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The 7-dependent dual bootstrap scheme is studied in various cluster models in the j-plane.
The importance of the analytic structure of the input amplitudes and proper counting of the
contribution of intermediate states to the unitarity sum is shown. Certain counting proce-
dures that correlate clusters and gaps in rapidity lead to integral equations which are not of
the usual Chew—Goldberger—Low type. It is these counting procedures that may lead to a
self-consistent bootstrap scheme (i.e. no cuts in the output amplitude). Some problems related
to the roles of the reggeon-reggeon amplitudes, both in the planar bootstrap and in the cal-
culation of the pomeron, are briefly discussed.

1. Introduction

Much progress has been attained in the dual bootstrap programme [1-9]. Reason-
able values for various dynamical quantities (i.e. reggeon intercepts and slopes, coupl-
ings) have been calculated analytically or numerically. The purpose of the programme
is to implement (i) consistency between the input and output Regge poles (i.e. a
bootstrap without cuts [8]) constrained by planar unitarity; (ii) duality constraints on
production amplitudes, in particular, finite-energy sum-rules (FESR); (iii) ‘clusters’
with a variable mass spectrum or equivalently, a variable extent in rapidity; (iv) no
double counting conditions (NDC) of either a dynamical or a kinematic origin; (v)
reasonable #-dependence and structure for triple-reggeon couplings. The hope is that
the input with the constraints mentioned here may be sufficient to allow the deter-
mination of the essential features of scattering amplitudes including the pomeron con-
tribution.

As for the j-plane content of the bootstrap scheme, there are still open questions
regarding the inclusion of clusters of finite extent in rapidity and NDC. Until now,
the only known consistent (i.e. no cuts) j-plane model has been constructed with zero
rapidity extent clusters [8] (for particle-particle and reggeon-particle amplitudes).

In this paper we focus attention on the issues of NDC and cluster size. Working
within the framework of the dual bootstrap programme, we use multi-Regge kine-
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matics in rapidity variables, factorizable exchanges and FESR over clusters. Only s-
channel constraints are studied. Internal quantum numbers are not discussed. We find
that the choice of NDC crucially affects the nature of the resulting integral equations
and hence also the consequences of the bootstrap scheme. Some common choices of
NDC (which may lead to the Chew—Goldberger—Low type [10] equations) cannot
meet all the consistency criteria; others may do so in very restrictive cases. We intro-
duce a new NDC (leading to integral equations not of the Chew—Goldberger—Low
type [10]) that leads, for arbitrary cluster size cut-off, to an internally consistent scheme
namely, pure Regge pole to Regge pole bootstrap with no cuts introduced at the planar
level. This NDC correlates clusters to adjacent reggeon exchanges in a simple but non-
trivial manner. The condition that determines the position of the Regge pole coincides
with the Rosenzweig—Veneziano condition [5]. Some ambiguities that may occur in
calculations with only zero size clusters are resolved. For other choices of NDC, self-
consistency seems unlikely and the bootstrap condition on the triple-Regge couplings
depends on the cluster size cut-off.

In this paper we study only the J-plane structure of amplitudes. A detailed study
~ in the energy plane will be published elsewhere.

In sect. 2 we describe the general dynamical picture and established the kinematic
approximations, analytic assumptions and notation.

In sect. 3 we briefly illustrate that some of the basic problems discussed later on
are encountered already in the one dimensional case (no f-dependence). Similar prob-
lems are encountered in ¢-dependent bootstraps with NDC that do not explicitly cor-
relate clusters and adjacent reggeon exchanges. As an example, we discuss in appendix
A the NDC of maximal cluster size (L) and minimal rapidity gap (g = L) between
clusters. In this case, unless particular ad hoc assumptions are imposed, the Rosenzweig—
Veneziano condition [5] is not obtained, cuts cannot be killed at the planar level, and
the usual one-dimensional limit [11,12] is not attained. Furthermore, these ad hoc as-
sumptions are incompatible with the usual expectation for simple pole dominated am-
plitudes.

Sect. 4 deals with the simplest NDC with gap-cluster correlations, and contains the
main results of this paper. In this section, we consider a NDC which correlates clusters
to adjacent gaps in an asymmetric manner. For arbitrary cluster size cut-off, the result-
ing bootstrap condition is that of Rosenzweig and Veneziano [5]. Cut-killing is readily.
obtained.

The need for caution in certain calculations involving reggeon-reggeon amplitudes
is motivated in appendix B. We also leave to appendix C, some details regarding a sym-
metric NDC correlating gaps and clusters. We find that the desired factorization prop-
erties of the output amplitudes are easily generated by the unitarity equations despite
the correlations between adjacent clusters. Although the overall consistency (i.e. no
cuts) remains an open problem, there is in general an L -dependent bootstrap condi-
tion on the couplings. For L = 0 overall consistency is achieved. We show how sen-
sitive the bootstrap scheme is to deviations from the proper analyticity assumptions
for the input amplitudes.
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Sect. 5 is devoted to a few remarks related to the conventional [2] calculation of
the pomeron amplitude.

We conclude in sect. 6 with a few summarizing remarks.

2. Dynamical picture, kinematics and notation

As is usual in the dual bootstrap scheme [1,2], we start with the planar s-channel
unitarity relation for the reggeon part of the elastic scattering amplitude:

I At (5 0) = 20 A Ay () Aty n(@r). @.1)

The summation is over all possible intermediate states n; A, ., denotes the planar
component of the production amplitude. Multiparticle amplitudes are “sewn” to-
gether in a planar fashion. §2,, denotes the intermediate state phase space. Internal
quantum numbers are not considered. We want to impose duality constraints on the
amplitudes in (2.1) in terms of finite-energy [13] or finite-mass sum rules [14] (FESR,
FMSR). For the left-hand side of eq. (2.1), this requires

i (B)+K+1 '
f ds K Im Ay oy, 1) E SRR Fl0Fio . )

where § is sufficiently large so that, for s> 7§, a simple Regge-pole description of
the amplitude is a good approximation; a;(¢) are the corresponding Regge-pole trajec-
tories and Fy,(r), F4(¢) are the couplings to the external particles.

For the application of duality constraints to production amplitudes , it is conve-
nient to describe the intermediate state in terms of the longitudinal rapidities * of the
particles and momentum transfers. The total available rapidity is ¥ = In(s) and the
particles are arranged along the rapidity axis. In order to average over finite ranges in
rapidity (i.e. over finite subenergies in the intermediate state) we choose a rapidity
cut-off L, and divide the intermediate state in a given event into groups of particles
occupying rapidity ranges (from now on called clusters) with sizes ranging up to L.
One possible division (which corresponds to the model discussed in sect. 4) is the
following one (see fig. 1): start from one edge of the rapidity axis (say, b). Include
in the first cluster as many particles as possible such that the distance between the
last particle rg in the cluster and b does not exceed L, but the distance between the
next particle /; along the chain and b does exceed L. The size of the first cluster is
denoted by L. The second cluster begins with /; and is defined in a similar manner.
Its size is denoted by L. Across the non-negative gap g, between the two clusters,
we assume reggeon exchange. Carry out this division along the chain until the other

* The whole formalism can also be described in terms of invariant mass variables. Only the
multi-Regge approximation is essential.
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Fig. 1. Grouping into clusters of the intermediate state particle configurations. This particular
grouping corresponds to the asymmetric NDC of sect. 4.

edge of the rapidity axis is met. In principle, a single Regge exchange across a gap is
a good description only when the gap is large. For small gaps, in a dual theory, one
should include an infinite number of poles. We adhere to the single pole approxima-
tion since it turns out that including more poles does not alter the conclusions.

