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We develop a set of sufficiency conditions which guarantee that certain Reggeon amplitudes satisfy good
finite-mass sum rules. We present and analyze a specific and simple model amplitude which embodies these

conditions.

I. INTRODUCTION

In this paper we address ourselves to the task of
building a model for a Reggeon +Reggeon— particle
+particle planar amplitude that satisfies a good
finite-mass sum rule (FMSR). As has been dis-
cussed in the preceding paper® (FJ), certain good
FMSR’s are vital for planar Reggeon amplitudes
that enter into planar unitarity if a self-consistent
planar pole bootstrap is to be achieved. Although,
such a planar bootstrap is the foundation on which
the topological expansion® (TE) rests, up to now
there have been no adequate candidates for planar
amplitudes that meet all the self-consistency re-
quirements.

Since particular “good” FMSR’s are a necessary
ingredient of planar amplitudes if Regge cuts are
to be canceled in the planar bootstrap, we may use
this property as a filter for candidates for the
planar § matrix of TE. In addition to good FMSR's,
self-consistent planar amplitudes should satisfy
the demands of Regge asymptotic behavior and
general analytic requirements such as the Stein-
mann relations. Whether all these requirements
are in fact mutually compatible is a nontrivial
issue. ForexampleinFJ, we have shown that a
rather unconventional asymptotic behavior is a
prerequisite for good FMSR’s in certain Regge-
on amplitudes. This criterion rules out the dual
resonance model as a viable candidate for self-
consistent planar amplitudes.

W e begin, in Sec. II, by considering the general
structure of the planar six-point function of Fig. 1.
We present a set of sufficient conditions on the am-

FIG. 1. Six-point function in the limit s, 5, s~
with sge05 Sgpe fixed.

plitude that ensures a good FMSR. In Sec. III, we.
present and analyze a simple model for the Regge-
on + Reggeon— particle +particle planar amplitude
that has the necessary analyticity properties and
that satisfies a good FMSR. In Sec. IV our simple
model for A; is briefly compared with the dual
resonance model.

II. SUFFICIENT CONDITIONS FOR GOOD FMSR'S
IN A SIX-POINT FUNCTION

We begin by formulating the general structure of
Ag of Fig. 1. We first lump together particles b’
and a’ into a single “particle” of mass M? and then
consider the general Regge formula for the result-
ing five-point function. (Since A, includes only
those pieces of the six-point function having physi-
cal M* singularities, no generality is lost in lump-
ing 0" and g’ together.) Weis has developed a gen-
eral representation for such a five-point function
incorporating Regge behavior, Steinmann condi-
tions, and the conditions for correct particle pole
residues.® Adapting this representation to Fig. 1
we write

Ag=B(b,d; DB(a,c; L) T(-, (1)) T (- ay (1))
x(=8,)"10t0 (g, )20) |
_ (7T ax T(-a, ()T (=a,(t,)
v=J,. BTN T(=0t, (1,1 - ()
X(=0) Q=M -n3 ¢, 24, 8,), (2.1)

where k=8,8,/s =M®+€ and € is a non-negative
function of the fixed momentum-transfer variables
and where the 8’s are Regge residues. The func-
tion @ contains only the physical M® cut. The gen-
eral form (2.1) encompasses a variety of models
depending on the detailed dependence of @ on M*
and on the complex helicity .. For example, in
the case of the dual resonance model

Q@=Qppy :
= ’}‘ZB(—C[(” + al(tl} + Q'z‘“g_)-’l ] -Q(MZ)) 7 5
where 7 is the dual coui_:l‘fqg- constant.  For the

present let us maintain as general a form for @
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as possible consistent with general analytic re-
quirements.

To ensure a Steinmann decomposition for V—
that is,

V= (=)0 v (M2, k5 ¢, by, 1)

()= D Y, M, K58, 1, 1), 2.2)

r(ﬂ_al(tl})(_K)RQ("Mz;ﬂ_al(’:l); £, fl, tz) .
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where V,, V,, are analytic in k—@ must not have
any A singularities for A<0 and the integrand of
(2.1) must converge rapidly enough to allow the
contour to be closed to the left. With this assump-
tion we pick up the poles at A= a,({,)-n, where
n=0,+1,+2,..., and may express the Steinmann
piece corresponding to simultaneous cuts in s and
$, in the amplitude A; as

B m ; =
V12_ r{_al(tg})r(_az(%))‘sinﬁ("‘ al(tl]_az(tg)) z

n=p

Tor+ DT0n + 1+ A (G)= (L) @.3)

Alternatively it will prove convenient to employ the identity

_ e M@l Nginn(A-a,(t,)) —e'"%%) "M sinr(r-a, (¢))

sinm{—ay(t,) + o, (1))

to write

(k)0

P dx D= (5))0 (A=, (5,))T(=2)

127 sinm(=a,(f) + () Lo 270

where the contour may be closed to the left [also
giving the series (2.3)]. General analyticity re-
quirements dictate that V,, and V,, have only
physical M* singularities (they are analytic func-
tions of «).

