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Using planar dual amplitudes as a guide, we [discuss some features of reggeon amplitudes
which are relevant in the context of the topological expansion. We look into the analytic
properties and, in particular, discuss the validity of finite-mass sum rules for reggeon-reg-
geon scattering. We investigate the form taken by planar unitarity when a multiperipheral
assumption is added. The integral equations obtained are not of the standard Chew-Gold-
berger-Low type. We find that pure pole-type solutions (i.e. without Regge cuts) to planar
unitarity are possible in a way consistent with the symmetry and factorization properties
of reggeon-reggeon amplitudes. The appearance of “good” FMSR in the unitarity integrals
follows from a careful treatment of phase space — all possible configurations are counted
uniquely — and is crucial in achieving the cut cancellation. Throughout the paper we em-
phasize various subtle points that have been overlooked in the literature.

1. Introduction

A recent approach to hadronic physics, known as the topological expansion (TE)
or dual unitarization [1] has received much attention in the last few years. This ap-
proach is conceptually located between a fundamental approach to hadron physics
in which everything can be calculated from a given input (such as a Lagrangian or a
good dual model) and a purely phenomenological approach (such as Regge-Mueller
phenomenology of inclusive reactions [2]).

As discussed recently by one of us [3], the TE has a natural place in a future
“theory” of strong interactions which starts from the Lagrangian of quantum-chro-
modynamics (QCD), proceeds through dual models [4] and ends up with reggeon-
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field-theory (RFT) [5] through successive use of non-perturbative expansions of
the “large N” variety [1,6].

Despite much beautiful progress in quantum field theory, the possibility of com-
puting the spectrum and scattering amplitudes of QCD seems rather remote. Hence,
at this stage, the TE can be used as a surrogate of a more basic approach. The TE al-
lows us to relate several aspects of hadronic physics and to introduce a small dimen-
sionless parameter into strong interaction theory. In this way, several interesting re-
sults have been obtained for low energies (hadron spectroscopy) [7], present accele-
rator energies [8] and super asymptotic energies [9] .

One of the most important and most difficult parts of the TE programme is com-
puting the zero-order term of the expansion — the planar S-matrix. Attempts in this
direction have so far involved abstracting some properties of planar dual models and
then utilizing them together with some phenomenological input in planar unitariza-
tion. Bootstrap constraints [10] have emerged when a mul tiperipheral picture is as-
sumed for the planar production amplitudes which saturate unitarity at large s and
small 7. Planar dual models with almost linear trajectories seem to be close to fulfil-
ling these constraints, provided the intercept and coupling of the leading planar Reg-
ge pole (the p-f system) are appropriately chosen [11]. The values obtained do pro-
vide a more or less correct normalization of hadronic amplitudes.

In this paper we maintain the attitude of looking to the dual model as a guide.

Tn particular, we study properties of reggeon amplitudes which are relevant in the TE

programme,

In sect. 2 we examine the analytic properties of reggeon amplitudes in reggeon-
particle (Rp) and reggeon-reggeon (RR) scattering. For the former, analytic proper-
ties are rather simple and finite-mass sum rules (FMSR) are straightforward [12];
however, for the reggeon-reggeon amplitude the situation is more involved. Turning
to the dual model example, we find that certain asymmetric FMSR are “good”, that
is, they are free of fixed pole contributions.

In sect. 3 we derive the in tegral equations for reggeon-particle and reggeon-reg-
geon scattering that follow from planar unitarity combined with standard multiperi-
pheral assumptions. A no-double-counting condition (NDC) gives nontrivial limits
of integration. Consequently, the equations are not simply diagonalized by a Mellin
transformation. Instead, the careful treatment of kinematics in the unitarity equa-
tions yields precisely the “good” FMSR of sect. 2. These equations are easily solved
by pure-pole solutions and are consistent with the symmetry and factorization pro-
perties of reggeon amplitudes. No contradictions arise in several self-consistency
checks. The final outcome is a bootstrap condition on the triple-Regge coupling and
the trajectory identical to the one already analysed by several authors [10,11,13—
15]. Just how cut-cancellation works term-by-term in the energy plane is spelled out.
The dangres of over-simplifying the planar bootstrap in rapidity variables is empha-
sized.

Sect. 4 contains a summary of our conclusions. Some typical technical calcula-
tions are given in the appendices.
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2. Analytic properties of planar reggeon amplitudes
2.1. Definition of reggeon amplitudes

Complications with reggeon amplitudes compared to particle amplitudes arise al-
ready at the level of definition. For spinless particle-particle scattering, the invariant
amplitude A g ,5(s, £) has two basic properties in the planar limit:

(i) Normal analytic structure in s for fixed, negative ¢;

(ii) Regge-pole dominance with an asymptotic behaviour

s a(t)
Agp—a'p'(s, 1) s:m Yaa' )op (O (—(t)) (— E;,) .

The power of s is independent of the external particles and their masses. The com-
plications of reggeon amplitudes follow from the impossibility of defining them so
that properties (i) and (ii) are obeyed simultaneously. Consider first reggeon-particle
scattering. The amplitude is extracted from the appropriate limit of a six-point func-
tion Agpe—sq'p'c'- Referring to fig. 1 for notation, if we take s/M?, s'/M? large then
we expect

Agpesa'v'c’ = '?'t:'c(r 1 ee(t ; )F(—-&(t I (—a(t I )
g\ D el
x(-5) (——) AR yaary M, 1, 52). @.1)
) So

Here Ag ;- Rja’ defines the reggeon-particle (Rp) amplitude. Starting from eq. (2.1)

Fig. 1. Kinematics of six-point function and definition of Rp amplitude.




480 J.R. Freeman et al. | Constraints on reggeon amplitudes

one can argue, using field theoretic or dual examples that this amplitude has only
normal threshold singularities in M2 . However, the large M? behaviour is given by

. 'yM'(t)gRIR’l (z, ti)
% DWMzARIa*Ria' M?*'“ ¥ T(e(n) +1)

12\ SOl —ale])
x(——-) ) 2.2)

So

where gz g/ (¢, 17) is the triple-Regge vertex. Thus a z-channel Regge pole results in
alarge M2l behaviour with dependence on 7. A more natural definition of a reggeon-
particle amplitude is perhaps

]

Agpe—a'p'c’ = 7bc(t1_hb'c'(tt)r(—a(t;)r(“a(ri))

a(r7) alr)
N — -—| 4 M2, ¢, 1)) (2.3)
M2 M2 Rja—+Ri'a RERS B .

Obviously the asymptotic behaviour for AR asRyq is simply -

Tm'(f)gRlR’l (t,11) (Mﬂ) a() @)

1 r
PY: DlSCMZARla—*R'Ia' Mz—:ﬁ m T@®+1) Py
On the other hand, if 4 does not contain kinematical singularities, then 4’ does (due
to the factor Wz)“'(‘i—)*“(’;)). Hence, the application of FMSR to 4’ is delicate,
while for A it is straightforward [12]. Our work hinges a lot upon the correct anal-
ytic structure of reggeon amplitudes and upon the validity of certain FMSR. There-
fore, we must be careful in the definition of reggeon amplitudes to be used and also
in the study of their analytic properties.

The reggeon-reggeon (RR) amplitude is extracted from the eight-point function
Agbea—a'p'c'a’ depicted in fig. 2. Going to the limit 5,851,582, 8/sy and s/s, large, we
write (our definition differs from that of Kwiecinski [16] by some unimportant
factors)

Aabea—a's'ca’ = Vpa(tT s 'd’(f;hac(rz_)'}’a'c’(t;)
X Dt DN(—ae a3 IN(-a(r))
X Cs1/s0) s/ 50) D o o0y P sy 5D

X AR Ry(M? 5182/, 8, 11, 85) , (2.5)
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Fig. 2. Kinematics of eight-point function and definition of RR amplitude. Solid lines: beta
transformed “energy” variables: dashed lines: untransformed variables.

where
si%2/s = M+ (Pt Py =i 2.6)
5,81,5p large
Introducing
M2\ 20T F el a3 +ar3)
A:RR = ('—s—) ARr , 2.7)
0

we expect App = (M*)*D . But ARg should have a rather complicated singularity
structure. It is not completely trivial to define a RR amplitude which has just the
correct threshold singularities in M*. To find out how to use FMSR for RR scatter-
ing we resort to the explicit example provided by the dual model.
2.2. Reggeon amplitudes in the dual model

In the planar dual model the Rp amplitudes has the form [17]

ARjo-Ria =8 Ba(—a(t) + a(t7) + a(t}), —a(M?)) . (2.8)
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As for the RR amplitude, in appendix A we study the dual eight point function

corresponding to fig. 2. By a straightforward use of beta-transform techniques [17]
we find

By =g* (—a(s1))" T (a(5;)) "D (a(s, )@ (s @
X D(—a(} DI (el )N~ YD (~a(l))
X AR g, M? , M3 = 5,5, /5,1, 5, £5) . 2.9)

Here

& X = + '
AR,r, =& 2 ¥ CIJE'P('"C!(IIJ"'[) D(—a(t}) +1)

k=0 1'=0 = D(—o(t7)) D(—e(11))

x D) +1) D—a@)+) 1
P(-a(2))  P(-a(t)) T, —1+1+ (-0, — 141479
X [ T8+ 14106~ 0oy — DIG a2 — 1Y-1P D)5
X By(—B—at) + sy +ag, +2 +k, —a(M?)), (2.10)
where
Qei=a(ty) o) - 1. (2.11)

Notice that in 4 1R, ©f eq. (2.10) the dynamical M? singularities appear explicitly
as poles in B, . Hence, the analytic structure of 4 RR is relatively simple.
For large M? we have M? = M? and

Ba(—B—a(t) + a1 +agy +2 +k, —a(M?)) Pl

- - -2k
P —alt) + ey + gz +2 +K)(—aMP P 01-%2-2k ) 1))
The leading term of A 1R, (A =0)

i

=, 27

20 2Nl —ag g —ap -2
ARIRZMZ'_’:NS (—o'M*)

i g —Gpp —1
% Npy T =2e1 = ) TG — e ~ 1)

'(—8 — t)toey tag+2)
(o —1) TCaga—D) [P 2@+ +ac:
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. (manj )a(f)—ae’l —Qe -2

P—a(@®) + ac,1 + DI(—a() + agz +1).

