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Abstract. Many techniques have been applied in image enhancement. Some
of these are briefly reviewed here. Note that many of them may be classed
under the general heading of ‘ linear filtering .

To evaluate any image enhancement procedure, quantitative image assessment
criteria are required. The criteria applicable to systems meant to convey
information are reviewed here. It is noted that large areas of application can
be covered by two, relatively simple, criteria: signal to noise ratio and mean
squared deviation.

Image optimization is investigated from the point of view of least squared
deviation with both linear filters and scale change considered. The latter is
treated in some detail. The term ‘image restoration’ is proposed to cover
efforts to minimize the squared deviation of the actual image from its ideal
version.

1. Introduction

Whenever an image is used to convey information about an object, the object
radiance pattern must be transformed into an image érradiance pattern, yielding
the desired information§. To optimize this process it is desirable to operate on
the object radiance in such a way as to maximize the information conveyed.
Many techniques have been developed to accomplish this. The oldest and
best-known of these is applied before the image is formed and is called lens design.
More recently various techniques have been developed to operate on the image after
it has been formed. These are generally referred to as image enhancement.
Many of them can be classified as linear filtering techniques and it is these that
concern us here. Both linear and non-linear filtering techniques may employ
scanning to convert the primary image into an electric signal which may then be
operated on by electric filters [1-3].

Linear optical techniques operating in the image plane are usually some
version of the ‘unsharp masking’ technique in which a blurred replica of the
image is subtracted from the sharp image. Among these are:

(1) Photographic techniques in which a blurred negative is printed in register
with a sharp positive print [4, 5].

(2) ‘Flurododge’, in which a phosphor is excited by means of a sharp ultra-
violet image and partially quenched by a blurred infra-red image [5,6] (a
similar photographic technique employing the Herschel effect to erase part of the
exposure has also been used [7]).

T This work was supported, in part, by the Office of Naval Research.

I Present address: 435 Ft. Washington Ave., New York, N.Y.

§ We use the word ‘information’ here in its colloquial, qualitative sense. Later,
when we use it in its quantitative, communication-theoretical sense, it will be put in
quotation marks.
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(3) A ‘velocity modulation dodging’ technique [8]. Here photographic
printing takes place by means of a large scanning spot which reads the average
transmittance over a sizeable primary image area; the velocity of this spot is
controlled by the average transmittance thus obtained.

Because they operate in the image plane all these techniques must be dynamic
or tailored to the specific image being enhanced. This difficulty may be avoided
by operating in the aperture of the imaging system, where the spatial frequency
spectrum can be operated on directly. Early efforts in this direction used a
reduction of iris transmittance toward the edge of the aperture ; these were called
‘apodization’ [9].

More recently extremely powerful optical filtering techniques have been
developed [10-12], These are quite analogous to electronic filters except that they
are spatial rather than temporal. Their spatial character does, of course. result
in some important additional differences: spatial filters are generally two-
dimensional and therefore somewhat more complicated than the one-dimensional
time series of electric signals. At the same time, certain limitations inherent in
the ‘arrow of time ’ are thus eliminated : filters which are ‘ physically unrealizable’
electrically, may be readily realizable in optics. Although such processing can
be done to some extent with incoherent illumination, greater control is attzined
only with coherent illumination [11]. 'The advent of the laser which can provide
the required levels of coherent light has given considerable impetus to these
techniques and practical methods for generating such filters have been developed
[11,12]. Perhaps the most flexible of these is computer generation of filters
which has been described in detail [13].

Non-linear techniques of image enhancement, too, have been used. Perhaps
the best-known of these is photographic printing on high-contrast paper, which
represents a ‘super-linear ’ transformation over a limited signal amplitude range,
with a “sub-linear’ transformation for signal amplitudes below and azbove this
range. These sub-linear operations are known as ‘ thresholding " and ‘ clipping ".
In “digitizing’, portions of the original signals, which mav occur on a continuous
scale, are grouped into a common output level [14]. The ‘logetronic’ technique
[5,15] is also non-linear. (This technique is similar to the velocity modulated
dodging described above, under (3), except that the scanning spot intensity is
controlled by the integrated transmittance—and this is done in a closed loop.)
We make, however, no attempt to cover these here.

With such powerful techniques at our disposal the main problem becomes that
of deciding what the transform should be, a decision which will depend to some
extent on the particular application. Especially when the undesired background
has a form significantly different from the desired signal, spatial filtering techniques
become obvious. Such techniques have been used, for instance, to eliminate
“beam tracks’ in bubble chamber photographs, while leaving the desired ‘event
tracks’ intact [16]. Inversely, when one shape is to be selected from z large
assemblage of shapes, all the others may be considered ‘background’ and a
filter enhancing the desired shape might be optimum [17].

