some straightforward but
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tedious manipulations, letting 7=D/7,,
2d my(1—ma) +ma(1+mi)er”
a1.=—[ ]e%sr, (28)
s*rl— (1—my) (1—ma)+ (1+ma) (1+-ms) e
—2dr ma(1—ms)+mi(1+-ms)es
= ]g!”; (29)
sty L— (1—my) (1—ma)+ (1+my) (1-+my)e**
2dma[ (1—ma)+ 2maes™— (14-ms)e*e
— ]est'nb’ (30)
£r L—(1—my) (1 —ma)+ (14-m1) (1+ms)e®*
2dmof  — (1—my)—2mie™+ (14+my)e®
= ; ]e‘m‘"- (31)
s L—(1 —ml)(l —ma)+- (1+m1) (1+-ms)e®r
After introducing the following simplifying definitions, form of
involving only constants of the transducer and the
media Co' =sCo=s5"m:K/(e5"—k)]
K=2d/r(14m;) (1+ms), X[ (maA-1)e*—2mpe*+ (m1—1) .
k= (1—m)(1—ms)/ (1+m)(1+ms),  (32)  Since an expansion of
we may write (esr_,k)—lzi Erig2ner,
Kesrl? ) =
A=———{[m:(1—ma)+ms(14+my)es™ Je>=/" we may write
(e —k)
xd
HIma(l—m)+m(Fmder Tl ——,  (33) Co ——E(m1+1)e“"-2mw"+(ml~DJZk“‘lﬁ""
sD n=l1
m, KesDlve d B Ll d bini .
= [ (1 —m)+ 2moe*— (1+4-ms) €27 Jes=/vo—, y multiplying out and combining terms with equal
s2(e'—k) s exponents, we obtain
N (34)
mZKea e = — ! AT
C=——|:— (1—m1)— 2mlc”+ (1+M1)62”] IJ {I:k(ml+1)+ 1)] ,,Z..:lk 13_3
2(er—k)
Xg—.ﬂ:fnc_f- (35) —2m12 kv e Un sty 41}, (36)
5 ==l

These expressions represent the Laplace transform of
the displacement of any part of the system at any time
after a negative unit potential has been removed from
the transducer. By subtracting the initial displacement,
the response to a unit step is obtained. By multiplying
these expressions by s, the Laplace transform of the
system response to a unit impulse is obtained. The
Laplace transform of the system response to any signal
in time is obtained simply by multiplying the Laplace
transform of the signal with s4, sB, or sC.

In considering the response of the medium we note
that a change in the x coordinate Ax introduces only a
time shift At=Az/v. This is, of course, due to the fact
that absorption losses in the medium have been ne-
glected. For an analysis of the medium response it will
therefore suffice to limit the discussion to Eq. (35) with
x=D. Under these conditions, the impulse response of
the system will be given by the inverse Laplace trans-

The impulse response of the system at any time, that
is the inverse Laplace transform of this expression, may
readily be obtained by noting that Ke~7/s transforms
into a step of height K at time 7.

Consequently, in order to obtain the magnitude of
the response at any time 7, it is necessary only to sum
the coefficients of those exponentials with exponents
less than T in Eq. (36). Thus, for instance, for 2rr<t¢
< (2r+1)7 the displacement at the transducer face (on
the positive side m.) will be

c=moK (mi41)k".

For

(2r+1)7<t<2(r+1)7, C=—mK(mi—1)k*. (37)

The following special cases may be of interest:
1. The transducer is loaded on one side only. This
condition corresponds to p,=0 and therefore m;= .
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Consequently,
K=2d/[rmi(14-ms) =K' /m,,
k=[(my—1)/(mo+1)]=k..