I(—a(2))
(2.13)
A similar result holds for the Mueller discontinuity:
1
T, Dlsr:sz-!RIR2
F 5 a(r)—o:cl 1—@c2—2 2
= g? (a'M*) (T(a(2) + 1)) . (2.14)
Fla(z) + 1) Pla(r) — e, N ((?) — . 5)

Using the high M? limit of eq. (2.8) and the standard form for Ay, ;5 (M2, £) we
find the desired factorization property *

DmMzAR(rl'JR @)~ REDR ()

DiS'CMZAab—*a'b'

. DlscMzAR(rr)a—rR(r’{)a’ DISCMZAR(r»_T)b—wR(rE)b‘

= : , 2 (2.15)
Disc, 24ap—a's’ Disc, 2A4ap-a'p’

Note that in the asymptotic limit Apg depends on the external reggeon masses
(g R, ~ (M2) D217 272 |f aqin eq. (2.7) we define the more natural
Agg it will have a more complicated singularity structure in M2.

In table 1 we summarize our definitions. The correspondence with the dual model
is
Fla(r) +1)

y)>gs gﬁ-ﬁ)"ﬁm .

2.3. FMSR and Mellin transforms of reggeon amplitudes

For the planar Rp amplitude A, one expects the following FMSR to hold for

* Notice that eq. (2.14) gives a singularity in Disc 4 p 1R (and in Disc_ 5Bg) at a(t) = —1,
—2, ... . Bg itself has no singularity at these poirﬁrs. The presence of these poles comes unavoid-
ably from factorization |eq. (2.15)] and from the non-vanishing of Disc. 5Bg ata(t) = —1,
=2, .... The way out of this is probably the introduction of the new g-trajectory of Hoyer,
Tornqvist and Webber [ 18], which collides with a at these points. Elimination of these singu-
larities is also welcome for building the pomeron in the TE.
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sufficiently large 5 [12]
3 1
[ a2y 37 Disey 24z 1,75)
0

L OO o g (o)
o)~y tn D) +1)

==t

(2.16)

which is trivially consistent with the dual model amplitude (2.8).

Notice that Az, obeys a FMSR of a simple form. The “natural” entity A%, [see
eq. (2.3)] does not satisfy an integer moment FMSR.. Defining a Mellin transform
over Ag,,

Ard 6, ) = [ APOPY T A 0,1, 13) @.17)
0

we note that FMSR (2.16) hinges upon the absence of fixed poles in ;fRa(J, 1)
Namely, the latter vanishes at J = -1,-2,-3, ...

Turning to RR scattering one wonders whether any simple FMSR holds. The ex-
tra complication here is that the variables s, M?, 51 and s, are not independent [see
€q. (2.6)] . Kwiecinski [16] has proposed the following decomposition of 4z,
based on a hybrid Feynman diagram model:

ARg = (-MY) AT EOG2 M2 g 11,13)

+H(=M)TRR2TIERGR M2 1 1 ). (2.18)

Itis F9 (7= 1, 2) that are presumed 1o satisfy integer moment FMSR. The dual
model example does nor conrradict this proposition. However, we shall now show
that there are particular. asymmetric moments of the Jfull App for which naive
FMSR may hold.

In calculating a FMSR for Agg one has to specify which variables in the eight-
point function of fig. 2 are kept fixed while M? is integrated over *. We consider
here two cases that are relevant to the unitarity equation:

(i) s and 5, kept fixed, and s, = M? (s/sy) (or the equivalent case with §1+5,);

(i) /s, and s/s, kept fixed, and s, =M3(s/s1), 53 =M3(s/s,), s =M%(s/s1)(s/s,).

* 1t is also crucial to take into account only the *“physical™ singularities in M2, i.e. those related
to states in the missing-mass channel.
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In the first case consider the general Mellin transform (i = 1, 2):

Z?(J,s,sl,r, )

. Qo l .
Ef sz(Mz)-_J_lEITDiSCMzAB(S,S],SZ =Mi(s/s)), M2, 1,t}). (2.19)
0

From table 1 we see that, for the RR amplitude, eq. (2.19) corresponds to a Mellin
transform over an asymmetric entity:

~ B S !
ey, )= [ A oryomhfer! <
0

: X DiSCMZARle(MstE-’ra ff), (2.20)
- where the asterisk over R, indicates which way the asymmetry goes.
In appendix A we show in the dual model example that A}‘;lﬂi (, t, ¢} ) vanishes
| atJ=—1,-2, -3, .;thatis, no fixed poles occur at these points. Abstracting this
3 property from the dual model, we deduce that the RR amplitude satisfies the fol-
i | lowing asymmetric FMSR:
1 .
. 5
1! f ml(MZ)R(M2)Q'c,2+I _I_ Disc A (M2 Ml t t+)
: J, 2{ M2 RIRZ 3] 5 by b
¥ 8
,' + + = —_ +
| o GLi N i (n=0,1,2,.) @21)
] T Pe@+1) ot)—a,, +n B '
5 Here for sufficiently large § only the leading pole contribution has been kept, and

terms of order (P?/5) neglected s >Ph).

Notice that the asymmetric transform (2.20) has zeros also at J = Q2 —Qoq — 1
-m(m=0,1,2,..) for P} = 0M? = M?). For P, # 0 they disappear (unlike the
zeros at J = —1, -2, -3, ...). This is seen in the term by term expansion in powers
of P} (see eq. (A.7) and discussion following it). We do not know whether the re-
summation of the series reestablishes these zeros.

For the second (symmetric) case the appropriate Mellin transform is

oo vl il it L 5

AY U, /51,505, 1,8)

1

2{ DiscM2A3(S‘ S/Sl !S/S?. !Mz, Z, ff) 3 (2‘22)

Ef MZ(MZJ—J—I
0
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or, equivalently (see table 1)

Zﬂle(Js £ ﬁ:)

oo ) 1 g
Ef szWZ)_J_!Wf)%'lwc‘zﬂEDiSCMzARmz(Mz,Mf,r, ).
. (2.23)

Our study of the dual example in appendix A shows that for P, = 0 this transform
has zeros at both J=@ y —nandJ=a., —m (n,m =0, 1,2, ...). Both sets of
zeros seem to disappear when P? # 0, at least term by term in a power expansion in
P?. However, we cannot rule out the possibility of these zeros reappearing after the
resummation of the P? expansion.

Notice that at P, =0 both ZI’?’IRZ and X_?g’l R4 have two sets of zeros in J. In fact,
in this limit the two transforms are related by a simple shift in J:

U+ Do —ag)y - (2.24)

In order to preserve this simple relationship and thus overcome the effect of trans-
verse momenta on the fixed pole contributions in (2.20) and (2.23) one may define
a modified transform with (M?)~/~! replaced by (M?)~/~1:

= [ a7 o)1 0 - Diso sdp i, O, ME,1,27)
& (2.25)

This symmetric transform does, indeed, vanish at both J — o ; = —nand J — a5
=-m(n,m=0,1,2,..), for P, #0 as well. Moreover, the analogous asymmetric
transform is obtained by the simple shift of eq. (2.24), and therefore has zeros at
J=—1—-nandJ=a,, — a1 — m for P, # 0 as well. This interesting property of
A* will not be studied further in this paper since such an object does not seem to
enter in the unitarity equations. On the other hand, unitarity plus multiperipheral
dynamics will lead us automatically to FMSR of the type (2.21) which will be used
repeatedly in sect. 3.

3. Constraints on reggeon amplitudes from planar unitarity

3.1. Multiperipheral cluster production model

Planar unitarity provides a set of non-linear constraints on multi-particle ampli-
tudes. In order to derive integral equations from these constraints, some multiperi-
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pheral assumptions have to be imposed on the production amplitudes (which are
relevant for saturation of the unitarity sum at high-energy and small momentum
transfers).