Such filters must be designed for each occasion as it arises. There remains,
however, a large class of situations where the whole luminance pattern in the
original objectis of interest but has not been fully preserved in the available image.
It is this class of situations with which we are primarily concerned here—for
which we seek the optimum transformation. The first step in this direction is
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image evaluation to which the next section is devoted. An expression for the
optimum linear transformation, including scale change, is developed in §3 and
pure scale change is treated in §4.

2. Image evaluation

Considerable material has been published concerning image evaluationt.
Since the variety of results and criteria may be confusing to the casual reader,
we give here a brief summary of the various results and their areas of applicability.

The treatment is based on linear filtering theory. This is generally applicable
in optical systems where, at most, the detector will introduce non-linearities.
But, even here, many of the common detectors such as photo-multipliers and
photographic emulsions (developed toy=1) closely approximate a linear response.

Concerning noise, we assume that it is strictly additive, This assumption
is less generally valid. In photographic emulsions the granularity varies with
density and in phototubes the shot noise is directly proportional to the square
root of the signal. Allowing for such signal-noise interactions would require
individual treatments for each of a number of cases and, furthermore, the resulting
analyses would be far more complicated; this more general situation is therefore
not treated here. We note, however, that for small signals, i.e. for signals near
the detection threshold, noise usually is additive and that this does represent an
interesting class of situations.

To permit a smoother presentation we first introduce symbols for the various
quantities we must discuss. To treat two-dimensional distribution in a compact
form, we use the vector notation both in the spatial and in the spatial frequency
domains:

X=x,y; dx=dxdy,

e - 2y —
V=, v,; dv—dv,tdyy.

It is also convenient to introduce a ‘ pseudo-object * with radiance So(x); this is
actually the irradiance in an ideal image and is defined in terms of the actual
object radiance §,(X): _ .

$o(%) = Ksy(x/m,),

where X and x represent the coordinates in the object and image planes,
respectively, m, is the magnification in the imaging process, and % is a constant
relating image irradiance to object radiance{. The image irradiance is denoted
by s;(x) and the irradiance noise in the image by n;(x).

Since optical systems are usually used with more than one object, any
evaluation should include consideration of all of these. We do this by using

average values, such as 52(x), where the bar indicates the average over the whole

™ The relationship between the various quantitative quality criteria and the subjective
evaluation of image quality has been investigated extensively [1 8] but is irrelevant to the
present investigation. .

Z In an optical system where the object and image spaces have the same refractive

inzex and the relative aperture is not very large:
k=1Ag/b®= ar/4F?,
where - is the transmittance of the optical media (taking account of both reflection and

losses), Ag is the area of the exit pupil, b is the distance from this pupil to
*os mage. and F s the effective F/number in the image space.
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“ensemble’ of objects.  (In practice it may not be practical-—or even possible—to
include all objects; it is then usually possible, however, to employ 2 large enough
representative sample. )

We must refer to the point spread function, P(x), which represents the
irradiance in the image of a point object, normalized so that

jP(x)d%::l. (1)
The two-dimensional optical transfer function (otf) is:
T(v) = f P(x) exp (i2mv . x) d2. (2)

Note that we have defined 7'(v) to be double-sided with — co<v < <.
The signal amplitude spectra are denoted by capital letters:

1 x Y
S(v)= fim _J j 5(x) exp (i2mv . x) d%, 3)
ry-=4 XY ) _x])_r p
Vo) = tim o [ [ ax)exp @zev.x) @ (4)
Nv)= lim 5 n(x) exp (i2wv . x) d*x :
,1‘,1‘+x4XY~f—XJ.—Y ) .
and the mean Wiener, or ‘ power’, spectra by subscripted W: (3)

W,(v) = |SO)P,
Wo(v) = IN(V)P
When there is no danger of ambiguity, we occasionally omit the arguments and
v and the limits of the integrals.
We now present a review of the communication-theoretical criteria which
have been proposed and then assign to each its place in the general scheme of
image evaluation.

(1) ‘ Information’ capacity

‘ Information’ capacity in its communication—theoretical sense has 2
meaning which is briefly summarized in Appendix 1. 'This has 2 very simple
form when the following common conditions are met: the noise is normally
distributed, the signal ‘power’ is limited and the noise is stationary (i.e. has
fixed statistics) over a sufficiently large area (cf. [19,p. 131]).  The~ information’
capacity can then be written:

H= 2Aif log [1 % ?r} &y, 7)

where A, is the image area.