As explained in (FJ), in order to achieve planar
pole self-consistency it is necessary that the am-
plitude %%’V have a good FMSR of type (B) of
(FJ). We now list a set of sufficient conditions on
these amplitudes that guarantee good FMSR’s:

I. For M*=2M3, (1/2i)AeQ is nonsingular in
the A plane.

II. The function @ has sufficient convergence in
the A plane to define the integral representations
(2.1) and (2.4).

II. After taking the physical M discontinuity
of (2.1) and (2.4), the A integrals converge suffi-
ciently to allow the contours to be closed to the
left or to the right.

We now show that I, II, and III do indeed guaran-
tee good FMSR’s. By starting with (2.1) and (2.4),
taking physical M* discontinuities and closing A
contours to the right (assuming condition III above
is satisfied) we deduce

T(-a,(t,)C(=a,(t,))

sinT(A-a, (LK) QM2 =X 1, 4, ), (2.4)

o, (0 1 _ sinm(=a, () + a,(8,)
(efiele's apVe sinﬁl(-lal(tll)

x% Ayaly . (2.5)
As mentioned in FJ it is well known that V,, by
itself in general satisfies a good FMSR (since it
has only a physical M* cut and has Regge behavior).
Thus we may conclude that x®2“’V in general
obeys a good FMSR. As shown in FJ, however,
the good FMSR must fail at the isolated point
a,(t)=0.

We observe that the dual resonance model,
where @ is the specific beta function given earlier,.
fails to satisfy condition III. This failure is con-
sistent with our conclusion in FJ that the dual
resonance model for A; cannot satisfy a good
FMSR.

Il AMODEL FORA

We will focus our attention in this section on a
specific model for A,. It is the simplest model

having Regge behavior and the correct analyticity in energy, viz., a single asymptotic power. In this case

we have

Q=0,=T(-a(t) +a,(t) +o,(t) = N) g(ty, b3 D glty, a's 1) (M2 +MP)* =06y~ 42,
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FIG. 2. Contour C for FMSR in the M2 plane, FIG. 3. Result of distorting contour C in Fig, 2.

so that the Reggeon amplitude V becomes

S V.= el atepy [T AADA =, (6D - ay(2,))
V= Vazglly, b'; 02,05, 0% 1) L. i Ciall) 1y

X(=K)"M(=M? + 11 7)) - 98D =% &) A D)4 @, (1,)+ a,(t,)— A)

% L —aB+a, () I(-a)+a,(L))
= {2 2yeult) = oy (¢)) = ity ) Tl-aft PALSY AU
i el T (=)

o ; M-pm 2

Xg(fl,b -;f)g(lz,a ;!)gFl —C!l(tl).—aszu);—aff] 1- ————Q—K . (3_]_}

The amplitude in (3.1) gives factorizable Regge behavior in the limit M%~ «. In the particle pole limit
when a,(/,) and/or a,(,) are equal to zero it reduces to simple amplitudes having factorizable Regge be-
havior. These properties as well as the explicit Steinmann decomposition may be easily verified by the
reader.

It is straightforward to confirm that conditions I, II, and III of Sec. II are indeed satisfied by V.. Thus
a good FMSR must exist for k2% v«
We now explicitly calculate this FMSR, that is. we evaluate the integral

fsz(x)%f‘z’ = Ve, (3.2)
' 2

where the contour is shown in Fig. 2, which displays the physical cut in M? as well as the kinematic cut at
M?=-¢. A convenient way to proceed is to first evaluate the Mellin transform

ﬁ f dM*(=M? +M ) I ()% b2 Y | (3.3)
= :

and then ultimately set J=-1.

By going to sufficiently large J we may distort the contour C into that shown in Fig. 3 (dropping justifi-
ably the contours at infinity).

We first examine the integral over C . in Fig. 3. This integral is just a number and, as discussed in
(FJ), must vanish at J= -1 [since for J=—1 it becomes the integral over the left-hand cut in Eq. (10) of (FJ)].

Using (3.1) this integral becomes

lJ’ AMP(~M? + M= (k) %2442) V7,
% Je,

I‘(Oflui_) —ag[tgj)r(az(tz} o Ot(t)) erirlaaltyda; (g ))
r(_‘ag{tal)

=glt,, b'; t)glty,a’; t)

-
X sinm a,(t,) - a,(4,) J’ AMP (=M + M) =1+ e, ¢ -ay i) g2 — M) 1))z ttaday )

X, F, ( —at), oty ~a(t); 1 ey(8y) + aglty

K
ME_M? )

) 0t 0% DM+ 9 O-ertt s rmytey D0+ NIV -0+ @ (NI Loyl g,
_—ﬂg{rhb ;t)g(tzra ,l')(Mo +E) ) 1“1"l Je’i 1(: } I‘(_az(ta])zl'(ff-pl_.a(f)+ﬂ1(t1)1+02[tz))T(J+ 1; . ( - )
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From (3.4) we see that the integral over C, vanishes when analytically continued to J= -1, confirming
that k*2'2'Vy satisfies 5 good FMSR. Note that the J-plane singularities of (3.4) include not only the con-
ventional poles at J — a(f) + a,(f)=0,-1, -2 .., but also the unconventional poles at J+1+ a,(f)
=0,-1,-2,. .. . These poles give the unconventional asymptotic terms required according to FJ. If be-
fore continuing to J= -1, one first continues a,(¢)~0, it is apparent that a nonvanishing constant resuylis
giving the breakdown of the FMSR at @,(¢,)=0 discussed in (FJ).