In this context, a model with both theoretical and phenomenological appeal is
the multiperipheral cluster model. In this model, the extreme assumprion of multi-
peripheral production of stable particles is replaced by the weaker assumption that
some relatively long-lived resonant states (clusters) are first produced multiperipher-
ally, then decay independently into the final state. [n the planar dual theory the
identification of clusters with low-energy resonances is almost automatic and restricts
considerably the concept of clusters. Some theoretical justification for the validity
of a cluster picture within QCD has recently been discussed by one of us [3]. The
phenomenological validity of the picture has been discussed by several authors [7,8].

However, when one tries to classify an event in terms of clusters, a delicate prob-
lem arises of avoiding double- or under-counting of final state configurations. For
instance, suppose that a set of particles which are adjacent in the planar diagram froms
a cluster if the invariant mass of the set obeys 5; <¥. Then two adjacent clusters of
masses Sy, 5, should satisfy not only s, s, < Fbut also (at least) the constraint
8§12 > §,where 5,5 is the invariant mass squared of the system 1 + 2. Furthermore,
this system may be sometimes split into two adjacent sets in other ways, 1’ + 2,
such that s+, s,» < 7. Should one count such subdivisions separately or not? This
type of question has been dealt with in the literature. Essentially, two possible at-
titudes can be adopted:

(i) Clusters are physical. In this case, suppose that below 5 the system is dominat-
ed by sufficiently narrow resonances, and above T is described by some rather smooth
Regge exchange amplitude. The two events 1 + 2 and 1’ + 2’ mentioned above can
be safely counted separately. The symmetric no-double-counting condition (NDC) -
[7,8,15,19,20]

S,‘<§, Si’,‘.,.]_)S_ (ﬂ.ll I), (31)

should be appropriate to avoid either double counting or under counting of events.
This is, of course, an approximate statement which may never be exact (strictly speak-
ing, this NDC double-counts some special configurations). In this case, ¥ has a physi-
cal meaning, output parameters will depend on it, and should be chosen in some op-
tical way (similar to what is done with FESR). These clusters are of the type discus-
sed in ref. [3].

(ii) Clusters are mathematical. From this point of view § is a mathematical parame-
ter; a device used in order to group final state particles into bins over which averag-
ing out of individual particle properties is achieved. Double counting is avoided by
the asymmetric NDC of Finkelstein and Koplik [20] and Freeman and Zarmi [15].
The condition states that a cluster (or bin) is a set of particles such that (i) its invari-
ant (mass)? is less than 5, and (ii) the addition of the next particle adjacent to this
set on the left (or, alternatively, on the right) results in a new set whose invariant
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'.s‘, szl 53.‘ /\I
N AN

i)

Fig. 3. Binning intermediate state particles into clusters according to asymmetric NDC (3.2).

(mass)? is lag er than 5. Thus in the notation of fig. 3, for a given particle configura-
tion divided into z clusters (bins) we have

s<EOMSS, 5, <7  i=1..n_]. (3.2)

Thus, every cluster is defined in a manner which correlates it to the gap lying be-
tween it and the next cluster, except for the last (“left over™) cluster. In this scheme,
clusters have nothing to do with resonances, or better, nothing to do with narrow
resonances. If one wants to derive integral equations with this classification of the
intermediate state, one has to use Regge exchange between adjacent clusters even
when the gap separating them is small, or even if, e.g., the last particle of one cluster
resonates with the first particle of the next one. This mode] is therefore expected to
be geod only when there are essentially no physical clusters (large width limit, see
ref. [3]). Note, however, that counting of events is precise, and results should not
depend on the bin cut-off 5.

In this paper, our attention is focused on delicate cancellations and on qualitative
properties, and therefore the second point of view is adopted. Let us stress, however,
that for practical applications, the model with physical clusters is more appealing.
The extension of our conclusions to the case of physical clusters would seem very
desirable. Weﬂmt again on this case at the end of this paper and from now
on we shall work with the asymmetric NDC of refs. [15] and [20].

3.2. Integral equations for reggeon-particle amplitudes

The equations that can be derived from planar unitarity and multiperipheral clus-
ter model constrained by the asymmetric NDC (3.2) are represented in fig. 4, where
a box represents a finite mass object and a blob an unrestricted mass object. The two
equations stem from the two ways of counting, or classifying, the intermediate state
(starting cluster assignment from either end of the chain of fig. 3). The second equa-

tion (fig. 4b) is not an integral equation. It represents a self-consistency check on the
RR amplitude.
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Fig. 4. Planar unitarity equation for the éix-point function. (a) Cluster assignment begins at reg-
geon side, (b) Cluster assignment begins at particle leg.

3.2.1. Equation of fig. 4a in the energy plane. Consider the equation represented
by fig. 4a. At the level of six-point functions it has the form (without specifying it,
all equations from now on deal only with the imaginary parts of amplitudes):

Ag(s,523,1,5) = APNs, 523, 1, 1) + T6(s5, 523, 1, £1) , (3.3)

where 4§D is the low-energy, one-cluster amplitude, playing the role of the inhomo-
geneous term, and T is the homogeneous term. In the appropriate kinematical limit
(s/s3 > 1, 7; fixed) we can extract Rp amplitudes as in eq. (21) and write

ARa(sy3,1,67) = AR)(s23, 1, 11) + Tra(523, 1, 1) »
Af)=0(™ s23)AR, - (34)

From factorization and by keeping the leading poles in the #5 channels, one gets for
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Ts (we have confirmed this explicitly in the dual model):

34 s23/8
T =8(s23-5) [ —S:—; S dss [dbamelty iy 6N (—ale )(-a(})
0 0

X P12 )0 (—a(23)) cos m(e(t3 ) — al£5))(=s12) V(= s’,z)“‘“b

512523
R1R2 Sy

where the loop integral is converted (using strong damping of transverse momenta)
into an integral over 73 denoted by d¢, (dg, =N/167% X dez dr30(—\)(—A)~2,
with X the usual triangular function) and over 53,83. The limits of integration over
§2 and s3 are determined by the asymmetric NDC (3.2) which implies here: 55 <7,
$23/53 > ¥ (always in units of 5, = 1/a’ ~ 1). In performing the integrations, 5., is
not to be regarded as an independent variable. Rather, one substitutes

2L & i .
X (323)a(r2 P 2)A v I, I, tg)ARza‘(SS: t, fé) 3 (35)

512" 523

$12 =$/833 5523153 . (3.6)

Eq. (3.5) now becomes

Te = 0(s23 = Spe(t7 Yy (DT (—t T )N(—(2}))

X (57525 (=5'f520)D (9, T (alt YI(-a(e2)) 05 ety —a(el)

5 523/
[ +1 + +
X(623)2 [ dsy [ dsa@)°1  hrypy (52 5h 1,18 1)
(1] 0
XAR;d(sa-sts fi) - (37)

Here a,; are defined by eq. (2.11). Using the definition (2.1) of Rp amplitudes we
get

i -1 (s
ARya ~ AR = Trya = 0(523 — 5)(523) %" fd¢zﬂz(323) %2
5 $23/5 »
Xf szf ds3(s3)"? AR Ry (52,53, 8, 11 )AR 1053, 1, £5)
0

0

(G=1,2). (3.8)
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Here
M2 = D(~a(e3 DI(—a(83)) cos m(a(z5) — o(13)) . (3.9)

The s3 integral can be done by use of FMSR (2.16):

53/ 4 a(f)—a,
. (Delz, 1) (s <2
B53Ra(ss, 1, ) = n Yo (080, B3) (523/5)

. M@@+1)  o@)—a; (19

Moreover, the integral over s, is precisely of the type free of fixed pole contributions.
Using FMSR (2.21) for 7 = 0 we get

7 - Y el —cp 5
11 6(, 13) (5) °
ds, (st “c.l”A 5 ,gl,{’f.—’ & g;{i——l—-____,z__——————-— 3l
Uf 2(s2) RiRy(52,52,8, 1) =7 Te@+1) a()—as, (3.11)

Inserting egs. (3.10), (3.1 1) into eq. (3.8) we find

—ap 1 ~1 8@, )y, (f
TRya = 0(s23 — F)(5,5)*@ %01 1_______-g( 1% ()

Lla(r) + 1)
fr2 g, 3)
X——m——|d T A
e+ 1) ™ Gy s S
On the other hand, from eq. (2.2) we expect
S 15D,
ARsa ~ Afa = 0023 = 50525001~ 1 8L D10 () 6.13)

Fa@)+1)

Thus, complete agreement with a pole-type solution is possible provided the boot-
strap condition

_ i g(t,13) _
I(a, t)-mfd%ﬂz 20 ~Bigz) =1, (3.14) e

is satisfied. This is precisely the condition derived in ref. [10] and studied in ref.
[11].

Comparing our eq. (3.14) with eq. (4) of ref. [11] we find, using our definition
of d¢, and the dual expression for g (see end of subsect. 2.2 with the appropriate
Neveu-Schwarz shifts explained in ref. [11]), that they agree up to a factor of 1.
This factor was overlooked in ref. [11] and should be introduced on the left-hand
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in the duality diagram. The final correct result of the bootstrap calculation of ref.
[11] can thus be found to be:

100
= ——mb a's (0)—1 s
‘+ N mb (a's)*

0‘ pa—
+_— Uﬂ+?r

Tw

which is probably a little too large. Using the arguments of ref. [3], one finds that
this is actually an upper limit to the cross section. The factor by which it has to be
reduced (because of clustering) is indeed about 1.5. On the other hand the fact that

we obtain approximately the right normalization of the cross section is already quite
remarkable.