The capacity for carrying information has been used as a quality criterion—
especially for detectors [20,21].
(2) Linfoot’s figures of merit

Linfoot proposed three quality criteria for optical imaging systems [22, 23]:

(a) Correlation quality measures the correlation between image and object:

f dx T
QI == == : (8)

B[
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(0) Relative structural content measures the image ‘power’ relative to the
object ‘ power’:

f FPx f W, T2d%

fsoz d*x f W, d?*

0. = )

(¢) Fidelity measures the closeness of correspondence of image with object :

. f(T?W?; o fWo(l—T)zdv. o
fm fWod%

Note that the correlation quality is the mean between the other two quantities :

O1= Qs+ 0s). (11)
In equations (8), (9) and (10) we have made use of Parseval’s theorem which

implies that the integral of a function squared equals the integral of its Fourier
transform squared [19, p. 158].

(3) Signal to noise ratio
The signal to noise ratio :

f SEdx J' W, T d%

R= - .
f nEdx f W, div

(12)

t0o, has been used as a quality indicator of an image [24-27].

When the detection process involves measuring individual area elements, the
noise density may be represented by o?/A%x, where o is the standard deviation
of the random irradiance fluctuations measured over the area element A2x.

(4) Mean squared deviation

Another criterion is the square of the deviation of the output, signal plus
noise, from the idealized output signal, integrated over the total image :

E- [ GmF an= (5= Ny Fas.
Assuming the noise to be independent of the signal, this becomes -
E=f[W0(1 — TVt Wa] dv (13)

This quantity, too, is very useful in image evaluation [28, 29].



64 L.Levi

(5) Transcorrelation

The correlation between the ideal and the actual image, too, has been used
as a quality criterion. Specifically, the transcorrelation has been defined [30]t:

I fe 1 =
Z.[siso de-;ﬁJsi dngsodzx
(e (14)

e () oG] T

where s;" is primed to indicate that it includes the noise in the image s, =s; +n;.
On writing the signal as the sum of its mean (x) and deviation (8):

So =P~o+aor si' =.|U‘i+8is'
with

J.B,,dgxzf&d?'x=0,

we readily find that equation (14) can be written:

C=f§i§0d2x/N/(J-B_izdﬂxf3?d9x). (14a)

From Parseval’s theorem this can be written in terms of the spectra:

C=fSOSi’* dﬂv/J(deva"E?dzv). (15)
o

Noting that S;'=7S,+N,, and again assuming the noise independent of the
signal, this yields:

C=fwo szv/\/(ml‘ W, arqu'(w;,:rﬂJr w,) dzv) : (15 )

Having presented the ‘ candidates’, let us now evaluate them in conjunction
with their task—* communication’. The general communication process has as
its purpose the transmission of information. It can be broken up into three
fundamental elements: (1) generation and coding; (2) transmission; and (3)
reception, including decoding of the received signal. Once information has been
generated, it can be lost, but not increased, by the other components of the system.
(This is, of course, true by definition; but it is also true if we use ‘information’
in the specific sense in which it is defined in Appendix 1. If it were not, we would
have to scrap that definition!) Thus, the best we can hope to do in phase (2) is
to maintain the information constant or, if physical restrictions prevent this, to
maximize the transmitted information. At the receiving end. too, information
may be lost; but there we have two distinct tasks, detection and decoding, which
we must separate conceptually even though they may actually be combined in a
single physical process. Part of the confusion in connection with ‘image
enhancement ’ seems to stem from this combination of tasks: the detector must
maximize information detected—the decoder must maximize fidelitv. In order
to evaluate systems in respect to these tasks we must first have quantitative defini-
tions of them. The definition of ‘information’ given in Appendix 1 seems

1 Because we do not consider temporal variations here I have dropped. in equation (14),
the time dependence from the original expression.
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=0 be satisfactory, having passed all the relevant tests. (We must, of course, be
careful to distinguish between “significance’ and ‘information ’; the diary of a
dttle girl may carry as much “information ’ as an encyclopaedia.)

An appropriate criterion for ¢ fidelity * is less obvious. The decoding process
depends on the range of input signal possibilities. On the one hand, if only a
small number of binary decisions are necessary, high fidelity may be possible
simply on the basis of these decisions. In that case, a weighted area integral of
the total output will provide a number on which a decision concerning the input
signal can be based, a different weighting function being required for each choice
(cf. [31]). (The resolution of spectral lines or double stars falls into this category
also.) Here the output may still be optical but *fidelity ’ may no longer be defined
in the general image sense—only the parameter of interest must enter the judg-
ment of fidelity.