The resulting expression for the Laplace transform of
the impulse response is

(38)

U

Co’z E(ks-l'" 1) E kan—lrﬁ.nn

3

—23 krle@rbe417], (39)
n=l1
and for 2rr<t< (2r+1)1,
c=msK'k,.
For
2r4+1)r<t<2(r+17, ¢= —moK'k,". (40)

2. The transducer is loaded equally on both sides.

Then
K=24/[+(14+m)*]
and
ha=[(1—m)/(1+m) P=F2. 41)
mK @
Cf ([ )k m—1] 5 kHr—Detner
5 n=l1
.__Zm i kaﬂ (n—l)e—(zn—l)af+m+1}
n=l1
mK
=‘_{2m[k3 E k82(n—l)g—2usf
5 _Z kaz(nml)e—(ﬂn—l)sr]+m+1}’ (42)

is the impulse response Laplace transform. Thus for
2rr<t< (2r4+1),

c=m(m+1)Kkr.
For

(2 1)r<r <21, c=—mm—DKRY". (43)

3. The transducer is completely unloaded. In this
case the relations are the same as in the preceding case
with m approaching infinity. Thus

K=2/mm}, k=1, (44)

2d
Cof=___[2m z e———ﬂnaf_ Zm Z g—(ﬂﬂ—l)sf.}.m]
TMS

(45)
44
=_..1 E e—ﬂnsr_} 8_(2“—'1}"+%],

75

The impulse response is thus a square wave with
. double amplitude 4d/7 and period 27. This result is
due to the fact that the above results have been derived
for a lossless transducer.

A graphic presentation of the displacement of the
transducer face, as a function of time, is shown in
Fig. 1. Figure 1(a) represents the response toastep-func-
tion and Fig. 1(b) the response to an impulse. For nor-

LEO LEVI

malization purposes, the coefficient mym;K is assumed
equal to unity and m>>1.

In the case of the step-function input we might have
expected a net displacement d at /= . The fact that
displacement vanishes at {=o is due to the fact that
our assumption of m>>1 corresponds to a transducer
effectively unloaded on the rear surface so that the
difference between initial and steady state strain will
appear at the rear of the crystal.

In the case of my=mms, the integral of the impulse
response from ¢=0 to i= equals d, half the steady
state total strain, as would be expected from symmetry
considerations. This result can be obtained by summing
Eqs. (43) for r=0 to = and multiplying by 7, cor-
responding to integration from =0 to {=oo.

Tn some instances the state of strain of the media may
be of interest. For instance, the change of refractive
index of the medium may be considered, to a first
approximation, proportional to the strain.

The strain of the medium is equal to the rate of
change of the displacement (with respect to the direc-
tion of propagation). Thus the Laplace transforms of
the strains resulting from a step-function are, using
Egs. (33), (34) and (35):

a4 Keml?

*_ e

dx  su(e* —k)
X {[m;(l—mg)+mz(1+ml)e":|e’”’°

d
— (1= my) +mi (14+-ms)es™ Je ==/} D (46)
R
OB leesD.fvb

. -

dax S‘ﬁb(ﬂz"—k)
X[ (1 —ma)+2moes™— (14-ms)e®™ Jer=/s,  (47)
aC  myKe®Plve

C*:——: e .
dx  sv(em—k)

X[(l—m1)+2mle"—(1+m1)32”]6‘“"”=. (48)

The corresponding expressions for an impulse input
are obtained from the above simply by multiplying by
5. Corresponding to Eq. (36), the expressions at the
transducer face are for a step-function input and
impulse input, respectively,

moK @
Co*=——{[k(m+ 1)+ (m—1)] 2 ke
U5 n=1
—2my 3 ke Cr D1}, (49)
n=l
moK o
Cf*= =T 1)+ (= DT e
Ve ]
—my 3 ke @V 1}, (50)

n=]
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The former is, within a factor (—u.), equal to the
Laplace transform of the displacement due to an
impulse and the latter represents a series of impulses
of alternating polarity—the time derivative of the
step-function represented by the former.

C. RESPONSE TO A SINUSOIDAL INPUT

The steady-state response to a sinusoidal signal both
in amplitude and phase angle is readily obtained from
the impulse response, simply by substituting (iw) for
(s) in the latter, where w is the radian frequency of the
applied signal.

In the case where w=m/7, this results in particularly
simple expressions, which are listed below for reference.
This condition corresponds, of course, to the case where
the fundamental resonance frequency of the transducer
is applied to its electrodes.