The phase-space integration over particles within each cluster is performed and
the r.h.s. of eq. (2.1) is described in terms of the cluster phase space and the produc-
tion amplitudes for NV + 2 clusters. The resulting unitarity equation is depicted in
fig. 2, where to each gap g; we attach the corresponding momentum transfers I;', t.
Apart from the Regge exchanges across gaps, we are left with the discontinuity across
the cluster production amplitudes.

Note that when summing over all particle configurations in all events, one should
avoid double counting in terms of the cluster contributions. Therefore, the N + 2
cluster phase space must explicitly include a no-double-counting condition (NDC).
The NDC should guarantee that the contribution of two adjacent clusters is not con-
fused with that of a single cluster over the same rapidity range.

Assuming multi-Regge kinematics, the N + 2 cluster phase space becomes:
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Fig. 2. Planar unitarity in terms of intermediate clusters.
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Notice that this [NDC] factor corresponds to the counting of events discussed earlier.
In the preceding discussion the cut-off L is used for the averaging over low sub-
energies. It may be viewed as the analogue to the usual cut-off in two-body FESR (eq.
(2.2)). Therefore, L need not have an inherent dynamical significance and may serve

as a mere bookkeeping device. The [NDC] factor is part of the definition of phase
space, as in eq. (2.3). One may then expect the bootstrap constraints to be indepen-
dent of L.

On the other hand, L might have some physical significance in certain theoretical
models where there is a dynamical significance to the intermediate “‘cluster states”.
For example, if hadronic production is assumed to proceed vig narrow resonances
with Regge exchanges, then L should be related to the range within which the nar-
TOw resonance approximation is valid [2]. As another example, suppose one views
cluster production amplitudes (fig. 2) as duality diagrams with quark lines. If the
latter are interpreted as actual quarks (partons), the ‘clusters’ are qg pairs. In this
context, L represents the maximum extent in rapidity of a qq pair stable against
vacuum polarization. Once the separation between a quark and anti-quark exceeds
L, quark confining forces cause the filling in of their separation with additional qq
pairs [15]. L will affect the qq pair multiplicity [16] (i.e. the distribution of par-
tons in the sea). Here one expects an L dependent bootstrap condition.

In models with “dynamical clusters” certain constraints on input cluster ampli-
tudes usually occur. Although they are of a different nature from that of the kine-
matic NDC discussed earlier, we shall denote all such constraints by the same label,
NDC (effectively, the constraints we discuss are multiplicative factors in the unitarity
integral).

Let us list in order of complexity the NDC to be studied here, with reference to fig.
2 where the unitarity equation is represented in terms of clusters (which may be of
either a dynamical or a kinematic nature):
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(i) fixed size clusters (L; = L) without overlap, sect. 3; (2.52)
(ii) maximal cluster size (L; <L) and minimal gap size (g; > L),
appendix A; (2.5b)
(iii) asymmetric NDC: L; <L and L;_; +g; > L (or alternatively,
g +L;=>L),sect. 4; (2.5¢)
(iv) symmetric NDC: L; <L and L;_y+g+L;>L,appendix C. (2.5d)

Of the four NDC mentioned here, only condition (iii) corresponds to the proper
counting of events as discussed earlier. Conditions (i) and (ii), if interpreted as phase
space counting procedures do avoid double counting at the expense of leaving out
some allowed configurations. These two constraints correspond to models in which
threshold effects are explicitly imposed on input amplitudes. Condition (iv) does
not avoid double counting. At the equality point (L;_; +g; + L; = L) two clusters
can be confused with a single one. This NDC has been proposed [2] as an a proxi-
mate way of implementing no double counting in the duality sense.

Thus, conditions (i), (ii) and (iv) correspond to dynamical pictures in which the
missing or doubly counted configurations are presumed to be negligible. Condition
(iii), which corresponds to the assignment of clusters discussed earlier (see fig. 1)
counts all phase space configurations once and only once. In the spirit of multi-Regge
kinematics, we neglect (t,.i Imin effects explicitly; however, most NDC that we im-
pose involve some repulsion between clusters. (rl? )min effects are of a similar nature
and so may be partially accounted for.

In order to formulate in the J plane the bootstrap on the amplitudes shown in fig.
2, we perform the Mellin transform

f dYe 'Y Im Ay (Y, )= (bIAU, 1)|a) . (2.6)
0

The effect of the Mellin transformation on the cluster phase space integration (see
eq. (2.3)) gives a factorized (modulo the NDC) product of transforms over cluster
lengths and gaps. The shape of the resulting integral equation will depend on just how
the NDC, the FMSR for cluster four-point functions (or factorization properties of
the Mellin-transforms over clusters) and the transforms over the reggeon exchanges
across gaps combine.

Among the quantities we shall encounter are transforms of the reggeons exchanged
across gaps. These reggeons are assumed to be simple poles so that

[ dge s (g 1) = X, ) T &)
g

where X(g, t*) is the function describing the two-reggeon propagator and

a () =at) +a(t) -1,
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XU, 1#) = cos[m(o(*) — a(tNI/U - ae(r)) . (2.8)

The (cut-otf) Mellin transforms over the discontinuity of cluster four-point functions
in the input amplitudes are denoted

B I
GG e = f dL 16, ety (29)
0

where 7, r;! display the dependence on the reggeon legs attached to a cluster. For
end clusters, the appropriate legs are replaced by the particles. The triple-reggeon
couplings buried in such transforms will be denoted by F(t*, £). We do not have at
hand the explicit analytic structure of the input amplitudes. Instead, we demand
forjhe full (Mellin-transformed) output amplitude (li;f(.f, )| r} and the Born term

(1| AL(J, 1)| r), the following relation which follows from the simple pole dominance
of the amplitude (and hence is also implicit in FESR and FMSR):

Fe)F.(1) e LU—a®)
e

Here / and r may be external particle or reggeon legs. Whenever FMSR are encountered
we shall make explicit assumptions on their form.

Let us stress at the outset that because of the simplicity of our approach some of
the possible complexity of various Mellin transforms over four-reggeon amplitudes
is not apparent.