However, when the possible input signals are largely unrestricted, or
continuously distributed, an attempt must be made to approximate them in the
decoding—at least within some practical transformation. In such situations,
the least squared deviation is a good candidate for *fidelity’. It yields the best
estimate of the signalin the following sense ; assuming that nothing is known about
signal and noise, except their mean Wiener spectra, and the fact that they have a
Gaussian distribution, then the output filtered for least squared deviation repre-
sents the signal more likely responsible for the received output than any other
signal. (The a posteriori input signal probability density is a maximum at the
signal represented by the filtered output.) This criterion has been criticized [29]
for giving equal weight to one large deviation and to many small ones, but this
criticism does not seem to be obviously weighty.

Thus we may conclude that in transmission and in pure detection criterion (1)
is appropriate and in decoding of continuous-range signals criterion (4) is appro-
priate. It is proposed that an effort to minimize the squared deviation be called
‘image restoration’ in contrast to the more general term ‘image enhancement ’
covering all improvement techniques.

To understand the significance of the other criteria, we note that at the
threshold of detectability (small signal to noise ratio) information capcity, as
given by equation (7), approaches the signal to noise ratio, so that, in practice,
the latter, criterion (3), may be used as a criterion of detectability [31].

When the system noise spectrum is uniform or totally unknown, Linfoot’s
‘relative structural content’ (criterion 2 (b)) becomes a measure of signal to
noise ratio. When noise is negligible, his ‘fidelity ’ (criterion 2 (c)) becomes
equivalent to the mean squared deviation (E) criterion. More specifically, his
“fidelity ” is:

Qs =1- €

where € is the integrated squared deviation relative to the total input signal
“power .

The specific significance of transcorrelation is less obvious. It does become
unity in an ideal system and it is clearly a measure of how closely the system
aporoaches the ideal.  But it is not clear which aspect of the system is optimized
AN we maximize transcorrelation rather than, say, squared deviation. Note,
“ever, that Linfoot’s ‘correlation quality > (criterion 2(a)), which is the
noise-free equivalent of transcorrelation, is simply the arithmetic mean between

E
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‘fidelity > and ‘relative structural content’; this indicates for transcorrelation a
role intermediate to optimizing information content and fidelity. It might,
therefore, be appropriate for systems which must be used in both types of
application.

3. Image enhancement
3.1. General considerations

Once criteria for evaluating a given image are available, optimization is the
next step. As pointed out in the introduction, linear filtering is both convenient
and a very powerful technique in such optimization [31a]. It has been treated
thoroughly in the theory of electric signals and analogous, two-dimensional
techniques have been analysed extensively with many of the results from
electric signal theory directly applicable [10, 11].

Thus, the filter maximizing the signal to noise ratio at a point x, is simply the
‘matched ’ filter [32,33]:

Ty(v)=kS *(v) exp (12mv.x,)/W(v). (16)

Note that this filter maximizes the signal to noise ratio at only one point, making
it useful for the detection of a signal at a known location. It does not, in general,

maximize the overall signal to noise ratiof. The filter minimizing the squared
deviation is [25,26]:

Ty=W,T*|(W,T?+ W,). (17)

Derivations of these results are readily available, but they are given again, in
a simplified form, in Appendix 2 for the insight that these derivations give.

In the absence of noise (W,=0), the least squared deviation filter, equation
(17) becomes:

T,

simply the reciprocal of the original imaging otf. This filter has been suggested
to compensate for the degradation due to the original optical system [34], ad hoc
improvements on it have been implemented [35,36], and a relatively simple
manner of constructing it has been described [37].

On the other hand, if the signal level is low compared to that of the noise and
the signal spectrum is uniform over the range of significant otf (7'), equation (17)
approaches the matched filter (equation (16)) with x; =0 and the otf taking the
place of S,.

Note that formulae (16) and (17) apply to a given object spectrum. We
would like to apply them to ensemble averages of such spectra to obtain a filter
which will be optimum for that ensemble. This is a tempting step to take; but
I cannot justify it. We are thus restricting ourselves for the present, to finding
the optimum transformation of the ‘average’ object.

In addition to linear filtering, we treat here a linear scale change which is very
simply implemented in optics, where it is called ‘ magnification’. This important

+ Specification of the filter maximizing the overall signal to noise ratio would involve
finding the frequency at which the signal to noise ratio attains its maximum value and
then constructing a very narrow band-pass filter centred at that frequency. This was
pointed out to the author by Professor A. Laemmel.
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zree of freedom does not seem to have been treated thoroughly—at least not in

ta L
e

munication theory terms (perhaps, because it is not readily applicable to
zlectric signals).

