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Abstract. Some optical imaging systems exhibit a response which varies
with both spatial and temporal frequencies. Here, methods for treating such
systems are presented and applied to simple examples.

The concepts of point-impulse response and spatio-temporal optical transfer
function are introduced.

1. Fundamental considerations

In devices such as image tubes, both spatial and temporal characteristics are
involved simultaneously. Assuming a linear response for the system, these may
be treated by means of a three-dimensional Fourier transform. We limit our
discussions here to the usual ‘ energy ’ spread and transfer functions, which are
applicable to radiation which is essentially incoherent—both spatially and
temporally, i.e. when the time elements are large relative to the electromagnetic
period and the space elements large relative to the coherence region. In the
following, the terms ‘ vanishingly small > and ‘ vanishingly short * should be
taken in that sense. The terms ‘spread’ and ‘transfer’ functions are occasion-
ally applied also to the amplitude characteristics, a treatment appropriate in
regions of coherence. That problem has been treated previously in a three-
dimensional format [1].

In our incoherent case, the response of the system to a vanishingly short and
vanishingly small input signal, may be termed the point-impulse response, described
by

Pyl v, 1),

Its three-dimensional Fourier transform would be the corresponding transfer
function

Tl g B f f f Py(x, 3, t)exp [i2n(vyx+ vyt vt) dxdydt, (1)

where v, v, are the Cartesian spatial frequency components, and v, is the
temporal frequency. This may be called the spatio-temporal optical transfer
function.
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Similarly, signals (and noise) can be described in the form s(x, v, t). The
corresponding spectrum, again, is given by the three-dimensional Fourier
transform, as in (1). The auto-correlation function is given by :

o ) 1 1 T AV X
X, v, 1)=sOs=  lim -—nf f f
X,T',T-rooXYT 0JoJo
Xs(x, ¥, )s(x" 2,y =y, t' = t)dx' dy'dt’. (2

The corresponding Wiener spectrum is

(i 50 B2 f f f C(x, 3, ) exp [i2n(vc+ v,y + v i) dxdydt.  (3)
With isotropic media C is spatially a function only of

r=1/(x*+5%)

rather than of x and v individually. The integrals (1), (2) and (3) then reduce to

double integralst. The isotropic equivalents of these integrals, marked by a
caret, are then

Tieawi=2= | | P, tydo(2mvr)exp (i2mvi) dr b, (1)
2 T sk

Clrnti= tim gom [ | st 0,000 47,0, +1)ardr, (@)

v )=2= | | : rCir 08T o2z r) exp (12av,t) dr dt. (3%

v

Thus we may calculate the Wiener spectrum from a measurement of the auto.
correlation function C. The Wiener spectrum. in turn. permits us to predict the
results of other measurements as illustrated in subsequent sections.

Clearly an important convenience results if the auto-correlation function can
be written as the product of two factors, each a function of just one variable:

Cx 3, )= Cy(r). Cy(2). (4)

This condition implies that an auto-correlation measured with a fixed time delay
introduced between the two signal measurements is similar to that taken at any
other time delay, i.e.

C(r, 0, ;) =k(t,— 1,)C(r, 0, t,), (5)
where £ is independent of the independent variable 7.

+ Note that, with circular symmetry [ f(x, v) = )] -

Flvg, vy)= _[ flx, y) exp [27(v,x +v,2)] dv dv

— 0

can be written [2]

where also

and
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The measured Wiener spectrum is then [cf. (8) and (10)]
W, = W,A4

_ [#12mnR) sin2an Tt i
2, R 2mv,T

for the three-dimensional ‘ top hat ’ distribution discussed earlier.
Recall that the auto-correlation is the inverse Fourier transform of the Wiener
spectrum:

Clx, y, t)=sOs=F W] (13)

and that the variance of s is
var (s)=0%(s)=C(0, 0, 0) = F [ W], = sz [w Wdidis, (14
0 J —
Thus the observed variance, i.e. the mean squared value of noise will be :

() 2t [ J': v, AW, dv, d, (15)

SO
If the variance is measured as R and T are varied, we obtain an integral
equation for W, which may not be easy to solve.
It is, however, easy to predict the measured variance values if the noise
spectrum is white. We have then, with our ‘top hat’ aperture function [3]

= 2J,(2mv R) 2 27y,
var (S,)g,p=27W, J.n v, IZEW RPR)J dv, J- [SI;W! ‘T:l dv,
al (mR2)(2T). (16)

Thus, if the r.m.s. fluctuation is found to vary inversely with area and interval,

this is a good indication that the noise spectrum is white—down to frequencies
high compared to the inverse distances and intervals used in the measurements.
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Certains systémes optiques qui forment des images presentent une réponse qui varie
avec les fréquences temporelles et spatiales. On présente ici des méthodes pour traiter de
tels systémes et on applique celles-ci 4 des exemples simples. On introduit les notions de
réponse ponctuelle-impulsionnelle et de fonction de transfert optique spatio-temporel.

Es gibt abbildende optlsche Systeme, deren Ubertragungseigenschaften sich sowoh
mit der 6rtlichen als auch mit der zeitlichen Frequenz #ndern. In der Arbeit werden
Verfahren zur Behandlung solcher Systeme dargelegt und auf einfache Beispiele angewandt.

Dazu werden zwei Begriffe benutzt : der einer Punktimpuls-Wiedergabe und der
optischen Ubertragungs einer raumzeitlichen funktion.
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