We shall see that some of the NDC (2.5) have the same one-dimensional limit as
the original Huan—Lee, Veneziano bootstrap [11,12]. NDC (2.5¢) also naturally gen-
erates the Rosenzweig—Veneziano bootstrap condition [5]:

LA, 17— 1AL G, 1 = (2.10)

1= fag* F D K@, )

o) -a(r) oY

3. Self-consistency in models with no gap-cluster correlations

Consider the simple example of a one-dimensional (i.g. no ¢ dependence) model
having L =0 [11,12]. In calculating the unitarity sum of fig. 2 one substitutes for the
input exchanges and cluster amplitudes

1
J—a.’

C

XU, )~ a.=2a—1,

GIGLE, ) >g%,  @IGLU,0)lar g2y,
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(t1GL (7, 0)la) > g2s, . @.1)

One then finds for the output amplitudes:

2
- L g0 —ap)
(r}i AWJ,0)[2) :J__ 02 , (reggeon-reggeon) , (3.2a)
= gns
2
- g Sz(.)r— Ot.)
(t[ii A(J,0)|a) = J—; 5 (reggeon-particle) , (3.2b)
— CE2 — 2=
4 2
" _ 5 g's) : ;
(b|A(J,0)lad=g"s) + —————, (particle-particle) . (3.2¢)
J— o, —g2s

The bootstrap constraint requires that atJ = «, these amplitudes have a simple pole
with a residue equal to g2. This gives

1 1
g2=(cx—ac)2=(1—a)2, S=S2=a—aé=m’ (3.3)
so that
N - — 2 (J-a)
AR(J)E(!?[A(LO)“:): <II_|AU’0)|E)=U{—Q)(Q—7;) ) (3.4a)
©
+ P
(bIA(J,0)|a>=g 5 +T:'—& (34b)

Note that complete consistency necessitates the inclusion of the ‘finite-energy sum-
rule’ factors s, 5y, 55 # 1 for @ =~ 3. The full amplitudes have not just a simple pole
but also include some smooth terms. It is important to notice that the FMSR fac-
tors s, 55 depend on the reggeon legs attached to the clusters.

In the usual construction of the cylinder (bare pomeron) through iterating reg-
geon amplitudes and twisted propagators [2] (as in fig. 3), it is the full amplitudes
(eq. (3.4a)) that must be used to get the simple Huan—Lee, Veneziano [11,12] result
ap =1 for the pomeron intercept from the relation

- (TR - (IR

Fig. 3. Conventional calculation of the pomeron by the iteration of planar amplitudes.
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The naive substitution Ay (/) = g2/(J — @) gives instead [18]

(7| Ap(J, 0)1£5) = (3.5)

(0p — 1) (ap — &) — g2 =0. (3.6)

Here ap(0) does not equal one if g2 is determined by the reggeon bootstrap condi-

tion of eq. (3.3). The only way to get ap = 1 in this case is to give up the bootstrap
constraints on g2! We see that the simple counting of diagrams [11] corresponds to
the strict use of the reggeon bootstrap conditions at the pomeron level as well.

In order to demonstrate the degree of complexity involved in averaging over
clusters of non-zero maximal size L, consider the NDC of eq. (2.5a) in a one-dimen-
sional model [17].

In this case, the input entities are:

~T _JI > 1
GG 0,01 -g2e LD, X, ) o % (.7)
Consistency at the pole of the reggeon-reggeon amplitude requires:
Dg? ool fle—a)=1, (pole position) ,
20—2al p2
g“e D%f(a—a,)
— ot (residue) . (3.8)
L+g2De L /(o — a)?
Hence,
- (a—a)?
D=¢L[L +(a—-a)] , = (3.9
R T e )

The the bootstrap conditions depend on L. This is characteristic of most simple boot-
strap schemes with clusters. Only particular NDC may lead to an I independent
bootstrap.

Using eq. (3.9), we find an output reggeon-reggeon amplitude of the form

(@- ) - a)e"LU-a)

Agr) = .
B o, —(a—a)eLU-9

(3.10)

Notice that although consistency at the pole is satisfied for this particular NDC, the
resulting amplitude has additional singularities (pairs of conjugate complex poles [17,
18]) unavoidable in this model. Such complex poles are the analogue of cuts in models
with #-dependence.

Both simple models that we have studied in this section suggest that the ampli-
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tudes resulting from bootstrap schemes have not only simple poles but also require
some additional smooth functions of J. It is also evident that care must be taken
when calculating the pomeron.

Rather than beleaguer the reader here with yet another complicated (and unsatis-
factory) model, we defer to appendix A the discussion of a z-dependent bootstrap
with the NDC (2.5b) imposing a minimum gap 6(g; — L) in addition to a maximum
cluster size 8(L — L;). Internal consistency for this scheme is unlikely (and in certain
instances impossible).

4. Gap-cluster correlations via NDC

We now consider the NDC of equation (2.5¢). That is, for a given cluster of length
L; and one adjacent gap (always to the left or always to the right) one of the follow-
ing conditions should be satisfied * (see fig. 4a, b)

L +g=>L (4.12)

e . e
R s e m e b

o 7 - Sl i i
D i A m v m e

e S i Al el

(c)

Fig. 4. Introduction of asymmetric NDC for the particle-particle amplitude: (a) starting from
the left-hand side; (b) starting from the right-hand side; (c) with NDC affecting both end-clusters.
In each case the shaded cluster appears “unconstrained” by the NDC.

* After completion of this work, we learned of the related work by Finkelstein and Koplik [19]
for a simple one dimensional case. Qur input analytic assumptions (i.e. FMSR) differ signifi-
cantly from theirs; they assume an explicit cluster spectrum in rapidity that neglects the low
mass (i.e. small rapidity extent) behaviour of cluster amplitudes. Thus we do not run into the
difficulties that they encounter in achieving consistency.
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or

Superficially, some double counting seems to occur at the equality points. For
example in fig. 2, the two cluster configuration {Ly+g{ =L and L; =0} overlaps
with a single cluster of length L. Although it affects only a zero measure part of the
cluster phase space integrations, care is required. Finite contributions to the unitarity
integral arise from configurations involving single-particle intermediate states (L =0
in our language).

With NDC (4.1) we shall show how the Rosenzweig—Veneziano bootstrap condi-
tion [5] and the Bishari—Veneziano cut-killing mechanism [8] are naturally generated
for arbitrary L (without ad hoc asymmetries required in output amplitudes). Let us
apply condition (4.1a) beginning at the leftmost cluster. This leaves the last cluster
on the right on a different footing than all the others (see fig. 4a). Undoing a few
integrations from the left, we find the following integral expression for the output
amplitude:

| L
AAG, OIn - WAL 0= [dgt [ dLge™ o 16w, 1D
0

X [ dgye 81V Dx(gy, 0Ly +gy - D)< EIBU, DI (4.2)
0

Here / and r can be either external particle (I = b, r = a) or external reggeon (I - tf ;
r = t;) legs. Performing first the g; and then the Ly integrations *, one finds

B I B
WAC, 1 — ARG, 010 =[5t [ [ dLe” e tIG(Ly, plet)e LV o)
0

X XU, £)(t{|BU, )Ir) . (4.3)

(s |B(J, £)|r) satisfies the recursion relation
~ ~T Z L T,
(t11BU, DI — 1BLG I =[dg3[ [ dLye S UAIGEy, e TV e
0

X X, 5)<5|BU, n) . (4.4)

One might be tempted to identify (tf |B(J, £)|r) with an amplitude that has free
external reggeon legs on the left (i.e., the output amplitude <rf|A(J, )| r)), but this

* This is the proper order to easily implement the NDC and also count all possible configurations.
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is not justified in general. The “amplitude” (£] |B(J, )| r) is only defined within the
context of the unitarity integral, and is affected by the overall energy conservation

& function of eq. (2.3) in an asymmetric manner. This point, which is unimportant
as long as one assumes that the input amplitudes are regular at threshold (L = 0), is
very crucial once proper analyticity is taken into account. As we shall show, the dis-
tinction between (ﬁ |A(J, B)|r) and (ff |B(J, £)|r) may be relaxed in the discussion of
reggeon-particle amplitudes with internal consistency still achieved in a restricted
model. This is not the case for reggeon-reggeon [26] amplitudes. In appendix B we
show how confusion of the two entities leads into inconsistency. However, from
(4.3—4) follows the relation

E\BU, DIN = E1AT, 1) — (1 ALE, DI+ EIBET 1 4.5)

Notice that with the NDC discussed here there is no need to explicitly separate
the two cluster term (as in the case with the NDC discussed in appendices A, C). In
egs. (4.3, 4.4),the cut-off transforms over discontinuities of input cluster amplitudes
are converted into FMSR as direct consequence of the NDC.

