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A simple relationship is derived to facilitate the calculation of system signal-to-noise ratios when those of the
components are known. This leads to particularly simple forms in certain electro-optical systems.

1. Introduction

Modern electro-optical systems are often com-
posed of a series of linear components each a source
of a significant amount of noise. We derive here a
simple relationship facilitating the calculation of the
combined effect of these sources. For brevity we
refer to the noise-to-signal power ratio as “specific
noise”.

2. System noise

Noise power may be defined as the variance of the
noise value. The noise power in the output may then
be calculated as the sum of the noise powers con-
tributed by each component. This contribution, in
turn, is obtained as the noise power as generated at
the component multiplied by the power gain of the
subsequent stages combined. Thus the total system
noise power is

where W, : is the mean noise power generated at the
jth stage, g; is the gain of the jth stage and m is the
total number of stages.

If we denote the output signal power by Wy we

can write™ for the specific noise, R—2,
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where R}_—Z is the specific noise generated at the jth
stage. The last step follows from the fact that

2
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represents the signal power at the jth stage. Thus the
value of the system specific noise equals the sum of
the values of the component specific noise.

Note that signal levels and gains do not appear ex-
plicitly in this formula, although they are likely to
enter in determining the individual specific noise values.

3. Representative noise sources

Since quantum noise sources play a major role in
electro-optical systems, we discuss these here in some

¥ We use the symbol R % for the specific noise to be consis-
tent with the use of the symbol R for the (amplitude) signal-
to-noise ratio.
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more detail to illustrate the above result. The statis-
tics of many of such noise sources may be represented
by the binomial or by the Poisson distribution.

In this context the binomial process may be viewed
as having a gain which varies randomly, having the
value unity with a probability g and the value zero
with a probability (1 — g). The mean value of the
gain, too, is then g and {hf: value of the variance
£(1—g). The variance (c ) of the gain, i.e. the vari-
ance of the output for a smgle quantum input, is then
given by

0% =8> &l -g) e

for Poisson and binomial processes, respectively,

To obtain the variance with a number 7 of identical
input quanta, we use the fact that, for independent
random variables, the variance of the sum equals the
sum of the variances (see, for example, ref. [1]).

Since the variances are equal for the » incident quanta,
the variance of the sum equals # times the variance
for a single quantum, Thus

R = o} In} = (lg)og, In?
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where n; =n iG; is the number of signal quanta at the
output of stage j, n; is the number of quanta at the
system input and

I
G}. = kUl & is the cumulative gain through stage j.

Using (2) we find

R;Z =1Gn, (1-g)Gn, )

for Poisson and binomial process, respectively,

Specifically, if there is a series of m, consecutive
components which may be treated as following bi-
nomial statistics, their combined specific noise may
be represented in terms of their total gain (G = G,),
as
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where n, = Gn, is the number of quanta at the system
output, and GU = 1. In the sum (5), each term (1/G))
is canceled out by the following (1/G;_, )-term, ex-
cept for the first (1/G;_y = 1) and the last (1 /G

1/G). Thus (5) becomes

R;szinom) =1 -G)/ny, 6)

ie., the series of components may be treated as a single
component with a gain equal to the product of the
component gains.

If the series is headed by a component following
Poisson statistics, this eliminates the G-term in the
numerator, so that simply

R;Z(Poisson — binom) = n;’ 1 Q)

Obviously this approximation is valid also when-
ever G < 1. This fact broadens the applicability of
(7). To illustrate: light from a distant object entering
an objective lens (binomial, g < 1) which images it at
the input surface of a fiber bundle (binomial), con-
ducting the light to a photocathode (binomial (?)),
constitute such a series. If this is followed by a phos-
phor with quantum gain, &p» the temporal specific
noise, overall, will be simply

R2=(g, +1)/ng, ®

where 7, now is the number of photons radiated by
a single image element during the integration period
of the detector.
On the other hand, for a series of m Poisson proc-
esses, each of gain m, (4) yields
m -1/G
R;? =ni ? nl &~ /Gy, ! ©)

i i &-1
the well-known relationship for the multiplier photo-
tube.
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