While the last calculation shows that a Regge pole is consistent with the integral
equation, it does not demonstrate how Regge cuts are cancelled. In a series expan-
sion of the integral equation, the n-cluster contribution will obviously have cuts inJ.

3.2.2. Equation of fig. 4a in the J-plane. We now turn to the J-plane in order to
see how cut cancellation takes place. Consider the Mellin transform of T'r,- Using
eq. (3.8) we find

?R 1Q(J: z, t?) = f d‘923(323)HJ— . TR 10(323! t, f?)
0

~ ds —J=1+a,q—
=fd¢’21?2 f =2 (535) 7 027 %0

=
§ 23

E $23/5 et L )
Xf dszf ds3(sz) ARle(Sz,Sz,f,IE)ARZQ(Sht,fi). (3.15)

Changing variables s, 53, 523 =55, 53, x = $33/5283, we obtain

~ 2 1 —J-1+ - +
TR]R = fd% n2 f dsZ(gé )ai’.‘,1+ (SZ) %e2 ae.lAR_{Rz(“Z’ sz_a L, !;)
0

oo

o E _ e B
xf dxx J 2+a0,2 ac,lf ds3(33) 1+QC,2 Qe 1

559 §/s9x
X ARya(s3,1,55) . (3.16)
The lower limits of integration over s3 and x result from the NDC (3.2). Due to the

non-zero lower limit of integration over 55, the expression for ?R 1a does not imme-
diately contain the Mellin transform of 4 Raa- Writing Tg_ , naively (as is commonly
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done) as a product of Mellin transforms leads to inconsistencies and makes cut can-
cellation in the J-plane impossible. One way to proceed is to introduce the inverse
Mellin transform )

Cc+ice '
4y s ' +
Aryals3,1,10)= [ 5= () Apypall',1,55) . (3.17)

c—jfo

Performing now the s5 and x integrations we find

g
~ + +1
TRIa(fJJiFId%TEzfdSz(S%)%’l AR R, (52,53, 1,17)

0

' (S,-)‘—J" IHacy—ag

izl a t
2 (Jf+ ])(J—J,+&c,1 _ac_Z)ARzﬂ(JJ, L, fz) . (318)

Due to the special form of NDC we use, the cut-off Mellin transform over AR R, is
converted into a “good” FMSR of the type (2.21). Hence, definingJ=j — ., — 1,
J'=j —0a,, — 1, we have

L — (el —i . 7
TRyl - agy — 1,1, 17) = ()€ "ﬂhﬁ)mfd%?h |

d}" g(f, fg) o - " -
X i @) —ag,) Reel ~%2=L063). (.19)

We thus see that, in general, eq. (3.19) is not a standard integral equation of the type
discussed by Chew, Goldberger and Low [21] asit is not diagonal in j. The j' inte-
gration contour is to the left of the pole atj =jand to the right of all other singula-
rities. In order to avoid a cut in FsARya(' — a2 — 1,1, ££) must vanish at j'=ag,
(' = —1), which is exactly what one expects for planar reggeon-particle amplitudes
(see discussion following eq. (2.17)). Writing

A.Rzaod - a{.‘,? - 11 z, f%)

o

=7r’)’m'(?)g(fa 13) 1 ] — Qg2
M) +1) ' —of?) at) — a2

hG', 1 5), (3.20)

we get by closing the j integration contour to the left

Yea' (8(t, 17) (5O
Dla@®+1) j—af) M0,

TRy - 01 = 1,5,28) = m (3:21)
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with I(a, ) given by eq. (3.14). Notice that 4 is a smooth function of /' satisfying
h[j'=a(f), 1, ;] =1 and that only the residue of the pole at /' = a(r) of A, (' —

G2 — 1,2, 13) is picked up in eq. (3.19). Using the bootstrap condition (3.14) one
finds

Yo' g2, £1) _ (5@~
Na@®+1) j-af) (3.22)

TRIQO‘_ Gr 1 — 13 L, ff)= m
This is exactly the form expected for ?R 1a» Since by eq. (3.4)

TR}&(/._' ac,l = ]a I, ﬁ)zZRla(f i Ctc‘.] - l,f, tii)'_;{&lfa(j"ac,l = 1,2', tT)
. - ~ (Dg(t, t7) ;
_ did 5, 1, Ayt dsﬂ_'hm( » U1 §@B—j—1
_f Bl bl J T(a() + 1)
L3 &

Yaa' (g2, 17) 52O~
M@ *1) j-a@) )

Finally, we get the expected form of?fﬂ?a:

zﬁza(f_ Qe 1 — I: I, r-i—):ARIﬂ = TRI{I

- o YO8, 51) 1 [ j =g

t ) — (RO
D)+ 1) j—aff) a(r)_%,k(’”’“) ) :l (3.24)

At this point one can regard 4 Ra Of eq. (3.20) as the solution to the integral

equation (3.19) with the inhomogeneous term given by (3.24). This amounts to
writing the solution as

AR]G’U_ ac,l - 1:'{) rli) =A$212a(f - ac,l - l,f, t?)

+

e (O8(t, 1) PO
M@+ /- a@)

T 8@, 53) J—acs _ a@-i
X T G ch.z)(“(f)—ac.z)[ ) ]

or) — Ge,2

Se@—j__ T £ 5) !
—@Een-i __ %
g [1 ¥ } [(a(r) + 1)fd¢2 " G~ ac2)() “Gc,z):l - 62)
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The second term in eq. (3.25) reduces to the explicit cut-free form (3.22) of TR 4
provided the bootstrap condition (3.14) is satisfied. The series expansion of the
fraction in eq. (3.25) gives the cluster expansion of the cross section, and shows
that the n-cluster term has explicit cuts in the j-plane. Notice that all the complica-
tions in the j-plane structure of 4 Raq are buried in the inhomogeneous term AE)
The homogeneous term does not exhibit the detailed form of the full amplitude (it
is independent of h(j, t, £3) since only the value of & atj=q,ie. umty appears in
TRzﬂ) This is achieved because of the correct manner in which the j' integration
contour has been closed to the left. In general, one does not know whether closing
the contour to the right is allowed. Let us see what happens if this is nevertheless
done The result is that in eq. (3.19) the ;' integration picks up only the pole at

} =j to give

ARla(f -0y — 1,1, 1‘11’) =Zg{a

g, 15) gass 2

a(f)—
O (et ')F( (t)+l)f - = e,2)(@(t) —ac,2)

X ARyali — e — 1,1, 15) . (3.26)

This diagonal form has been used, for instance, in ref. [13] for§=s, = 1/a’ 2 1.
However, in general, only the more general form (3.19) is valid. To illustrate this
point, the reader may easily convince himself that eq. (3.26) leads to a bootstrap
condition that reads

L £ ( 3 '2) -
M) 7 9™ G a0 1) =1 (3.27)

Since no new physics should be obtained by j-plane considerations that cannot as
well be derived in the energy plane, the only solution to (3.26) is a Rp amplitude
with 2 = 1 for any j. Thus, unlike the more general ¢g. (3.19), the diagonalized form
(3.26) serves as an integral equation for an Rp amplitude with a restricted, simple
form. As we shall show later on, the situation for RR amplitudes is such that con-
tradictions arise if one is not careful on this point.

Another way to overcome the complication of non-zero lower limits of integra-
tion in eq. (3.16) is to extract from the homogeneous term TR 1a> the two-cluster
term A%) [15]:

?Rla(f = ae,l L 1: r: rji):Zgga(f =R ac.l = 15 r, ti)

+8R,00 = o1 — 1, 1,15) . (3.28)
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For 'S"Rla one easily finds the expression

5
e + +1 _.
Srial — o1 = 1,0,11)= [ dpym, [ dsy(s)e1*" (5y) P22
0

—j=1+ ~ —j+
XARle(Sz,Sé,f,ff)f dxx’ ac’zf dsy(s3) %2
! it
3' 5/n 5
1
|

; X ARqa(s3, 1,55) . (3.29)

. Here the lower limit of the §3 integration is independent of x and 83, due to the ex-
i traction of the two-cluster term. The effect of the NDC becomes: 5, <7, 53 >7,
_. $23/53 > 5. We clearly have

; r —j+ +
| S ds3(53) %2465, 1, £2)
‘ T

=ARgali—acp —1,6,85) ~ AW G - 060 — 1,1,83). (3:30)
The integral equation thus becomes:

(AR, — a1 — L, 61) AR - agy — 1,1,65)]
; +1 i+
B . a g a
=A$§fa0 -0 —1,¢, ﬁ)"'fdﬁl’z‘-'?z f ds, (s3)%e! ,) itag s
0

+ ~ —j—1+ ~ z i
X ARyRy (2,53, 6,17) [ axx 712 G0y, —1,0,2)
! §/s2
_Zgga(f_ Olc,z - 1, I, Ii)] . (3.31)