We assume the FMSR:

£ e R, DF, (1) €%

[ azge o etioy, play=—2"10 ;

0 €l

A F(&, D Fy(f) ek @)

[ dLge % @IG(Lg, = — , (4.6a)
0 C1

L I ef(u-acz)

[ dLe N GIGy, 16 = B, ) F(E, ) —— (4.6b)
; : 0~

Eq. (4.6a) is in accord with the usual FMSR properties of reggeon-particle amplitudes
[14] in planar dual theories. Our guess for the form in eq. (4.6b) of the relevant
FMSR for reggeon-reggeon amplitude seems natural and a confirmation in the con-
text of dual theory will be published elsewhere [26]. Notice that the “asymmetry” in
the FMSR stems naturally from the NDC and does not raise the problems encountered
wiht the symmetric NDC of appendix A. We stress that the analytic assumptions (4.62)
and (4.6b) specify particular integrals (i.e. FMSR) over amplitudes and not the de-
tailed form of the amplitudes themselves (which are rather complicated). Because the
amplitudes also satisfy higher, integer moment FMSR it is misleading to approximate
the amplitudes by explicit functions that may be consistent only with (4.5a) and
(4.5b). If the B,, of dual models is viewed as a prototype of dual amplitudes it is ob-
vious that one particular moment FESR does not reveal the complicated singularity
structure of an amplitude.

The assumed form of the r.h.s. of eq. (4.6) needs some clarification. The lower
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limit of the integral, L = 0, corresponds to the threshold of the cluster amplitude.
Rapidity is used merely for convenience. In fact, the NDC (4.1) may be expressed
in terms of ratios of mass variables, and the integrals in eq. (4. ;should be mterpreted
as FMSR over discontinuities of amplitudes from threshold (M) up to w? ’““M hel.
It is in this sense that we assume for the FMSR the form they acquire in the Dual
model [14,26]. If one insists on interpreting (4.6) as integrals down to L = 0, the ab-
sence of a lower limit term in the r.h.s. corresponds to a singular behaviour at thres-
hold. This may be considered as a simulation of the singular contribution of single
particle intermediate states (in our language a zero size cluster is not empty).
Calculating for example, the J-plane structure of the two-cluster amplitude one
finds that independent of whether the leg on the right-hand side (7) is a particle or a
reggeon the Born term of eq. (4.4) is:

R, 0 F () { I-ay

+ 5T =
(1B*(J, I e

—e Z(J_“J] . 4.7

o - o

Thus, NDC (4.1) FMSR (4.6) and the overall energy conservation constraint determine
the form of (t“IBL(J 1)|r} irrespective of the precise form of the free-leg Born terms
1| AL(J £)|r) which never enter into the multi-cluster (n = 2) umtanty integrals. The
asymmetric form of eq. (4.7) stems from the fact that only the 1”‘ leg is constrained
by the unitarity integral while the  leg is not.

Using eq. (4.6), egs. (4.3) and (4.4) now become

WA, D10 — WAL, 5|

- X0
=Fi(t)e” LW )fd¢,lF(t1, r)( %) (f |BU, )l , (4.8)
(1B, 1 — (e 1BLU, o)ln
_F(r- e LU-‘*)qusztrz, t)( L ) (:2|B(J Hlry. (4.9)

The resulting solution for (#] |B(J, ©)|a) is:

B, )1 —(EBE, ol

+ + f(‘[’ rt) e
fao3 e, 0 o aiz)uiw’*u, HIn

= e_EU_ ‘I)F(t?, f) , (4.10)

1—e LU-917 )
where (see eq. (2.8))
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X(Jr)

C

. FX(¢%, 1) cos[m(a(t") — a(t7))]
Pl e “11)

U, 1) f d¢* (¢, £) 2

Inserting (4.10) into (4.8), we find

QAU HIn - W ALY, HIn

t*)
[ag7Fr;, r) — £ BLU, )

e LU~ : 4.12
’ e l—e—*"”‘“)J(J, 1) e

<rf IEL(J, £)| 7} is a smooth function of J; therefore the only singularities occurring on
the r.h.s. of eq. (4.12) are possible cuts introduced by the loop integrations (recall
the form of X(J, £*) given in eq. (2.8)) and poles at zeros of the denominator.

The bootstrap condition for the pole position at J = a becomes

J=a,)=1. (4.13)

This is identical to the Rosenzweig—Veneziano condition [5] (see eq. (2.11)). Notice
that the only L dependence in the denominator of eq. (4.12) occurs in the factor
¢~LU-9_ Therefore the bootstrap condition (4.13) holds independent of L!
Full consistency requires in addition, both residue matching at J = « and also the
absence of cuts. We now show that both are automatically satisfied. Using eq. (4.13)
in eq. (4.12) gives

1AV, HI» - WAL, H1P

L + + XN(J ri gy T
F()e LU-2 qubiF(q, B al) (1BE@, oI
= ; (4.19)
LX(J, ~
Inserting eq. (4.7) into (4.14) we find
HF(t
WA, HI» — ALY, HIn = f() () e LU-9) (4.15)

Thus, eq. (2.10) is satisfied. Hence with NDC (4.1), FMSR and condition (4.13) it is
possible to obtain an output amplitude which has a simple pole, with the correct res-
idue, no cuts and only some possible smooth J dependence (buried in the Born term
(I IAL(Jr 1)|r)). This is true regardless of whether the external legs (I, 7) are reggeons
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or particles. With the aid of eq. (4.7) the form of (t'i |B{J, 1|7} (eq. (4.10)) becomes

F(t}, DF,(9) [J - “c;] |

(1B, Bylr = ——

o (4.16)

This is the form of the output reggeon-particle amplitude suggested by Bishari and
Veneziano [8]. At the same time, the L = 0 limit of eq. (4.7) is

F(rl_,_ D F, (1)

o -

llm # 1BL@, 1 = ; (4.17)

C1

which is the cut-off Mellin transform suggested by ref. [8]. The simple form of eq.
(4.16) is a possible solution for the output reggeon-particle amplitude (for 7 > a),
which is consistent with the FMSR (4.6a) but not with any higher moments (these
should be satisfied as well). As long as one does not worry about the full analytic
structure of amplitudes (i.e., higher moment FMSR) one may equate (I’IBL(J Hla)
and (rl IAL(J ?)|a) and not run into inconsistencies at the particle-particle and the
reggeon-particle level. Obwous]y, the resulting integral equations become simpler

(eq. (4.8) with B replaced by A). Notice that even these simpler equations are not

of a Chew-—Goldberger Low type [10]. However, the need for a distinction between
(# IAL(Jr H)|£5) and (r, IBL(J | £;) for reggeon-reggeon amplitudes is evident. The
former is symmetric in the external legs while the latter obviously is not. In order to
emphasize the importance of this distinction we show in appendix B how abandoning
it leads into inconsistencies.