In contrast to earlier treatments, we also consider here the effect due to the
=nal detector—after the transformations have been completed. This detector
«will generally introduce both spectral and noise effects—it will act both as a filter
and as a noise generation. In the following treatment we restrict the final detector
only in that we assume linearity. We are, however, primarily interested in
visual detection and eventually make the attempt to apply our results to this
important detector. This attempt is based on the assumption that the human
visual system responds linearly—an assumption which is open to serious challenge.
It does seem, however, justified as a first step in a treatment which will, eventually,
have to take account of the non-linearity in the visual system.

3.2. Least squared error transformation

In this section we find the filter characteristic and the magnification which will
minimize the squared deviation of the detected signal (s3) from the original object
(s,)- Inaddition to the symbols defined in § 2 we introduce the following. The
optical transfer functions (otf) of the original imaging system, the filter, and
the detector are denoted by T,(v),T(v) and Ty(v), respectively. For con-
venience we also introduce the total processing otf:

Ty(v, m)=T4(v)Ta(v/m), (18)

where m is the magnification relating image diameter at the detector to that at the
original image plane.

The noise introduced by the detector, together with the unavoidable noise
introduced by the filter, is denoted by 7,(x’), its amplitude spectrum by Ny(v')
and its integrated mean Wiener spectrum by:

Pou = [NaIF . (19)

The optimizing magnification (m) is treated as part of the filtering operation.
The reference scale is fixed in the plane of the original image (x plane or v plane)
and the filter transfer function is given referred to that plane. This requires, then,
a scale change only in the detector spectra, which must be referred to the original
image plane (see T inequation (18)). The generalimaging, filtering, and detec-
tion process is illustrated in the block diagram, figure 1, which also summarizes
nomenclature.

OPTICAL SYSTEM . FILTER : DETECTOR :
T i ohoct [ 1 0 gy S0 IRES ey fotected Xtg

Figure 1. The brackets represent the transformations occurring at each stage. In each
bracket, the first symbol represents the mtf and the second symbol the magnification.

Object

It is assumed here that edge effects may be neglected. Consideration of these
is not too difficult (cf. [29]) but very awkward and might obscure the basic
considerations presented here.

E2
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Tracing the signal amplitude spectrum through the various stages we have:

(1) object: S, (myv),
(2) ‘pseudo-object’:  S,(v),
(3) original image: Si'(v)=To(v)S,(v) +Ny(v),

(4) filtered image:  Ty(v)S{(v), (20)

(5) detected image: Sa(v[m)=Ta(v|m)Ts(v)[To(v)S,(v)
+Ni(v)]+Ny(v/m),

where all the v refer to the spatial frequency at the original image plane.
From equation (2) we can write immediately the expression for the integrated
squared error:

E=f|so—sd|zdzu

= J- 1So(v) = Ty(v, m)[To(v)So(v) + Ni(v)] — No(v/m)[* d*v

= r [S(v) = T(v, m)[So(v) + Ny(v)] = Na(v/m)[* d>v, (21)

where we have written:
T(v,m)=Ti(v,m)T,(v) (22)
and

Ny(v)=N;(v)/ T, (v) (23)

and the integral extends only over the regions in which T, exists.
Assuming, again, that N;, N, are independent of S, and each other, this
becomes:

E= flSo(v)— T(v, m)[So(v)+ Ny()][* d*v +mPyq, (24)

where the integral of Ny (v/m) was evaluated by means of a simple transformation
and reference to equation (19).

Clearly, the last term adds an amount to the error which is independent of T';
hence the filter which minimizes the integral in equation (24) also minimizes E.
Comparison of this integral with equation (A 4) in Appendix 2 shows that it is in
the exact form for which the least squared error filter was derived. This filter,
thus, has the form:

W, |T[*W,

TP=7T,T,, = = 25
R W+ |[Ng|? |T.PW,+ W, )
and the optimum total processing otf:
T W,
AP v o
A 20

where the asterisk indicates the complex conjugate,
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Reference to equation (18) shows that the optimum filter otf alone is:

T ) W,(v) Ta(vjm)
1ol) = T, ey Teim#0
0, T (vjm)=0. 27)

The resulting minimum integrated squared error is readily obtained from
the final result of Appendix 2:

I’V{)I'N’ila

= d2v +mP
min WD+ INilz dn

i WD Wn 2
- [, vt 5

The expression for the minimum squared error has two terms. The first of
these is independent of  and the second is directly proportional to it. Hence
m should be as small as possible for best signal estimation. Since it implies a
small image on the detector this conclusion may seem strange on first sight—on
two counts:

(1) In view of the tendency of otf’s to decrease with increasing spatial
frequency, we expect the detector to degrade a small-scale image more than a
large-scale one.