After the x and s, integrations (the latter again becomes a “good” FMSR) we find

[ARIG(’-_ ac,l - ],I, t?) —Zg%a(/‘ _a(‘,l ZE l)ty ﬁ)]

~ 3 + . g Vi
=Agga(’ =1 — 1,4,17) +g(t, 1)) O/ T + l)fd%?i‘z

8, 3) & .
=20 a) ) < Arasli ez ~1,1,55)
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—Zﬂz’a(r‘ gy —1,2,63)] . (3.32)

Thus an ordinary integral equation with a factorized kernel is found for ;fRa - Z}g‘%

P

rather than for Ag,. The inhomogeneous term is ASQ — the two-cluster term. Using
the explicit factorized form of:ﬁ%,; as calculated in appendix B and employing
standard techniques one can solve for ZR = :Zﬁfa and find the solution (3.25).
Thus, independent of the detailed form of AR 4, the solution of (3.32) is a cut-free
amplitude provided the bootstrap constraint (3.14) is obeyed. The difference be-
tween this integral equation and the ones commonly found in literature is that on
the right-hand side of eq. (3.32) Zj%ga is, in general, not cancelled by the Zﬁga piece
of the integral (in usual CGL [21] type equations A is a factorized product of Mel-
lin transforms). Only for the restricted example with A, ¢, £7) = 1 does such a can-
cellation occur, and eq. (3.26) is obtained.

. 3.2.3. Equations of fig. 4b in energy and J-plane. The second way of constructing
the unitarity sum for a reggeon-particle amplitude results in the equation depicted :
in fig. 4b (here, cluster assignment is begun at the right end of the multiperipheral o
chain). In the energy plane the equation is r

A6(5,523,1,81) = A§)(s, 553, 1, £5) + Ti(s, 823, ¢, 7). (3.33)
Here, similar to eq. (3.5) we have (i = 1, 2)

s $23/5
Te(s, 523, 1,13) = 6(s53 —5) f dssf ds; fd¢27bc(tf)7b'c'(f:)
0

$23
0
- e o+ o) (13)+a(rh)
X D(—a(t7 D=t (—815) T (—s15) s, )2 )2

X ARle(SZ 3 sjl_s L, f? )ARzﬂ(SS! L, t%) ¥ (3‘34)

Repeating the procedure leading to eq. (3.8) we find at the Rp level:

TRa(523,1,17) = 8(sy3 — F)(533) "1 ™" fd'{ﬁznz(sza)%'z

5 23/F
+1 " s
Xf ds3f dsy(s3)%! AR Ry (52,53, 1, 17 YAR,4(53, 1, 15) . (3.35)
0 0

Again, the 5, and s3 integrals can be done using FMSR (2.16), (2.21). The result is
simply

TRQ = TRa . (336)
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It is thus proven that the same result holds starting the NDC from either end of the
multiperipheral chain,

In the J-plane things are not as trivial. One has (similar to egs. (3.15)—(3.16)):

T
g —J—1 .
TR]G(J: I! ﬁ) =fd¢27?2 f d33(53) ""’c,l b lARza(s'.a: Ir: ri)
0

o - » ey B
X f dxx T-2+ap2—ap f ds, (s,) T+ag 5 o‘r.'.l(“,'.é)""c,l"'1
5/s23 _ 5/s3x

XARle(SZ)sé:ts I!;) (337)

In analogy to (3.17) we now define
(63" 4g &, (2,551 ﬁ]=fg£(3 Y A% V151 (3.38)
2 RIRQZ:Z!SI_}M-Z RIR,V s 54 ) . .

ng R, 1S the same creature that occurs in eq. (2.20), with the asymmetry this time
being due to the legs on the left-hand side (7). Here the x and 5, integrations are
straightforward, converting the s3 integral into a FMSR of the type (2.16). Again,
shiftingJ=j— o, — 1 and J' =§' — @2 — 1 we obtain the analogue of eq. (3.19)

Tru el 1,8y = (f)a(!)*j"”'(t)r‘(_m(};_i-]_) f dgam,

df’ ﬁts é) S as .y *
* i sh @) o) <im0 ~ %2 ~1510). (339)

A}_‘;R , has azero at J' = — (see discussion in subsect. 2.3),oratj =aq ,. There-
fore, its most general form is

g, r)e(t,55) 1

PES i =3 )=
ki v v

OJ T QC,Z) o +
X = %Z)H(j 1), (3.40)

H(", 1, £}) is again a smooth function of I’ satisfying HG' = a(2), 1, £5) = 1. Closing
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the ;' contour to the left We again pick up only the pole at j' = a(r) and find

Yo (0B(1, 11) ()7

Thiall ~ee; = 1,6, 6)) = T +1) j—ap ‘@9

=‘?‘:Rla(f_'ac‘,l - lvra ti). (3‘41)

Here I(a, ¢) is defined by eq. (3.14). This general result does not depend on the de.
tailed form of H(j', 1, ¢,).

The latter would again lead to a highly restricted form for the solution (3.42), name-
ly with H(', ¢, £5) = 1 for all j'. That this is not easy to satisfy for RR amplitudes
can be see}n as follows. According to our def‘mitir_)ns,:'i:‘;‘-,_sm2 U= Qe —1,¢,6) has
azeroat] =a,,. Asdiscussed in sect. 2, it is not inconceivable that it may have a

zero atj' =@, ; as well. Let us assume for the moment that this is indeed the case.
One then has

'

f_ac.l

H{' t,t5)=
O I) a(r)_ac,l

GG, 1, 17), (3.42)

with GG = (), ¢, 1f)=1. Closing the j* contour to the right in eq. (3.39) one picks
up the pole atj’ = and finds %’R ol — ey — 1.2, )« (- @, ). Hence %Rna van-
ishes whenj—>a, ;. As a result HIRM =ZE;£, + TR ,q does not vanish there: this is
inconsistent with the analyticity properties ofARla and leads to cuts in j. This ex-
ample is only meant to indicate that, unlike the case of Rp amplitudes, with RR
scattering one expects a more complicated j-plane structure so that closing the j" in-
tegration contour in the correct sense is essential.

If we try to solve the integral equation implied by fig. 4b by our second method,
namely, by separating the two-cluster term (analogous to eq. (3 .28)):

Tra=48), +SRa s (3.43)

one can easily write an equation for Eé 1a (analogous to eqs. (3.29) and (3.31):

5

-+ +

g‘;la(j_ @1 — 1,1, 17) =fd¢2722 f ds3(s3)”’ 2 AR a(s3, 1, 15)
J .

~ —j—1+ ~ +1 —j+ +
X [ &xxTTH [ g (o) o, oty o bt 6h)
5

5/83
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gt 53)
(= 0c2)@() — o)

=y (EPO—T T
Y OCF O~ ey Jagam,

X AR, G~ 0o — 1,0, 5) ~AQE G-y —1,4,6)] . (3.44)

We obviously cannot “solve” this equation as, again, the right-hand side involves RR
amplitudes. However, using the high-energy behaviour of A gz

AR1Ry (1 — @2 = 1,6,6)) —ARQWE (- ey — 1,1, 1)

_~ g(t, £5)e(t, 15) E)PO-7

Pl +1) j—af)’ (3.45)
we find
. B i 1) =,.._, ), g(t, t'-;haa,(r) (i-)ZQ(f)—Zf 7
ARla A‘E{la Agla T Na®)+1) j—at) Te@)+ 1)
200 4t
X [ dg,m, £ L) (3.46)

G- ﬂfc.z)(a(f) = Ofc,z) )

Notice that, triviaﬂy,ZE{a - ZE},,. Hence, using the explicit form of the two-clus-
ter term, found in appendix B, eq. (3.46) becomes identical to eq. (3.23). This pro-
cedure merely provides a consistency check on RR amplitudes. Thus, no inconsis-
tency is ever found in the study of Rp amplitudes if care is taken of the correct lim-
its of integration and of the analytic properties of reggeon amplitudes. A pure pole
solution is consistent and the only output constraint is the F-independent bootstrap
condition (3.14).

Fig. 5. Planar unitarity equation for eight-point function.
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3.3. Integral equations for reggeon-reggeon amplitudes

To complete our consistency study, we look at the in tegral equations for RR scat-

tering. Starting in the energy plane with the eight-point function of fig. 2 one has an
equation depicted in fig. 5:

Ag=AP + Ty, (3.47)

where T is the homogeneous term. In analogy to eq. (3.5), one now writes an in-
tegral expression for Tg. Extracting the appropriate kinematical factors (see table 1)
yields an integral equation for the RR amplitude (similar to eq. (3.8)):

AR1R3(523! Sé."is rs t%a t;) - AgiR;;(SZSs SJZ.31 t: ri3) = TR1R3
i — - -2 ,
=0(s23 — 5)(s23) @173 fd@)z??zfszs) 52

o $23/% s ‘
x [ ds, [ dsa(2)*er Ag ry(sy,8,1,15,15)
0 0

1 +
X (58)°% " AR,py (53, 85,1, 85, 1) . (3.48)

On the right-hand side we now have two RR amplitudes each appearing in a “good”
FMSR (fixed pole free type — see eq. (2.21)). The result is

g(t, 17)g(z, 13)

— ]-) 3
Aryry = ARjry =7 T(a(z) + 1)

(22) P71 20 . (3.49)

This exactly agrees with the high-energy behaviour of RR amplitudes, provided the
bootstrap condition (3.14) is satisfied. Hence, nothing new is found by looking at
RR scattering. Moreover, the bootstrap is consistent with an 4 RrRr Which is symme-
tric in the external legs although the counting procedure is asymmetric.