To illustrate the importance of the NDC in models with a cluster cut-off I, we per-
form the following trivial exercise. Calculate the particle-particle amplitude from the
reggeon-particle amplitude in a “naive” manner yielding a Chew—Goldberger—Low
equation [10]:

BIAU, Doy~ BIALY, 1)]a)= [ dsibIGE Y, )12 XU, £)(E1EU, ).
(4.18)

Now instead of FMSR (resulting from the NDC) a (unconstrained) cut-off Mellin
transform remains.
Using for the reggeon-particle amplitude the possible form given by the r.h.s. of
eq. (4.16) (this is the form proposed by ref. [8]), and its Born term as given by the
“r.hs. of eq. (4.7) we get

b1 AU, Bla) — Bl AL, )2

F(t)F(0) Ft, 0 X(o, ) T - a
S [ agt—2 1 [

L ~L(J—0)
T—a T—o g :I . (4.19)

(I—C(cl
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Fig. 5. Introduction of asymmetric NDC for the reggeon-particle amplitude with the (shaded)
cluster “unconstrained” by NDC having (a) external particle legs; (b) external reggeon legs.

Fig. 6. Isolation of the reggeon-reggeon amplitude.

This obviously violates eq. (2.10) (the assumption of simple pole dominance of the
amplitude) except in the L = 0 limit. Thus models which are consistent only for
L =0 may be misleading (see also appendix C).

Note that we have calculated in a certain order, namely, the NDC were imposed
so that the rightmost cluster was singled out (see figs. 4a and 5a).

It obviously makes no difference if the calculation is done in the reversed order
(see, e.g. figs. 4b and 5b); or if cluster assignment is started at both ends of the
chain leaving a cluster in the middle singled out (e.g. figs. 4c and 6). However, one
must not confuse the contribution of this “left over” cluster (see figs. 4, 5, 6) with
that of others. Both the energy conservation factor in eq. (2.3) and the NDC on all
other clusters affect this particular cluster. Special attention is required when ampli-
tudes are singular. Of course, dealing with properly defined amplitudes (e.g., in a
dual model) is much more complicated. However, the qualitative features (NDC,
importance of order of integration over internal variables and cut killing) are not ex-
pected to be different. : :

Let us mention the average cluster multiplicity A_r'(}_’) Using generating function
techniques we find

[M(D)/Y] —> - , (4.20)

T L+ [4¢* FAE, 0 X(e )@ a)?
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which is the three-dimensional analogue of one dimensional models [17] where

Ny — (4.21)
Y-= L +1/(1-a(0))

If the cluster size is a physically significant quantity (if clusters are qq pairs, for ex-
ample) then L appears explicitly in various multiplicity moments.
We conclude this section with a few words about two simple symmetric NDC

that correlate clusters with adjacent gaps. Suppose both condition (4.1a) and (4.1b)
are applied to every cluster:

This NDC is not fruitful. First of all, it leaves out a certain part of the possible phase
space configurations. Moreover it leads to a non-factorizable integral equation.

Some interest may be found in the following symmetric condition [2] (minimal
in some sense)

L (+g+L;>L . (4.23)

This NDC allows double counting at the equality points. Condition (4.23) is perhaps
natural when the intermediate states of fig. 2 are viewed as narrow resonances [2]

or as qq pairs. We have examined NDC (4.23) in the one and three dimensional cases *.
Some of this study is presented in appendix C. It turns out that, despite the non-trivial
correlations between adjacent clusters and gaps, the factorization properties of the
output amplitudes are guaranteed by the unitarity equations. The bootstrap condition
appears to be L dependent. Cut killing for L # 0 remains an open question. For

L =0 the model is selfconsistent (i.e. no cuts) and the Rosenzweig—Veneziano con-
straint [S] results (provided the proper input analyticity assumptions are made). Re-
placing the FMSR assumption by an explicit oversimplified form of the cluster am-
plitudes [19,22] yields an L dependent bootstrap condition; however, complete in-
ternal consistency (i.e. no cuts) is impossible in this scheme.

5. Problems in calculating the bare pomeron amplitude

The calculation of the bare pomeron amplitude (or, cylinder [1—4]) is still an
open problem. One major difficulty is that in the usual calculations, the cylinder
amplitude contains, in addition to the leading pomeron pole, a lower-lying pole
with a negative residue that cancels the planar reggeon. A possible way out has been
proposed recently by Veneziano [23] who examined the demands of #-channel uni-
tarity as well as those of s-channel unitarity.

* After completing this work we learned of related one-dimensional calculations with different
input analytic assumptions done by Kwiecinski and Sakai [22] and Finkelstein and Koplik [19].
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In this section we adhere to the “conventional” calculation [2] of the cylinder
whereby one adds up all chains of reggeon-reggeon amplitudes with all reggeon legs
being twisted propagators having no NDC (see fig. 3). We discuss two examples
that show how strongly the pomeron singularity depends on the form chosen for
the reggeon-reggeon amplitude (#;| A(/, £)[2,).

First we consider the choice

Flty, DR, 1) (T - o ) (T - o ) (@+1)
J-a (a—ac‘,)(oc—acr)(.f+l) E 1)

(tflA(J, e =

which continues smoothly into external particle legs to give simple reggeon-particle
and particle-particle amplitudes [8].

The total output amplitude (reggeon+pomeron) with external reggeon legs is
found to be

(- a ) - a )a+ 1)}

R, DA, ‘)[(a_ e )(@—a, )/ +]1)

(1 Agapl, DIty = ——————

el J+1[(J a)fd¢ Pa(r r) f‘f’ F‘*(x t)}

(5.2)

In the loop integrals there is no phase factor cos[m(a(t*) — a(z7))] because the loops
have only twisted reggeons [9]. The pole position is determined by

0=Jp —a- f++11 [(JP )quﬁp(r ’)+f ¢*FZ(’ ‘)]_ (5.3)

Let us study this equa tion at 7 = 0. Assuming the validity of the Rosenzweig—Vene-
ziano condition (eq. (2.11)) and linear trajectories (i.e. a(f) = a(0) + a'f) we find

2
Up — a0 =1-a(0 + fa6* 2 g‘-‘_ D_1-2ds'], (54)

where, of course, d¢* = dstds §(¢" — 7). The remaining integral gives a measure of
the average value of the loop momentum transfer, since without the factor (—2a/t*)
the integral equals unity. Using a reasonable parametrization of the triple-reggeon
coupling [9], the integral is estimated to be ~0.5; consequently Jp o~ 1.62 which is
a rather high bare pomeron intercept. In fact, by neglecting the contribution of the
integral in (5.4), we find a lower bound Jp = 1.37. Note, however, that the ampli-
tude (5.1) could be modified by a smooth multiplicative factor h(/, £) normalized

so that h(J = @, £) = 1. If this function drops by a factor of ~2 when J goes from

a to ~1 then a reasonable pomeron intercept may be obtained.
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The one-dimensional limit of (5.2) does not correspond to the usual diagram
counting form [11]. Identifying F(r*, 0) with the coupling g and using (3.3) gives

N 1dim 22 [(J — a)?/(a — a)?] (e +1)
(£ g .o, 0)] 2 = ; ;
71 4R+, 012D U—apta_1 (5.5)

The lower bound Jp = 1.37 is now attained.

