PHYSICAL REVIEW D

VOLUME 16, NUMBER 6

15 SEPTEMBER 1977

Existence of good finite-mass sum rules and the planar pole bootstrap*

J. R. Freeman and C. E. Jones

Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588
(Received 6 June 1977)

The crucial role of “good” finite-mass sum rules in the planar pole bootstrap problem is emphasized. We
establish a necessary condition for certain Reggeon amplitudes to satisfy good finite-mass sum rules: the
amplitudes must have an unconventional term in their asymptotic behavior. The dual resonance model fails to

satisfy this condition.

Currently topological expansion! (TE) or dual
unitarization® provides an ambitious framework
for confronting strong-interaction dynamics. The
first term in the TE is the planar approximation
and higher-order terms come from nonplanar cor-
rections. It has been conjectured but not proved
that planar unitarity is consistent with planar am-
plitudes having Regge poles only and no Regge cuts.
Such a planar pole bootstrap is not ruled out ¢
briori since planar amplitudes lack a third double-
spectral function which is known to make Regge
cuts inescapable. Establishing the existence of
planar self-consistency is of fundamental impor-
tance since the planar approximation bases the TE
program.

We shall first show, as previous work has sug-
gested,*”® that the existence of a planar pole boot-
strap requires that certain Reggeon amplitudes
satisfy “good” finite-mass sum rules (FMSR's).

In particular, we investigate under what circum-
stances such FMSR’s are obeyed in the simplest
nontrivial case involving the amplitude A s of Fig.
1. We establish a necessary condition for A, to
satisfy a good FMSR: The amplitude must have
an unconventional term in its asymptotic behavior.
From our results, it follows that the dual reson-
ance model does not possess such a good FMSR.

If the results of this paper generalize to amplitudes
with a larger number of external Reggeons, then a
planar pole bootstrap cannot be based in detail on
asymptotic behavior suggested by the dual reson-
ance model. In the following paper we display a

FIG. 1. Six-point amplitude in the limit s;,s 3.

simple model for A, which does possess a good
FMSR and hence may serve as a candidate for a
self-consistent planar amplitude.

To illustrate how FMSR’s come into the planar
pole bootstrap problem we focus on the simplest
nontrivial unitarity equations which must be satis-
fied. Figure 2 depicts the unitarity relation for
the four-line amplitude with one external Reggeon.
[The simpler unitarity relation for the four-line
amplitude with no external Reggeons, i.e., a,(t,)
=0 in Fig. 2, can readily be shown to be self-con-
sistent with Regge poles alone® and will be dis-
cussed as a limiting case of Fig. 2.]

The unitarity sum for the two-bubble diagrams
on the right-side of Fig. 2 must be carefully speci-
fied to avoid double counfing. We use the following
simple procedure for specifying the summation:
Those particles with rapidities lying in the first
half of the total rapidity interval are to be assigned
to the left-hand bubble, those in the second half
to the right~hand bubble. This procedure means,
of course, that the Regge exchanges a,(¢,) and
@{(t}) in Fig. 2 will be used even to describe reac-
tions where small rapidity gaps separate the left
and right bubbles. Thus we shall assume in Fig. 2
that a summation is carried out over as many
Regge-pole exchanges a,(¢,) and ai(t]) as are
needed to obtain an accurate expression for the
amplitudes.

It turns out that the points we wish to consider
hereare amply illustrated by letting o i(¢))=01in Fig.
2 corresponding to the exchange of a spin-zero
particle. This leads to the evaluation of the graph
In Fig. 3. The right-hand bubble in Fig. 3 is
simply related to A, in Fig. 1 and the properties
of A; are better understood than those of the cor-

FIG. 2. Planar unitarity with one external Reggeon,
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FIG. 3. Planar unitarity sum with af (¢)=0.

responding amplitude in Fig. 2 which involves
three Reggeons.

We now proceed to write down the unitarity sum
of Fig. 3 in accord with the previous discussion,
Assuming factorization for Regge-pole exchanges
we see that this sum can be computed through
knowledge of the A; amplitude in the limit shown
in Fig. 1 and of the A, amplitude in the limit of
Fig. 4. We have, in the notation of Fig. 1,
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where df}, is the phase-space integration including
the integration over ¢, and

K=8,8,/s=M?*+¢
1¥2

with € a function of the fixed momentum-transfer
variables. The upper limits in the M, and M,?
integrations reflect the rapidity division mentioned
earlier.