In turning to the J-plane, various Mellin transforms may be considered (see sect.
2 and appendix A). Let us begin with the asymmetric transform defined in eq.
(2.20)). We have

T~ag ~01 _ i —J— 1 & 3+1 + x
AR R} _qugjesg = f dsa3(s23) ™" (s23)™ TR,R4(523, 533, 1,11, 13) .

5 (3.50)

Taking s33 2 5,3 for S23 2 § we use our standard techniques (see derivation of
eq. (3.19)) to find an integral equation (not diagonal in j):

A?ESIR:;U_&C,I - 1,!, ﬁ,fg)—Ag:?esg(f—ac,L o l:'fa f;,f%)
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= (PO Ip(r £y —T — 4
et D e W0 5 a,2)G /)

+
g(r, Iz) ~as

(a(t) —a,,) “R2

Ri(j’_acj_ ],f,{%,fg). (3'51)

Z?QSzRi has a zero atj' = a,. , (see eq. (3.42)). Again by closing the /' contour of in-
tegrationmto the Ieft we find that the cut is killed and, independent of the detailed
form ofAj‘gszRi,

Jas . Er ~(1 ; +
AR g0 — e,y — L0, 13) —~ ARRG — oy — 1,1, 85, 15)

* 1y e -i

- n 81015 @01 G52
@) +1 j-a(@)

provided the usual bootstrap condition (3.14) holds.

Notice that each term on the left-hand side of eq. (3.52) is asymmetric. However,
the shift J»; — @1 — 1 and the neglect of p? in 533 for $23 > § result in a symme-
tric form for the difference. .

Another possible (symmetric) transform, not discussed beforehand, is the follow-
ing:

ZR}_R3(J1 L= f ds23(523) ™" 1R Ry (523, 853, 1, £5, 1) . (3.53)
0

- It is easy to show that in the approximation 533 = 853 (for s73 > T) this transform
and the other symmetric types discussed in sect. 2 also yield self-consistency, name-
ly,

AR 1rs () — AR, 0) = Tk, 25 0) — A )
=4 1R30 — ey —ag 3 —2) -—25'3330* Ce,; — 03 —2), (3.54)

all being equal to the right-hand side of eq. (3.51), and hence also to the right-hand
side of eq. (3.52). These relations do not constitute integral equations for the sym-
metric transforms, since the right-hand side of eq. (3.51) includes the asymmetric
transform. To derive integral equations for each of them, we again separate the two
cluster terms to obtain, for example (analogue of (3.32))

(42,5 () ~ AR, )] =AD3,
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i ; . t,t3) -
g (70 ) |+ 5 gy ML dpgmy ——=-1 27 8.5
5,1)@) Dla(?) + 1)f (- 200 —a,,) S i
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Given the form of the two-cluster term in appendix B, the solution of eq. (3.55) is
straightforward. Its form is analogous to eq. (3.25), and, using the bootstrap condi-
tion (3.14), becomes identical to the right-hand side of (3.52). Similar equations
(diagonal in ;) obviously hold for ZﬁIRS,XR \R3 and Eﬁ? RS with the appropriate
shifts in j. However, for the symmetric transforms, the 4®) term can never be can-
celled by the 4 contribution to the integral (see, e.g. eq. (3.55)). As for the asym-

metric transform A}is 3( — ac,; — 1), in general, the cancellation is not possible,
except for the restricte(f possibility

SELAREE) 1 joq,

AJ?;IR;U‘QC,I 1) T(a(t) + 1) J—at) a:(f)——ac_zs

(3.56)

(ie, H=1ineq. (3.40)).

In conclusion, no inconsistencies arise in the application of planar unitarity to
RR amplitudes,

3.4. Cut cancellation in the energy plane

Apart from the various integral equations and self-consistency checks satisfied by
planar reggeon amplitudes, it is instructive to examine how planar self-consistency
works term by term in the unitary sum.

Consider, for example, the case of a RR amplitude

AR;R,(MZ:Mfy z, ff, ‘r!i:) .
The two-cluster term, calculated in appendix B, has the form

2) g(r,:f)g(;,ri) M)~ el =, r—2
Afile, =7 Te@)+1) M)

% { 062 — MHOOL? — 5)(M> )*Osa, 1)

2 +
2 2 m g°(t, 1) 2+, 1
O -5 T ey 4o @@ — a2 )

5 mz(a(r}—ac,l)} ‘ (3.57)
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The first term has the “pure pole” form in the limited range ¥ < M? < §2. The sec-
ond term, which takes over at M? > 52 has an explicit cut in the J-plane (we remind
the reader that all our energy variables are scaled in units of s = 1/a’ ~ 1).

The calculation of the three-cluster term is more tedious but, again, straightfor-
ward, giving

+ +
3) _ g(f:ff)g(rsfr) 25—, 1—Cg,p—2
R, = M+ M)

X (6@ - M2)oM? - 52) L2 P OL (o, 1)

f o1n i g (f i ) Z(M'l l"-"c‘l(—)z(“‘l{f) e 1)
i 1)

~ 00 - @) -

r‘(a(z) +1)

2, 1)

d o e
N ) —a )

X Ia, 1) + O(M? — 5-3)F(&(t—;-1—5

m
R [dsym,

2 +
t,t & 7) —
n) Japyergen-ca Mt
(“{'r) ac.z) Oc,1 — Qg2

+ 0t o0 20 et (.59)
Qo2 —Ce
By induction one proves that the form of the N + I cluster term is
AW = g(t 1 )e(r, ;) 2y Yol —%er—2
ARik, Me@+D
X {0 — M2 - Y2 PP (@, 1)
— 00 — YN, Dle, )+ 6 — TV Oy (2,0}, (3.59)

with

N
g, 1)

T A
Cne1 O, 1) = E{W Jaom @) — e,

i=1
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X (MZ )“c, i(f)(N+ 1)(’1(?)—‘1{,',{)

N

£t . o) _a"”‘)) . (3.60)

T
X k=1 ([‘(Of(f) + l)fd%??k (t) — o 1)? Oe,i — O i
k#i

The C terms will have explicit cuts in the J plane.
At a given energy M?, the maximum number of clusters that our NDC allows is

In M?
me{n ]+1

In§

This gives
() mex ! < pp2 < (5)Vmax |

The value of the amplitude is given by

Nmax
App, M >5)= 25 AR) . (3.61)
N=2

At the given value of M all the “pure pole” terms ("*(Mz)a(r)”%f_ac”_z) vanish
due to their § functions, except for the last one (with (5 ™ _ 312 oM —

§ ™ 7)= ). Moreover, provided the bootstrap condition (3.14) is obeyed, all
cut terms cancel in pairs, except for the last one coming from AR‘.E‘;”‘ :

20, tf)g(t, txt')( z)a(t)—ac_,_ac_,_z

2 N T =
AR;R,.(M >S)—1T r(&(1)+1)

g(ts r?)g(ts t::) 23 "G [~ Cp p—2
o eyl TE?
X {02 —5)C; + [-0(M? — 5)C, + 0(M? — §2)C5]

+ [0 —52)C3 + 00 - 2)Cy] + .. [0 —F ™)y

L8 18 1) () 2el—ter=?

+6Q2 — 7'y ]} = T

X [OLPO + 001 — 5" mxycy ]
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_ 8 1), 1) 17 i (3.62)
M@ +1)

The last step in eq. (3.62) follows from the definition of N,y (M2 < (E)N"“”‘).
Thus, at any given M> >§ the pure pole term is contributed by those phase-space
configurations that require the maximum allowed number (N, ) of clusters (popu-
lated bins). The cut terms which appear in each k-cluster term are cancelled succes-
sively.

Mellin transforming the V + 1 cluster term (using e.g., the symmetric transform
defined in eq. (2.23)) one can prove by induction that

Zg\:ﬁ:)w(‘;, t 1‘?, )= f dM’Z(MZ)—J—-l(ME)ac,Hac,ﬁZ
0

XARED 02 M3, 1,17, 1)

_ 8. 1t 1) (?)““"’( gy [agun £, 1) i
Pla@®)+1) J-oft) \T(e(#)+1) (J 1)) —a, 1))
m &, 5) J— 0 _
X d s _ we(f)-J
T(a(r) + 1)f Paft  — 0 2) (@) — g 2) [a(f)—ac,z ! ]

(3.63)

This form has an explicit cut in the J plane. It is precisely the &V + 1 cluster term
one obtains from the series expansion of the explicit solution of eq. (3.55) for
Ay R, — QW In fact, by a straightforward summation of the geometric series

, (whose Nth term is eq. (3.63)), or by using the simple recursion relation between

ZEVP%PSY () and Zﬁ?{f (/) one can easily derive eq. (3.55) and its solution (analo-
gous to (3.25)). Thus the geometric series adds up to a pure pole in the J plane.