Our second example involves the ‘symmetric sum’ choice for reggeon-reggeon am-
plitude [21]

(1AW, DIy =

i, R, 0 [V, J—a,
: %l:a o o ] (-6)

J—a a—op
r

St

Calculation of the pomeron (again with four external reggeon legs) is rather tedious
but straightforward, with the result:

(&1 Ag+p( DIED
F( HAL, t)[[ J_acr:l"'Zz(&,f)‘F V-0)Z ()

4 _'"'—+ (a— acf) (o — acr)

- o — o
Cf C_,

—E:_Z JE ajzz(f f)}fﬂ a=Z1(0 1) 3210, ) Z5(a, 1)

i
+3Z,(a, ) Z,(J, D}, 5.7
where
Zy{lye S d¢*F { %)’ Z,0, )= [dg* o Fa:ﬁj' (5.8)

The one-dimensional limit of (5.7) is

1 dim g2(J — a.)/(e— o) 282 g2
N = + 5
J=1 J—-1 a-qa,

(/| Ag4p (U, 0)1£5) (5.9)

which indeed has the pomeron with pole position Jp = 1 and residue 22 as found in
the simple Huan—Lee model [11].
In the three-dimensional case, the pole position is determined by

Jl) —a— ZI(OC, f)““ %‘ZI(JP, I) Zz(ﬂ{, t) + %Zl(ﬁ’, f) ZZ(JP’ I) =0. (5.10)

We have studied this equation with the following parametrization for the triple-reg-
geon coupling [9]:
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A, 9= (a—ay ) fett/2HtDI2 (5.11)

where 4, b, f are interrelated through the planar bootstrap. The pomeron intercept
ap(0) and slope cc'P(O) are very sensitive to the values of these parameters. Reasonable
values for ap(0) and ap(0) can be obtained for b/a’ ~ 3. This is somewhat higher
than b/’ ~ 2 suggested in Bishari’s calculation [9] using a reggeon-reggeon amplitude
having only a pure pole and no other J dependence.

Our examples illustrate how sensitively the pomeron depends on the details of
the reggeon-reggeon amplitude. These details include not only the parametrization of
the triple-reggeon couplings, but, more important, the smooth J dependence in
<r§ AW, 1) If) in addition to the pure pole. This smooth J dependence cannot be
ignored as it is usually crucial to the bootstrap of the planar amplitude.

6. Remarks and conclusions

In this paper we have shown how very important the choice of NDC and precise
analytic behaviour of input production amplitudes are for the dual bootstrap scheme
— even in the one-dimensional cases. Consistency requires not only pole position and
residue matching but also the absence of output cuts. Schemes that fail to kill the cuts
may still provide consistency at the pole but usually at the expense of L dependent
conditions. But, to the extent that the cut-off L is viewed as a mere counting device,
the pole position should be determined by an L-independent condition. This view
point is natural in the approach where clusters are chosen as groups of particles with
overall rapidity size up to L. In this case the NDC are determined by the manner in
which grouping of particles in the unitarity sum is accomplished. In particular, the
construction of clusters shown in fig. 1 and described in sect. 2 corresponds to the
asymmetric NDC of sect. 4. If on the other hand, clusters are viewed as narrow reso-
nances or qg pairs, then L may have a physical significance since it shows up in the
cluster multiplicity [16]. For such dynamical pictures of the intermediate states in
hadronic production, the symmetric NDC of appendix C is perhaps a natural choice.

Let us summarize some relevant conclusions and comments:

(i) Care is needed in dealing with singular amplitudes. Keeping track of the sin-
gular nature of amplitudes is also necessary in a simple generalization of the original
Rosenzweig—Veneziano scheme [5] when phase space is divided into three or more
integration regions. Work in progress shows that provided the analytic structure of
dual amplitudes is carefully respected, no difficulty arises in achieving consistency
for the planar bootstrap [26]. On the other hand, if explicit, overly simple, forms
for the cluster amplitudes are assumed difficulties inevitably arise and only approxi-
mate consistency may be achieved [19,22,24].

(ii) The simple NDC discussed in appendix A (minimal gap size, maximal cluster
size) guarantees strict no double counting at the expense of leaving out configurations
with small gaps. Complete consistency (cut-killing included) seems to be impossible.
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(iii) The asymmetric NDC of sect. 4 leads to the Rosenzweig—Veneziano condi-
tion [5] and cut-cancellation independent of the maximum cluster size (for reggeon-
reggeon amplitudes as well). The asymmetry is a mere reflection of proper counting
of events.

(iv) Studying the asymmetric NDC bootstrap in terms of rapidities rather than in
the j plane reveals interesting points whose details will be described elsewhere [26].
(i) Due to the singular nature of amplitudes at threshold, care should be taken in in-
tegrations over cluster lengths and gaps. The natural order of integration over clusters
and gaps (which is the reverse of the order of assignment of clusters) gives the self-
consistent result. If a different order of integration is chosen one may easily lose or
double count some of these singular contributions. (ii) At any given ¥ > L summa-
tion over all terms contributing at that value of ¥ (i.e. number of clusters < [Y/L] +1)
shows that the amplitude minus its Born term has a simple Regge behaviour (e¥%)
provided the Rosenzweig—Veneziano condition [5] is satisfied. Obviously each term
in the sum has contributions (i.e. cut-terms) deviating from this behaviour; but they
are all cancelled in the sum (even though it is a finite sum). Thus the order of sum-
mation is important.

(v) Using the symmetric NDC of appendix C, we found that the unitarity equa-
tions easily accommodate factorization of the output amplitudes. However, the
bootstrap condition is L dependent and cut-killing (if at all possible) is complicated
for L # 0. At L = 0 self-consistency is achieved.

(vi) Testing consistency in L = 0 models may be misleading: it does not necessairly
imply consistency for L # 0.

(vii) Our approach has limitations of kinematic nature in that multi-Regge phase
space is used. Thus, 7,..;, effects are neglected. However, the NDC imply repulsion
between clusters and may partially compensate for 7, effects. We use the “hybrid”
set of variables: rapidity and momentum transfer. However rapidities are easily trans-
latable into sub-energies in the multi-Regge limit. Finally, we assume single reggeon
exchange even across small gaps.

(viii) At least in dual theories the planar amplitude is given, even for small gaps, by
a sum over a countable number of poles. We have studied the effect of introducing
any countable number of poles on the bootstrap scheme. In general, the bootstrap
equations become matrix equations. With the asymmetric NDC we find the same
results as in the single pole case of sect. 4, except for additional orthogonality condi-
tions similar to those obtained by Bishari [25]. These orthogonality constraints affect
triple-reggeon couplings involving reggeons of different intercepts.

(ix) The “conventional” bare pomeron is very sensitive to the precise analytic
structure of the planar amplitudes. Slight alterations introduced by changing the
smooth J-dependent terms of the planar amplitude (these terms are usually necessary
in addition to the pole term) have a significant effect on the pomeron parameters.
However, the calculational procedure of the bare pomeron [2,7,9] used also by us in
sect. 5 does not strictly respect FMSR for the planar amplitudes. The latter play a
crucial role in the planar bootstrap.
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Appendix A
Maximum cluster size and minimum gap size

We consider here a condition on the cluster phase space that does not explicitly
correlate clusters and gaps, namely

0L —L;)0(g; - 2) -

By taking L =g, this condition strictly avoids double-counting but does so at the
expense of leaving out part of the possible phase space configurations (i.e. gaps
whose size is less than ). The unitarity equation for the particle-particle amplitude
is

(b1 AU, B)lay — (b ALY, ey = (BITy, 1, L)lad

- IR BT
+ [ 301G, 01 K0, £y e T 1 FU s Do) (A1)

Similar equations hold for reggeon-particle (reggeon-reggeon) amplitudes.