In the case of the non-symmetrically loaded trans-
ducer, the amplitude of the resulting displacement vari-
aticns are for a signal V=sinzt/r:

o= (dmmad) /7 (m1+ms). (51)
When one side only is loaded, the response is
cp=4md/. (52)
When both sides are loaded equally
Cp=2md/x. (53)

The corresponding expressions for the unit strain are

cp*= (dmimad)/ver (myt+mz), (54)
eyt =dmd/v.r, (55)
¢pt=2md/v,r. (56)

D. NUMERICAL EXAMPLE

If the transducer is an air-backed, x-cut quartz
crystal, with resonant frequency 15 Mg, in contact with

(b)

water, and if a square pulse (duration T=0.11 usec,
magnitude 1000 volts) is applied, we write the follow-
ing equation for the strain at the transducer face as a
function of time, referring to Eq. (49) and applying
the simplifications inccrporated in Eq. (39):

2dm o
LS (ﬂ>]=“ﬁ[(ks+1) 3 kgt

ST, m n=1

-2 f: kan—lg--wn—l)sr_'_l:l(l_esT). (57)

ne=al

The factor (1—e7¢) takes into account that the
applied signal may be viewed as resulting from the
superposition of two step functions, equal magnitude
but opposite sense, one being delayed with respect to
the other by a time equal to the pulse duration T

It can be seen that S(¢) represents the superposition
of two “staircase” functions. One of these takes on the
following values:

2dm
Pk, r<i<2r+1;
79.(m+41)
(58)
2dm
—k,, H1<i<2+2.
TV.(m—+1)

While the other one takes on the negative of these
values T seconds later. Thus, setting

2dm/[rv.(m+1)]=K,, (59)

the values of the first function during successive inter-
vals 7 are
_Kh +K1r _kaKla kl‘K.'lr _kSEKIJ +k82K1|
— kK, +RSK, -
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To determine the numerical values involved, the fol-
lowing constants of the quartz crystal are required:
modulus of elasticity: c;=86X10" d/cm?,$
piezoelectric constant: e;;=>5.2X 10* cm—3 g 517
density of the quartz: pa=2.65 g/cm’.
The strain d, produced in an x-cut quartz plate,
whose lateral dimensions exceed its thickness consider-

ably, is different under static and dynamic conditions.
Under static conditions it is

dy="Vidy, (60)
whereas under dynamic conditions it is
d=V(en/cu)=V[du—dn(cs/c1)+dus(cra/enn)], (61)

where dy; is the piezoelectric modulus in the x direction
and V is the applied voltage in electrostatic units
(1 e.s.u.=300 v). The difference is due to the fact that
under static conditions the crystal will be strained
laterally by the applied field whereas under dynamic
conditions it must be considered clamped in those
directions.® In our case, therefore,

d=(1000/300)(5.2X 10%/86X 10") =0.2X 10~% cm.
For water, p.=1 g/cm?®, v,=1.5X10° cm/sec. For quartz,

¢ W. P. Mason, Piesoeleciric Crysials (Van Nostrand Company,
New York, 1950), p. 84.

TW. G. Cady, Piesoeleciricity (McGraw-Hill Book Company,
New York, 1946).

8L.F. Epstein, W. A. M. Anderson, and L. R. Harden, J. Acoust.
Soc. Am. 19, 248 (1947), Appendix.
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under the applicable conditions, v= (¢11/p)}. Therefore
m= (pa¥a/peve)= (2.65/1.5X 105)[86X 10'/2.65 | =10,
= (2f0)*=0.033 X 10~ sec.
Therefore
K1=17.3X107%,
b, =0.82,

k,r=0.82, 0.67, 0.55, 0.45, 0.37, 0.30, 0.25, 0.20, 0.17,

0.14, 0.11, 0.09, 0.08, 0.06, 0.05, 0.04, 0.03, 0.03,
0.02, 0.02,

for n=1, 2,3, ---, 20.

The net result due to the total pulse is obtained by
adding the values of the positive step-function to those
of the negative step-function, delayed by 0.11 psec.

If this pulse is repeated at 1.18 Mc, new step-
functions must be added to every 0.85 usec.

Comparing the amplitude of the initial pulse, K,
Eq. (59), to the amplitude of strain variations due to
a sinusoidal signal, Eq. (55), we find that the latter
exceeds the former by a factor of 2(m+-1) which equals
22 in our example.

The maximum pulse in our example occurs at the
termination of the input pulse (= —0.11 usec) at which
time the amplitude due to the start of the pulse is
(—0.82) so that the net value at that time is —1.82.
This, then, corresponds to the amplitude due to a
sinusoidal signal of

(1000/22) X 1.82/vZ=58.5 v rms.