3.5. Pitfalls in the rapidity formulation

A number of works on the planar bootstrap have used the rapidity language. At
first sight, rapidity seems a natural variable for multiperipheral cluster models. Par-
ticles are arranged along the rapidity axis in clusters of sizes (L;) up to a maximum
extent L ; reggeons are exchanged across the gaps between clusters. Kinematics and
NDC are easily translatable into this language. Despite its intuitive appeal, the rapid-
ity formulation may easily lead to pitfalls that spoil planar self-consistency.

The basic problem is the simulation of the correct analyticity properties of am-
plitudes, in particular, FMSR. The naive approach, whereby simple Regge behaviour
is assumed for amplitudes down to threshold (L = 0), is incompatible with a self-
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consistent bootstrap (even if a NDC is applied). In other words, for a RR amplitude
whose asymptotic behaviour in rapidity is

AR}R,(L ’ f) L ;}: Ff(r)Fr(t)eLq{r) s (3 64)

the corresponding FMSR is not given by

RACUEDY N 1

L
J AL g p (L, )= (o) (3.65)
0

O.’(I) - ac,l

Instead, the analogue of the “good” FMSR discussed in sect. 2 should be imposed:

z L@()-ag;

dLe%eil 4 1) = Fy(t)F (1) < .
uf e RRAL, t)= Fi()F (£) o) — o)

(3.66)

This peculiar form, in which the lower limit piece is missing, mocks up the low-en-
ergy behaviour of the amplitude at threshold (Z = 0). The physical explanation is
that a zero size cluster is not empty. It includes, at least, the single stable particle
intermediate state.

Keeping track of these analyticity requirements while maintaining strict no-dou-
ble-counting in the unitarity integral is extremely delicate in the rapidity picture.
Only a particular order of integration over clusters and gaps readily yields self-con-
sistency [15]. Other orders of integration require care in keeping track of the = 0
singularities. Otherwise, double-counting errors are committed.

4. Remarks and conclusions

In this paper we have studied the important interplay between analyticity and
proper counting of events in planar unitarity. This interplay is essential for guarante-
eing self-consistency (i.e., pure pole solutions to the bootstrap) of planar amplitudes.
Abandoning either element destroys full consistency (i.e., no cuts) although consis-
tency at the pole may be possible.

The notion of clusters used in this paper is that of mere mathematical objects —
essentially dividing phase space into bins (sets of particles) over which one averages
using the known (or the assumed) analytic properties of reggeon amplitudes. It is
thus only appropriate that the results are independent of the cluster mass cut-off 5.
The only constraint resulting from this approach is the bootstrap condition (3.14),
originally derived in ref. [10]. A numerical study of this constraint has shown [11,
14] that it yields reasonable values for the Regge trajectory and the triple-reggeon
coupling.

An extension of our results to models with physical clusters (e.g., narrow reso-

R TR AR
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nances) seems worthwhile, in the hope that entities of phenomenological consequence
may be constrained. For such an approach (see also ref. [3]) one expects the results
to depend on the cluster size cut-off. The symmetric NDC (3.1) is generally assumed
to be appropriate in this case [8,19,20] . However, with this NDC, it has been shown
[15] that cut cancellation is possible for § = 1 (in units of $0)- For ¥ > 1 cut cancel-
lation is still an open problem.

Let us conclude with a few remarks.

(i) Revealing the analyticity properties of reggeon amplitudes is a delicate matter.
Using the dual model example as a guide we have extracted certain “good” FMSR
which are expected to be satisfied by appropriately defined reggeon amplitudes.

(i) Proper counting of events leads to the appearance of these “good” FMSR in
the unitarity summation.

(iif) Another consequence of the NDC is the non-trivial limits of integration over
reggeon amplitudes in the integral equations. As a result, the j-plane integral equa-
tions are not diagonal in j if the single-cluster term is chosen as the inhomogeneous
term.

(iv) It is possible to write integral equations which are diagonal in j for the am-
plitudes minus their single-cluster terms (the two-cluster contribution then becomes
the driving term).

(v) The solution of the bootstrap yields the precise form of the high-energy part
of the amplitude (a pure Regge pole) and not the low-energy (single-cluster) part.
Moreover, the low-energy part is only constrained by FMSR. Its full plane content
never enters the bootstrap. The mechanism of cut-killing is that of “promotion” of
a cut into a pole, unlike the cut cancellation in the AFS case [22,23]. Here at a
given energy M> > ¥ we have a sum of multi-cluster terms, all positive definite ad-
ding to a pure pole (i.e., pure (M?)* behaviour).

All non-leading terms cancel successively, and the (M?)* piece remains. This piece
comes solely from the term with maximum number (NVpgay ) of clusters. Notice that
the Npmay configuration includes the events, which in the ordinary multiperipheral
model [22,24], are the most probable ones — those of uniform particle distribution
(in rapidity). It is the latter configuration which in the usual multiperipheral picture
gives the leading ((M?)*) term. Here, by properly including all possible events (not
only the most probable ones) we are able to eliminate the undesired non-leading
terms.

(vi) The use of rapidity in formulating multiperipheral models is convenient. Ra-
pidity enables one to construct a simple intuitive picture. However, the rapidity
language may obscure important features of the problem. The main aspect is the
analytic structure of amplitudes which is naturally studied in terms of invariant
(mass)? variables. In particular, the appropriate form of FMSR has to be imposed in
the rapidity formulation. As a consequence, the integration over clusters and gaps
becomes a delicate matter [15].

(vii) Multi-Regge kinematics are essential to our approach. Moreover, we had to
assume simple reggeon exchange across gaps between clusters even when these gaps
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were small and we have kept leading reggeons everywhere, which is probably quanti-
tatively incorrect (one should add, e.g., m-exchange), but did not seem to affect the
question of self-consistency of a pole solution.

Finally, ¢, effects have been neglected. A rough estimate indicates that fmin
effects build up singularities which are lower (by at least one unit) from the cut we
want to cancel. 7., effects will influence quantitatively the bootstrap attempted in
ref. [11] and indications are that they improve the agreement over a range of ¢ [26].

(viii) The low-energy behaviour of planar amplitudes plays a crucial role in attain-
ing full-consistency at the planar level. These amplitudes may then be used as input
for the calculation of the pomeron (cylinder) [8,14,25]. Alth ough off-hand one
might think that only the high-‘energy behaviour of planar amplitudes is relevant to
the calculation of the pomeron parameters, this is not obvious. Iterating approxi-
mate forms for planar amplitudes may lead to the accumulation of serious quanti-
tative errors in the calculated cylinder amplitude [15].

Notes added

After this work had been written, a paper of 1.G. Halliday (Imperial College pre-
print ICTP/75/12, 1976) came to our attention, where FMSR for RR. scattering are
discussed in a \¢> example. The author’s conclusion is rather pessimistic concerning
the possibility of obtaining naive FMSR for RR scattering, of which our dual model
example provides an explicit realization. It seems to us, however, that Halliday’s
analysis has not fully exploited planarity, which is crucial to our analysis. This could
be the reason why we can get around some of his problems,

Subsequently, we also received a paper by P, Hoyer, N.A. Toérngqvist and B.R.
Webber (LBL preprint4854, 1976) in which FMSR for RR scattering are discussed.
It is argued that naive FMSR can be written down for certain double discontinuities
of Agg. Our explicit calculations indicate that FMSR free of fixed pole contribu-
tions might also exist for those single discontinuities of 4 RrR Which enter in the
unitarity equation.

We are very grateful to M. Bishari and to M. Ciafaloni for several interesting dis-

cussions.

Appendix A

Reggeon-reggeon scattering in the dual model

The dual amplitude By may be written as a multiple beta transform [17] over
the nine “energy variables” shown in fig. 2. By taking the leading poles in the reg-

Bpyiar A R
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geon legs, four integrations may be trivially done to yield:

. + — +
By = g5(—a's " (—a's) P (s, )" (a5 )"

+joo +i% +ie +joe +ie
f dr, 2 f drf dr’ f dr f a7’
(2 )5~tw —ios —ioo —jea —i%

X ()P (AT (F ) )T+ 7 g2y~ 7=7 ==

X D(—a(t7) + 7+ P(—a(t}) + 7 + T)N(—a(t7) + 7+ T)0(—a(fz) + 7' +7)

X Ba(—7,2, —a(M?))