(b|T,(/, t,L)|a) is the two cluster contribution and (r}"lf(.f, t, L)|a) includes chains
with at least two clusters. The two-cluster term is explicitly separated since, in gen-
eral, when amplitudes are singular at threshold (e.g., if FMSR (4.6) are assumed) it
cannot be written in the standard factorized form:

e = ik =y wr + __J"' +, =T
BIT,0, Dl # [a02b1GLU, 1 X, £)e VT4 (1610, o).

However, its somewhat complicated form can be calculated using FMSR (4.6). The
recursion relation satisfied by {f71T(/, t, L)|a) is

(1T, 1, L)a) =171 Ty, ¢, L)l ad
+ [agiet 1 GEU, DI R, )™ VX170, , Do) (A3)
Eq. (A.3) implies when compared to eq. (A.1) (with b replaced by a reggeon leg):
E1TU, 1, D)y = AU, DIy — 251 41, e . (A4)
Thus, (A.1) is not an integral equation for amplitudes but for amplitudes minus

their Born terms. Demanding that the output amplitudes be simple poles (for Y > L)
we impose eq. (2.10) on the r.h.s. of eq. (A.4) and find
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EOF 0 -
R 050 }_ ; ) e LU= (A.5)

Inserting (A.5) in (A.3) we find

F(t, O F, ()

(G170, ,L)la) =

(F1T,W, t, L)la)

~L(J-a) _

e = - 3 (A.6)
J-a 1—H(J, I,L;rf,a)

where
EIGEU, 1
HU,4L; 1, 0)= fd i niliia i~ 7 fy) e R )F(zl, )
(i, 1)
ey . (EIGLU D2

= [aire, ne H gy L2 T %)

For reggeon-reggeon amplitudes 4 is replaced in eqgs. (A.6—A.7) by a reggeon leg (t ).
The pole position constraint is:

H(e, t,L;t;, a)=H(e t, L; b, £) = H(o, 1, Lig,t)=1. (A.8)

This constraint should be independent of the external legs, but may in general, depend
on L. The residue matching condition is complicated and intractable.

To obtain the Rosenzweig—Veneziano condition [5] (eq. (2.11)) the integrand in
(A.7) must have a peculiar asymmetric form atJ = a. For instance, one of the forms

e(a—ozci)z
@ — 0
(FIGEU =0, 015) = K&, ) F(E, 1) i (A.9)
o= aC:}Z
i 0!02

would yield eq. (2.11). However, (r*[é (/, £)I25) is the cut-off Mellin transform over
a reggeon-reggeon amplitudes with free legs on both sides. As such it cannot be asym-
metric. Note that the L = 0 limit of*this ad hoc form is the z- -dependent analogue of
the one dimensional model [11] discussed in sect. 3.

If one abandons FMSR (4.6) and assumes that the input cluster amplitudes are
smooth function of L, egs. (A.1—6) can be recast in the standard factorized Chew—
Goldberger—Low form [10]. For a simple choice:

GIGET 018 =FE, ) FE, H VLG, (A.10)
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(i.e., external leg dependence only in couplings) one can explicitly show that cut
killing is impossible.

Appendix B
Problems with reggeon-reggeon amplitudes

Much case is required in dealing with Mellin transforms over reggeon-reggeon am-
plitudes [20,21]. Such amplitudes actually depend on many independent variables
and various Mellin transforms (with related FMSR) over the missing mass variable
(or the L variable) can be defined, depending on which of the other variables are
held fixed [20,21].

In this appendix we show why caution is needed in manipulations involving a
cluster that has only reggeon legs and that seems “unconstrained” by NDC (4.1).
Suppose the reggeon-particle amplitude is built up following fig. Sb, leaving the end
cluster with external reggeons unconstrained by the NDC. If one ignores the singular
structure of cluster amplitudes at L = 0, eq. (4.12) reads

(LA Dl ~ AL, D)l

Fy(0) e E0=9 [t 1GL @, 1 ) (s 0 XU, £ o)

= = , (B.D)
1—e LU-977 9

where (f] |BL (, ©)1£3) of eq. (4.12) is not distinguished from the cut-off Mellin trans-
form over a cluster with free external reggeon legs (l‘i |G GL , 9 tt’z

For the Lh.s. of (B.1) one may substitute eq. (2. 10) When eq. (B.1) is continued
inJ to ey (tf |GL(, D] r§> continues into the FMSR (4.6b), then

L(a o) L(a ac,)
~F(£;, 1) Fa(t) [Ftri, 1)F. (r) = ]
C1
e [I=a, 1)
X - . (B.2)
1-e 7 g =a, 1)

Unless I(/ = o, #) has a very pathologicai behaviour, eq. (B.2) leads to a contradic-
tion. Furthermore, the simplest symmetric candidates fail to solve (B.1). These are
the symmetric product [9]:

= F( f)

2 - e P (B.3)

1?

AL -
(1G5 =
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(h(J, £) is a smooth function satisfying h(/ = t) = 1); the symmetric product:

EIGHU, 918y =

F(t}, OF (65, )T — o, T -0,
J-—a [

h(J, ) —e~ LU~ “)] ,

o — Qc o — 0
: (B4)

C2

the symmetric sum [21]

(rf|GE(J, Ol =

.F(T;, f).F(f;, f)I:[J_ &, i e,
J—a

h(J, f) —e~ LU=
a-o. a-a

However the combination

- .. F@, 9RE, 6 I, J—@
(thGL(J» t)lri)z__l_TZ_[hI(J, t)[ 1-I" CZJ

J— e
J-a, J—«
+hy(, 1) 32| 0 —eE-a) (B.6
2% a—ay «—a, 3% : )

is a possible solution of eq. (B.1) provided the following relations hold:

mMUD=1-h@,0I0,0),  hy@ ) =-I0, O +hy(, )P, ). (B.7)

This of course introduces cuts (through I(J, £)) in eq. (B.6) and is therefore not an
acceptable solution (interestingly, for an appropriate choice of h3(J, ?) the reggeon-
reggeon “amplitude” corresponding to eq. (B.6) continues smoothly to the cut-free
reggeon-particle and particle-particle amplitudes of ref. [8]).

These difficulties arise when the cut-off Mellin transform of a reggeon-reggeon
amplitude whose legs on both sides are free is identified with (1B Ly, » 1:}-;_). The
latter is a particular integral over a cluster, which is not directly affected by the NDC
but is affected by the NDC applied to all other clusters and gaps, and by the over-
all energy conservation constraint.

The foregoing illustrates why caution is needed when handling Mellin transforms
(cut-off or not) over reggeon-reggeon amplitudes. The “naive’ identification of
(1BLW, 1185 with (1GL{, 1) £3) ignores certain subtleties related to the analytic
structure of amplitudes. One major subtle point overlooked in such a case is the prob-
lem of guaranteeing strict no double counting (even for zero measure integrations).
Substituting (/1| GL(J, 1)|£5) for (£5|BL(J, 1) t,) in eq. (B.1) one includes a discon-
nected part (corresponding to a situation in which the “left over” cluster is empty;
this never occurs with clusters having external particle legs). This mistake follows
from glossing over the delicacy of integrations over cluster amplitudes which are
singular at threshold.