We now proceed to compute the FMSR (3.2). wutilizing the contour deformation of Fig. 3 and our previous
result that the integral over C, vanishes, we can write (3.2) as follows:

iz
‘17 J dM22l)y, =j Mx“z"z’l. A2V
2 J. w2 2

0

- mzx“z‘*z’% 8,2V (3.5)

Evaluating (3.5) by means of the last integral requires a knowledge of the asymptotic behavior of A w2V,
Taking the discontinuity of 3.1) across the physical cut, we find

(Ma _Moz)atﬂ-altll}-aztta)

r{l : O!(f) "‘al(tl) b az{tg))

1
57 SueVe=nglt, 0", Dglty, a’; 1)

X F, (-'05;(11}, =a,(25); 1+ o(t) — o, (t,) —ay(ty) MM;MO ) .

which has the asymptotic behavior

1
2—£tﬁy2V* MZ’:JH Hg{tl,b’; t}g‘(tz,a’; t}

‘ (1+a())(M2-Mm 2ya it () J=a,(t,) 1
X)- r(l-l-a(f) —Ql(tl])E‘{1+a(t) _ag(tz)) [ +O(W) ]

i II‘;(_; (—tﬂ;;?:(ﬂioz(; ;}) 1 +ur(“(M2 — M) ey 6y g ) [1 +0 (Elj)}} (3.7)
= U DI (—a,(s, i

The second asymptotic term in (3.7) corresponds to the unconventional terms discussed in FJ that are re_
quired if the amplitude is to satisfy a good FMSR. It also represents the asymptotic behavior corresponding
to the poles in the Mellin transform at J+1+ @,(¢,)=0, -1, -2, mentioned earlier. Note that although the
second term of (3.7) appears to be singular at a(#) =0, this singularity is in fact canceled by subdominant
terms in M® [since the hypergeometric function in (3.6) is nonsingular at a(t)=0,+1,42, .. . there must be
such cancellations in the asymptotic series (3.1)].

We now compute the FMSR using (3.5) and (3.7):

fnz dﬂﬁ(x)“z“z’%a wVe=glt,, b"; Oglt,, a’y )

(1 + a(8))(Br2) attr=ay ) 1
X{Nl +a(t) —a, (¢TI + ald) —a,(£))(1+ a(D) ~a,() [1 +O(W)]
Nl = t!'(t)){M021._ (}H“‘ﬂ{ﬂ_{z)-aﬂtl) 1
’ Do, (&) T (=, {E) =, (1) [ “O( ﬁz)]}

Even though, as we have shown, the left-hand cut in Fig. 3 gives no contribution to the, FMSR (3.8), none-
theless at a,(#,)=0 (3.8) develops a constant term independent of M2, as it should.

(3.8)

IV. DISCUSSION

We have given here a simple model for A, of Fig. 1 that satisfies a good FMSR. Furthermore, we have
established general sufficiency conditions for Ajg to satisfy good FMSR’s. These conditions complement the
necessary conditions established in (FJ). We emphasize that the dual resonance model does not satisfy
these conditions and therefore would generate Regge cuts in the planar S matrix.

It is nevertheless instructive to compare our simple model for 4, (3.1) with its dual resonance model
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counterpart. In many respects the unconventional terms in our simple model play a role analogous to the
effect of the @ trajectory® in the dual resonance model. For example, consider the dual analog of (3.8):

1 i 0 R a(tn(Ma)u(n—ul(h)-agltzl 3 [
=82V, ~ my? [1 O —
2 PR e, {I‘(l +a(f) —a,(ENT(L + alt) —a,(t,) VT
1 188 )9=B(2)=2( 128t =, (t) J=a, (Ep)
Tt pipeorsoprpeniratd [ oLyl @
r{ “alttl))r(“‘a‘-gtt’g)) 1142
where B(#)=3a(f) ~3. One sees that the p-trajec- al) asymptotic term for our simple model serves
tory term serves to keep the amplitude finite at in much the same role as the p-trajectory term in
a(f)= -1, dominates the amplitude for a(#)<-1, (4.1). The unconventional term in (3.8) keeps
and vanishes when one of the external Reggeon legs Ay2Ag finite at o(f)=-1; it dominates for
is continued to the particle pole. a(f)<-1, and vanishes for @,(#)=0or
We see from (3.8) that the second (unconvention- a,(t,)=0.
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