XBy(—a(D+ ey +eea +2—7—7 =TT +7.,,147+7). (Al
The last By in eq. (A.1) can be expanded in poles of 7,  with the numerator terms

of the expansion polynomials in 7 and 7 . The 7,2 integration is now easily done.
By exploiting the expansion

= E gm(—PB(—r +m,x +1), (A2)

I‘(—r)

where g,,, (—7) is a polynomial in 7 of degree m, we may combine
MDY = Z) S g, (DT +1D), (A3)

(and similarly for T(—7)(7')"). After introducing f=7+7' +7+7 and y=7+7,
the three integrations over 7, 7’ and y may be performed explicitly. The RR ampli-
tude extracted from B4 according to table 1 may now be written as

Ap r, O, M3, 1,65, 65) = 2 E ¢

k=0 LI'=0

D(—a(z7) + D) T(=a(t}) + 1) D(—a(tz) + 1) D(—a(£3) + 1)
(—a(t7)) T(=@) Te@rm) D))

4= B(—1P T(—B+1+ 1B —aey —DB—tez —1) o g
Xf Ami [‘(—ac,l—1+£+l)[‘(—ac,2—1+1+l) 1)
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X Ba(—B—a(t)+a; tag, +2 +K, —aM?)). (A4)

Here C'j'é' are numerical factors resulting from the various expansions (i.e., the index
K runs over poles in 7,42 Mentioned after eq. (A.1)).
To calculate the asymmetric Mellin transform AR (/. 2, 11, £3) of eq. (2.20)

we first expand in powers of P = (p,, +p4)? about }% = 0. Then, integrating over
M? using

S R ()
dx x ™ — Disc,By(—w, —x) = : I . y
{\)f o 2 sl %) I'(p) mZ:)()p—{.:.J—-1+m ’ (4-)
we find
o K
A e D(—a(t7)+ D D(—a(5) + 1
A8 oy =2 > > cw D) +1) Dl—a(ty) +1)

k=0 1r=0 X T(-(f7)) I(—a(r7))

P(—a() + 1) T-a() +1) 3 (1"
Po())  T(a(F) =0 n!

@y

X 27 1

m=0 (J—a(t)+aey +1+n+K+m)(—a,, — 1 +1+ 1) (—ag, —1+1+1") |

« [ B-1P D(=B+I+ )T —asy — DBy — 1 +1)
_ff 2mi TB+J—a,, +n)
XemB+J—ag, +n). (A.6)

After combining the polynomial g, (8 +J — @, + n) with [\(=8 + [ + ) via eq.
(A.3), the g integration may be explicitly performed. The resulting term-by-term j-
dependence of (A.6) is

=0, +n+1+ 1T +ag, +2—1-1'—q)
T+ DT+ 14, —a tn)J—a)ta, +1+n+K+m) '’

(A7)

where 0<g,q'<m.Thus,atJ=—1, -2, -3, ..., the series for;fﬁ';aS g+ vanishes
term-by-term. This result does not depend on the lower order poles in M? (ie., K
# 0) or on the non-leading terms in the P} expansion (i.e. 7 # 0). We shall assume
that the series itself has a zero at / = —1, —2, -3, ... . Note that the leading (n = 0)
term, also has a zero at J =a,., —a,; — 1 although (A.6) does not vanish there for

= =

w o o »n o=

51
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n# 0. The poles in the numerator factor (J + &, ; +2 — 1 —1' — g) are clearly spuri-
ous — they can be at arbitrarily high values of J. One can easily trace the origin of
these poles to divergences from large values of 8 in (A.6). But this large § behaviour
cannot be trusted because various B,’s in the beta-transform (A.1) have been replac-
ed by high subenergy forms (i.e., B4 (-7, a(s)) = I'(=7)(’s)"). Notice that the poles
which come from the high M? part of the RR amplitude are explicit in the denomin-
ator of (A.7).

Since A% s vanishes atJ = —1, -2, -3, .., we take the high M2 form of the RR
amplitude (A.43 to derive the following asymmetric FMSR having no fixed pole
piece:

5
+1 1
[ a oy e e o7 Dise, 24 R R, O, M2, 1, 6, 8)
0

a2 F(C!(t) g ]) F(O!(t)'!' l) 1 (s_)ct(r)—ac,1+n
~ % Te®) - 1) T((t) —acy) D@+ 1) alt) —ae, +n °

(A.8)

n=0,1,2,..).

This is a special case of eq. (2.21), which is used throughout the paper.
To study the symmetric Mellin transform A%, g, (/, 7, 71, £3) of eq. (2.23), one
replaces the integral in eq. (A.6) by
f“‘“ dB(=1) T(=B+1+ 1B — g, — DTB—ag, — 1)
2ni PG+J—agy —az —1+n)

—feo

e - - — 2
[ @ Qe 1 — Qe 2 n) Xgm(ﬁ'l"f_ac,l — Qg — 1 +n) 5 (Ag)

P -1 —ag —2)

Unlike the asymmetric case, the # % 0 terms now pose a problem. After absorbing
the polynomial in § in the curly brackets of eq. (A.9) into (B +1+ I') through
use of (A.3), we find the term-by-term J-dependence of ARz, is

U—1—ap; —oo I+l +n) TU+14+n—1-1 —F)
P - +n)I(J —agz tn)(J —a(t)+n+K+m) ’

(A.10)

where 0< 7' <mand 0<r<m+n.ForP; =0 (ie., n = 0) each term in the expan-
sion of ARz, has an explicit zero at J=a,; — s ((=1,2;5=0, 1,2, 3, ...). How-
ever, in general (i.e. P, 7 0) there are no term-by-term zeros for any value of J. Of
course we cannot rule out a “magic” cancellation in resumming the various expan-
sion coefficients.
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Appendix B

Two-cluster term

Using the dual model as a guide, we establish the form of the two-cluster term for

the RR amplitude. The expression is identical in form to eq. (3.48) with one modifi-

cation (see also fig. 5): s3 is limited not only by the NDC (s3 <s,3/5) but also by
the cluster size cut-off (s; < 7). We find

_ —ag 3—2
AJ@RZ =0(s23 — §)(s53) @17%:3 f dgyma(s23) 2

5

¥ 523/5
- +1 +1
X flass [ ass0ea -+ [ ass06? - s29) 5% )2
0 ] 0
X AR le(SZ’Sé, £ f?, tz)ARzR3(33’ S%, L, t;: ri) . (B'I)

Now we use FMSR of the type (2.21). Note that although the upper limit of the s5

integration in the second term of (B.1) may be small, we nevertheless use the FMSR
to yield the leading behaviour,

t, 1)t 15
A93R3=rrg( 18(t, £3)

—8g, 1= 32
T+ &2

X105 ~553)0(553 — 5)(523) (e, 1)

g, 13)

_2a()—2
(@(?) — . 5)? (523)%2(5) "~ 2%2
e,

+0(s23 — %) W;_Dfd%??z

]

(B.2)

where /(o ) is defined in eq. (3.14). Note that a condition forn
§>s9=1ja"~1.

The symmetric Mellin transform of eq. (2.23) becomes

o cluster overlap is

Ty = 8 g, 15) [F“(’J‘J_gz(&(r)—J)J
ARR, =n T+ 1) T I, 1)

2 +
x =2(a(t)—J) g .5)
+—7F dgyn ;

De(z) + 1) f 2 @)~ 06, U - a0)
which may be written (using the explicit form of I(a, 7))

g(t, t1)g(t, 15) () O-7
Pla@)+1) J-of)

AR, =1

b iy



J.R. Freeman et al. [ Constraints on reggeon amplitudes

T £, £3) J— 0, () —J
S M . ;
T D) ™GB a %) {u(r) Tap °

(B.3)

We emphasize that this form of the two-cluster term depends crucially on analyticity
via the FMSR and the NDC. It is not of the standard form

1
J—ac,
where 7, RR is some cut-off Mellin trasnform over a reggeon-reggeon amplitude.

To obtain the two-cluster term for reggeon-particle or particle-particle scattering,

replace the appropriate reggeon leg(s) of (B.2) by particles. For example, to continue
R3(13) to particle g, replace @3 = —1 and get g(z, £3) = v,4/(¢).

(S—)m(r)_ifd'?’zﬁz ﬁklgz(f,?,ff,fi;f) ?RzRg(Js 415, 15:5),

Addendum

Some further discussion of our results vis 4 vis the paper of Hoyer et al. (LBL pre-
print 4854, 1976) seems necessary especially after it has been pointed out to us
(P. Hoyer, private communication) that our eq. (2.21), continued to o =a; =0
(hence o, ; = —1), leads to a FMSR for reggeon particle scattering which is incorrect
[eq. (2.16) is not valid for non-integer n].

One can remark, however, that, exactly for Q1 = —1, our eq. (2.21) acquires a
fixed pole contribution (besides a B trajectory contribution which is always under-
stood). This is apparent in eq. (A.7) where the poles in the numerator cancel the
zeroes of I'"(J + 1) for &, ; = —1. On the other hand, s discussed also in appendix
A, those poles are spurious and are to be ultimately replaced by moving singularities
related to “sister™ trajectories such as §.

Although it looks difficult at first sight, it might be possible to find a form of
3}5 \R3 which has all the desired properties i.c., no spurious poles, zeroes at J + 1 =
0, —1... and a whole family of sister trajectories.

Ano&apﬁﬂy is that AERE is a sumlof two' terms: an “a component”, free
of fixed poles, but exhibiting some spurious singularities, and a “g, ¥ ... component”
containing sister trajectories, fixed poles and compensating spurious poles. In this
case it remains to be seen how one can avoid cuts from being introduced in planar
amplitudes through planar unitarity corrections.

Both possibilities are currently under study.

We acknowledge interesting correspondence with P. Hoyer on this and related
issues.
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