3
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Note that in the calculational procedure of sect. 4 these subtleties have been
properly handled (by carefully keeping track of limits of integration over cluster am-
plitudes and reggeon exchanges across gaps).

In light of this discussion it is not surprising that the “solution” (B.6) has cuts.

Appendix C
Gap-cluster correlations via symmetric NDC

We consider here the symmetric NDC
Li 1+g+L;>L . (C.1)

Undoing a few integrations from one edge of the chain shown in fig. 2, we write the
following integral expression for the particle-particle amplitude:

(b AU, D@y — (I ALY, Dl = (BITHU, 1)@

E o
* -JL + -z (J+1
+fd¢lg' dLge °<bIG(L0,t)|ri)6f dgre V"V x(gy, 1)

I
X [ dLye Ly ITU 010)0Lg +gy + Ly - L) . (€2)
0

Here (L #{|T(J, £)|a) is a sum over chains ending with reggeon legs on the left and
with the L integration over the first cluster along each chain undone. Its recursion re-
lation is given further on.

Here again (as in appendix A) the two-cluster term has to be separated out. Ex-
plicit calculation (using FMSR (4.6)) shows that all the dependence of this term on
the external legs factorizes out. Otherwise, it is not of a simple form. It has cuts, but
is regular at J = a. The L dependence in i'm‘z and T of eq. (C.2) is suppressed.

Performing the gap integration in eq. (C.2) we find

BIAW, Dl — bl ALY, D1y = (bITy (U, )@

A L
4 + —L,J —LyJ +
-i-fdfPiX(J, q)uf dLle 1 {EfL dLoB 0 (blG(LD,t)lq)
e |

) Foi
AE-L ’ 3 i
4o LLX “Cl}f dLgye L"%'(blc(Lo’ Dz
0

XAL H|TU, Dla) . (C.3)
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The first integral in the curly brackets is just the difference of two cut-off Mellin
transforms over a reggeon-particle amplitude; the second integral is just a FMSR for
which we assume the form given in eq. (4.6a). Thus eq. (C.3) becomes

BIAU, 2 Bl ALY, B2y = I Ty, 1))

-LU-a) & e—(f—L,)(J-ﬂ)
J—-«a -

I
+ [agt X0, ﬁ)ﬂf dLye MR e (“’

& (Z‘-Ll)(‘]-fcl) e(Z—Lﬂ((x—acl)

T a—ag }<L1tiIT(J. fla). (C.4)

We may write this as follows:

N | N -LU-o -
(bl A(, 1)@} — bl AL, 1)|a) = BITH({J, D)+ Fi (D) Eﬁt—ZU,L, La),

(C.5)
where

i

ZU, L, t,a)= f dgt F(et, 0 X0, rj)[

a. L
1 —al +
dLie UL 1T, 02
a_QCIJ 1 1°1

I
_f dL, e—JLI(_r_,lrilT(J, t)la)] . (C.6)
0

A similar relation can be written with the roles of b and a interchanged. Now the re-
cursion relation satisfied by (Llriil T, Hla) is

(L ]ITU, Dla) — (L1 Ty, £)la)

L
= [at X0, ) [ dye M 0@, + L, - D)+ 0@ — L - L,)
2 2 3

x e b BUm e 6 1L, 51TU, Dla), .7

where (L, 17| T5(J, £)|a) satisfies
2 JL o
[ dLy e /L B1Ty0 010 =1 Ty, e (C.8)
0

The reggeon-particle amplitude is constructed as follows: undo in every chain the
first cluster and first gap integrations, cancel the first NDC in the chain, then use fac-
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torization to get rid of all first cluster and first gap factors. It satisfies equations
similar to (C.4-5) with b replaced by an external reggeon. Defining

L g
T 0= [ dL e L IT0 10, (€9)
0

we find

(GITU, Dl =(E1 A0, Do)~ | AL, 1))

F(fi, I)G_E{J_&)

- ZU,L, t,a). (C.10)

=(£;|1To(, Dlay +

A similar equation holds for the reggeon-reggeon amplitude. Thus, the unitarity equa-
tions demand that (recall that the two-cluster term factorizes in the external legs)

c 4L =
1140, z);i}jg(f) GOl _ L9, (C.11)

for I, r being reggeon or particle legs. Thus, all the dependence on external legs is in
the couplings, and the output amplitudes minus their Born terms exhibit the desired
factorization properties.

We do not solve here the complicated recursion relation (C.7). Instead, let us look
at the implicit bootstrap requirement

F(1)=2(0, L, t,a) + (J — )"V | Ty (, )|}/ (F) - (C.12)

At J = @, residue consistency therefore demands

F)= [ EH GRS (R

I z
= = 2 =)
X tim [ =9 dele o“(“1+f dLj[e ali Lg Yo
Joa | @~ Qg 0 )
XL T, Hla) . (C.13)

From eq. (C.10) it is obvious that
(L ITU, Dlay =L IV, ) - &), (C.149)
where (L;7|V(J, f)|a) is a smooth function of J and atJ = a is positive definite for

t=0. It satisfies

I
[ dLye L £V (@, D@ = F@&E, DF, (). (C.15)
0
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Thus eq. (C.13) becomes

—fd*

, Ly 71V (o, 1)la)
! F,(1) : (C.16)

FY#, X
(tlm + [a? F(tl,t)X(a,fl)f arye b

Thus the Rosenzweig—Veneziano condition [5] results provided
£ —alL
dele LKL IV e, 1)y =0. (C.17)
0

At ¢ =0, the integrands of egs. (C.15) and (C.17) are non-negative. Therefore, eq.
(C.17) cannot hold for any L except for L = 0.

Furthermore, one can show that the L = 0 limit of the integral equations of the
present model can be cast in the form of the L = 0 limit of the equations derived in
the model of sect. 4. Hence cut-killing is realized with the symmetric NDC discussed
here, for L = 0. Obviously, the one-dimensional L = 0 limit reduces to the standard
one-dimensional model [11]. For L # 0 the bootstrap condition equation (C.16) is
L dependent. This is in accord with our remark that the NDC eq. (C.1) corresponds
naturally to dynamical models where L has a physical significance and is not a mere
bookeeping device; cut-killing with an I -dependent bootstrap as is the case here is
still an open problem.

NDC (C.1) has been discussed in literature with the FMSR (4.6) replaced by an
explicit form for the input cluster amplitudes [19,22]:

GIG(L, D\k) = F(, D) F(k, £)eLo® . (C.18)

This form correctly describes only the high mass (i.e., high L) behaviour of the am-
plitudes but ignores their low-energy singularities. The solution obtained in the one
dimensional case [18,22] requires an L -dependent bootstrap. Cut killing is impos-
sible. Unlike the earlier example (egs. (C.2) to (C.17)), where FMSR were respected,
here there is no possibility for self-consistency even for L = 0 (the output amplitude
vanishes!).

In conclusion, we see that the input analyticity assumption plays a crucial role.
Moreover, consistency for L = 0 (even when analyticity is respected) does not guaran-
tee consistency for L #0.
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