(2) The same signal image, when spread over a larger area, will permit
averaging the random fluctuations over a larger area and should, therefore, yield
superior imaging in terms of signal to noise ratio and, therefore, also fidelity.

Both of these arguments are irrelevant, however. In the system model under
consideration, the degradation due to T4(v’) is fully compensated for in the
filtering otf (cf. equations (18), (27)); thus the quality of the signal at the
detector is independent of the scale. It is then also clear that the reduced detector
area, implied by the smaller m, will cause less noise to be detected. The possibility
of averaging over a larger area is irrelevant here, since this is part of the decoding
process and the decoding has been completed earlier in the system.

Although m does not enter the first term of equation (28) explicitly, it does
affect it indirectly because of its effect on the filter. Especially the limits on this
filter must be considered carefully.

By way of illustration we given here a method for finding the limit on 7 when
the otf’s are one-dimensional (or radially symmetric) and have cut-off frequencies
(v) beyond which they vanish. If the detector cut-off frequency is less than that
of the filter (mv,q<v,,), equation (27) may no longer be optimum. Thus we
obtain the following limitation on m:

mz Vco/ Vedr . (29)

where v, denotes the cut-off frequency of T,S,.
In practice, it may be desirablé to impose an upper limit, L, on the absolute
value of T}, i.e.

1
L

Ty(vim)> = Ti,(v) for all v<yv,,. (30)




70 L. Levi

To find the limitation on m implied by this condition we must evaluate:
w(LT)

m=—-—,
va(T)

for all T<1/L. Here v{(T;) denotes the value of » for which T(v)=7,. The

maximum value of m occurring within the indicated ranges represents the lower
limit on m (see figure 2).

Vg <Veo (31 )

TA
i-

NE (M) Vg Y v

co

Figure 2. Superimpose plots of Ty(v) and (1/L)T:,(v) and draw a horizontal line
corresponding to any T'<1/L. The intersections of this line with the two plots
yield, respectively, »(T) and »(LT) and, hence, m(T)=v.(LT)/»(T).

4. Pure scale change

In this section we treat the image ‘ enhancement '—or better optimization—
possible by means of a simple scale change, without any other processing. In
other words, given a ‘noisy’ picture and a detector with a given otf, at what
magnification should the image be formed on the detector to optimize reception ?

Except for the pioneering work of Selwyn [38] very little work seems to have
been done on this problem. Selwyn attempted to find the visual magnification
which optimizes resolution of a photographically recorded sine wave pattern.
Even though this work was done before the communication theoretic techniques
had been developed for optics, his method was remarkably sophisticated even by
today’s standards. We present here the more general treatment which has now
become feasible.

We return to equation (24), where we must set:

T:=1
and thus obtain for the integrated squared error:

E= [{,(3) + Taom) T H0)/Wol) + W)
. —2T4(v/m)To(v)Wy(v)}d2v+mPy,.  (32)
Since we have eliminated the possibility of filtering, 7 remains in the integral
and we must differentiate E with respect to m to find its minimum. Denoting
(d|dv)T(v) by T'(v), we find, on differentiating under the integral sign:
dE 2
= | (T T W)+ W]
= T ()Wo(V)iTq' (v/m)v@®v+ Pay.  (33)
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This equation must be equated to zero and solved for m in order to find the
optimum magnification.
To illustrate the use of this equation we apply it to a one-dimensional purely
sinusoidal object :
Wo(v) = %("x" Vo)s("#)? (34)
where W is a constant, and 8 is the Dirac delta ¢ function ’.
Writing T, (v,) = 7, we find then

dE 2
il {TW[TTa(vo/m)— 1Ty (v,/m)v,

+ f Td(v/m)Wn(v)} Ty'(vfm)vdv+Py,. (35)

If we can assume that W,.(v)=W, is constant over the frequency range over
which Ty(v/m) is significant we can remove it from the integral and integrate the
remainder by parts:

f To(vjm) Ty (vjm)v dv= — ;”212 f T(v)dv=— f—;deT- (36)

The last integral represents the ¢ equivalent passband ’ [39] of the detector, which
we denote by Py.  We can thus write the condition on  for minimizing the
integrated squared error:

dE  2:W -
= Lmal’e (1= 7Ta(vo/m)] Ty (vo|m) + Pyy W, + Py, 0. (37)

Note that the optimum value of m depends on the total noise ‘power’ and
on 7 (ie. 7;). Under these same conditions equation (32) for the integrated
squared error becomes :

E=WI1—1T4(ve/m)P+m[W,Pop+ Py,]. (38)

Instead of minimizing the integrated squared error we may wish to maximize
the signal to noise ratio :

R= f Ta (v/m)T,2(v) W, (v) dv / f [T2d(v/m)Wo(v)+ NyoIm)Fldev.  (39)

Again assuming a sinusoial object (equation (34)) and a constant image noise
spectrum, W, this becomes:

Ry=r2WT2(ve|m)| [W,Pop+ Py, ]. (40)
Maximizing this with respect to m is equivalent to maximizing :

1
r= Z sz(v(,/m).

On setting
dr
-
we find :
T'd(v,/m) B

m
2,

Td(”o/m) B
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On denoting the spatial frequency on the detector by:

Vo =V,[m, (41)
the condition becomes simply :
T ()
21"0’ d or — | 42
Td(vo ) ( )

This is identical to the result obtained by Selwyn [38, equation (17)] on the basis
of a rather complicated detection mechanism.

To make the illustration even more concrete, we assume now an otf of the
form:

Ta(v')=exp (= ]'lfe), (43)

which is an approximation valid for a number of photographic emulsions [40]
as well as for the human visual system at the higher spatial frequencies [41].
When this is substituted into equation (42), we find:

ve = ke (44)

From recently published data of the human visual system [42], the value of ¢
is equal to about 32cycles/mm. Thus the optimum spatial frequency on the
retina is about 16 cycles/mm.

This seems in satisfactory agreement with Selwyn’s experimental finding
of 18-4 cycles/mmt—a finding which was only a rough estimate.  (His theoretical
work called for an optimum at 574 cycles/mm.)

The value of 16 cycles/mm is valid for a situation in which the noise is effectively
‘white’. It is not related to the fact that the human visual system has a peak
sensitivity at about 35lines/mm. This fact implies that our approximation (43)
is no longer valid at this low frequency and explains the upward shift in the
observed optimum frequency.

5. Conclusions

The form of the optimum filter depends not only on the spectral characteristics
of the class of objects considered, but also on the ‘decoding’ to be employed.
When only a very limited number of objects are to be differentiated, optimum
detection techniques, based on decision theory [31] can be tailored to the particular
objects involved. If, on the other hand, the objects are largely unrestricted, least
squared deviation techniques become advisable.

The filter minimizing the integrated squared deviation for a quite general
optical imaging system can be stated in relatively simple form.

When the human visual system is used as the detector, the analysis predicts
correctly the results found when a sinusoidal object is to be detected.
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+ Selwyn’s result was 1-25 cycles/mm at a normal viewing distance of 250 mm.
Assuming an effective ocular focal length of 17 mm, this corresponds to 18-4 cycles/mm
on the retina.
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Appendix 1
Quantity of information

Since it is now well established, we give here only a very brief introduction
to the concept of ‘information ’.

If reception of a signal changes the knowledge of the receiver about some
subject, the signal is said to have conveyed information, More specifically,
consider a subject having attribute 4. Now et P; represent the probability

that the receiver assigned to this fact initially and P; the probability he assigns to
it after receiving the signal. Then

H=log (Py/P;) (A1)

is a measure of the information conveyed by the signal by virtue of this change.

The following considerations explain the use of the logarithmic function in
equation (A1).

When quantities of information are received about a number of independent
attributes or objects, we expect the total quantity received to equal the sum of
the individual quantities. At the same time, the probabilities must be multiplied
together to yield the probability of the combination, By using the logarithm,
this multiplication is converted into the desired addition.

Note also that if the received signal is misleading, i.e. it is such that the prob-
ability assigned to 4 decreases as a result of the signal, then P;< P; and the
‘nformation becomes negative. This again corresponds to the intuitive notion
“hat the receiver is less well informed as a result of receiving the signal.

The definition (A 1) is very similar in form to the physical concept of entropy ;

‘he physical connection between ‘information ’ and entropy has been investigated
“Xtensively [43,44].

Appendix 2
The matched and least Squared deviation filters

Denote the irradiance in the ‘ pseudo-object * and in the final image by s,(x),
<(*) and their amplitude spectraby S, (v), Sy(v), respectively, the noise irradiance
‘nd its amplitude spectrum by #(x) and Ni (v), the mean Wiener spectra corres-
‘onding to s, and 7 by W(v) and the filter function by T(v)= Ty(v) exp [i2(v)],
“here Ty and ¢ are both real. Note that

WD'—‘_*?oas W,= N2 (A1)
We now seek the filter function maximizing the signal to noise ratio at point x,.
-0 do this we write the signal level as the Fourier transform of the signal spectrum

7d, assuming the noise to be stationary, the noise-level-squared proportional to
“e integrated noise spectrum:

2
) ' f SoTexp (i2mv . x,) dy

7 (x;)? o

(A2)
k f W, T2 dy

e do this for the case where Wa(v)=W, is constant over the range of Ty
“en the filter function maximizing R will be identical with the one maximizing :

.J.SoTexp(z'va.xl)dv‘g/[fwodv T,2d ] (A24)
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Now, combining the triangle and Schwarz inequalities:

|[roveas|" <[ [iruenis] s [ifcopdslewrax,

with the left-hand member attaining its maximum value—namely equality with
the right-hand member—when f(x)=cg*(x). Applying this result to equations
(A 2), we find that R is maximum when

T=S,*exp(—i2nv.x) (A3)

and that this is the filter function maximizing the signal to noise ratio at x;.
The filter minimizing the squared deviation can be derived readily even for a
general noise spectrum. Note that

Sp=(S,+N)T- (A4)

Therefore the integrated mean squared deviation may be written:

B~ [Gomne) = [ (o= SeP

=j|so(1-T)-NT|2d2v. (A5)
If signal and noise are totally uncorrelated:
E=J‘(|_S;]_2|1—T|2 + [NB|TJ) @2
_ J' [W, (14 Ty — 2T cos £) + W,Ty2] dv.
For minimum E, cos# must equal unity and
E= J[(Wn + W) Ty = 2W, Tyt W,] .

Completing the square of the terms involving Ty:

e [(vomemr- ) (- )

- [[(Vorr ot - o) + o) @ @)

The term in parentheses—the only part of the integrand depending on
T—cannot be negative, therefore E will be a minimum when that term vanishes,
yielding for the desired filter function:

—— Wo‘
W+ W,
When this condition is met, the mean squared deviation will have its minimum
value as given by the last term of the integral of equation (A5):
WW,
A

T (A6)

. (A7)

Emin Y
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If the signal has passed a filter T, before the noise is added, equation (A 4)
will become :

Sy=(S,T,+N)T.
We may write this in the original form :
Syp= (S, +N)TT: T,#0,

by putting 7, = T,T and N=NJT,, T,#0. With this notation the previous
analysis applies and equation (A 6) becomes:

W

Tpp = 2 = TyT,
= W0+ (WD/TO TO*) =
and
W, W,T *
Tp= > = AR 7,0,
T WIAWITE T WL, T
T = 0, TO Eé 0.
Similarly, equation (7) becomes :
* W,w,
= it g B
men Wi + Wn d V,
where we have written W, for the Wiener spectrum of the intermediate image:
Wi = WDIT 0 F

and the integral extends only over the regions where T,#0.

Beaucoup de techniques ont été appliquées pour le renforcement des images. On passe
rapidement en revue certaines d’entre elles. Il convient de remarquer que beaucoup
d’entre elles peuvent &tre classées sous la rubrique  filtrage linéaire °.

Afin d’évaluer un procédé de restitution de I'image, il faut avoir des critéres quantitatifs
pour la qualité de celle-ci. On passe en revue les critéres applicables aux systémes destinés
a transmettre I'information. On remarque que beaucoup de domaines d’application
peuvent étre couverts par deux critéres relativement simples: rapport signal sur bruit et
€cart quadratique moyen.

On examine l'optimisation de I'image du point de vue du moindre carré de Pécart
lorsqu’on considére 4 la fois des filtres linéaires et un changement d’échelle, Ce dernier
est traité assez en détail. On Propose le terme °restauration de I'image’ pour désigner
les efforts pour minimiser Pécart quadratique de l'image par rapport 2 sa version idéale.

Es sind verschiedene Verfahren zur Bildverbesserung beschrieben worden. Einige
davon werden hier kurz zusammengefasst. Viele davon fallen unter das Stichwort * lineare
Filterung °. !

Zur Beurteilung der Verfahren zur Bildverbesserung bedarf es eines quantitativen
Bewertungskriteriums. {Jber die Kriterien, die auf Systeme zur Infonnationsﬁbertragung
angewendet werden kénnen, wird ein Uberblick gegeben. Man stellt fest, dass ein weiter
Anwendungsbereich von nur zwei, verhiltnismissig einfachen Kriterien gedeckt wird:
dem Verhiltnis vom Signal zum Rauschen und die Abweichung vom quadratischen

Mittels der Methode der kleinsten quadratischen AbWeichung wird die Bildoptimierung
behandelt fiir die zwei Fille der linearen Filterung und der Massstabsinderung. Die
letztere wird ausfithrlich untevsucht. Der Ausdruck ¢ Bildverbesserung > sollte dem
Bestreben, die quadratische Abweichung des tatsichlichen Bildes von der Vorlage klein
zu machen, vorbehalten bleiben.
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