We see in (3) that the integration over i, appar-
ently produces Regge cut behavior at large s] as
would be suggested by the diagram in Fig. 3. How-
ever, we now indicate that the apparent cut be-
havior is eliminated if the amplitudes W and V
satisfy certain finite-mass sum rules. First, we
note that W possesses a Regge-pole expansion,
the leading term of which is given by

W y(_MLz)mm—al(:;) , (4)

where y represents the appropriate residue func-
tions. Owing to our basic assumption of planarity,
W possesses only a right-hand physical cut. Am-
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FIG. 4. Five-point amplitude relevant to three-parti-
cle, one-Reggeon amplitude.

where o,(¢,) and a,(t,) are the trajectory functions,
the B’s are residue functions, and V is the two-
Reggeon—two-particle amplitude. Similarly for
A, of Fig. 4 we have

Ag=B,(t)T(=ay(t,) ~s) 2 w | (2)

where W is the four-line amplitude with one ex-
ternal Reggeon.

Combining (1) and (2) above and using factoriza-
tion, we arrive at the following expression for
the unitarity sum in Fig. 2, isolating the contribu-
tion of Fig. 3 (using the standard assumption of
simple factorizable phase space):
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plitudes that have Regge behavior with only a right-
hand cut are well known to satisfy “good” FMSR’s
of the following form:

ne oW 41
1 sz.zﬁusz " Z (M2)“*'D(w,t,...)
W

(5)
where the w summation is over the Regge powers
present in W. For the amplitude W, the leading
value of w is w=a(t) - a,(t). Setting M?=(s)V/2
in (5) we see that each term in the sum contains
the ¢,-dependent factor (s])~*““1/2, Now if each
term in the FMSR for V in (3) has a similar fac-
tor, we see that there will be no Regge-cut be-
havior arising in the unitarity sum (3).

We first observe that when a,(f,) =0 correspond-
ing to the unitarity sum of Fig. 5, we have V=W
and the FMSR over W in (3) is the same as (5) so
that the Regge cut behavior is canceled. Further-
more, the leading behavior of (3) is proportional
to (s/)** which is the required self-consistent be-
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FIG. 5. Planar unitarity sum with a,(t,)=0.

havior, i.e., the Regge-pole bootstrap is satisfied.
This result has been known for some time.®

The discussion of the planar bootstrap when
a,(t,)# 0 is much more subtle. In this case in
order to generate a pure pole output for the unitar-
ity sum of Fig. 3, the required FMSR is of the
type

O
27 f : a:Mzﬂh)ae(tz)ﬁMZV
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where w is of the form w=w'—q,(f,) with w’ inde-
pendent of . The difficulty in establishing the
FMSR (6) arises because, although V has Regge
behavior [w=a(t) - e,(t,) for the leading behavior|,
the integrand in (6) has a kinetic cut at k=M%+¢
=0 in addition to the physical threshold at M*=M,?,
making the usual proofs for FMSR's invalid. The
presence of such kinematic cuts does not violate
the planarity of the basic amplitudes but merely
reflects the phase-space restrictions of the uni-
tarity integral.

We first write down the Steinmann decomposition
for the amplitude V (see also Fig. 1):
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V= (_K)_ﬂ"ul)vla(ME.' K5 8 by, ty)
+(=K)" Y, (M2, K 8, 0y, 8,) (7)

Note that we include here only those two Steinmann
pieces of the six-point function which possess a
physical M*® discontinuity as it is these pieces
which enter into a unitarity summation. As is
customary, two helicity variables have been set
equal to zero in (7) reducing the total number of
variables in A, from eight to six. Both V,, and V,
have only threshold cuts in M? and possess the
following Regge behavior:

Vrz i (_Mz)a(:} -a j:z)guy !,_]g(-‘f, tg) ;

2w
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where the g’s are the appropriate Regge residues.
Both V,, and V,, are analytic in the « variable.
Inserting expression (7) into (6) we see that with
the weighting factor (+«)%#*2', one piece of the inte-
grand in (7) is just V,, which has by itself a good
FMSR of the type (5). So the question becomes:
Under what circumstances will the remaining piece
coming from V,, have a good FMSR? This part
of the integral in (6) is of the form
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(9)

Recalling that x=M?®+ ¢, we see that (9) corres-
ponds to an FMSR integral for an amplitude with
Regge behavior which, in addition to a right-hand *
physical cut starting at M 2, has a kinematic left-
hand cut starting at M®*=—e. In general such am-
plitudes need not obey good FMSR’s and the inte-
gral in (9) will have the form
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where the second term in (10) is a constant corre-
sponding to the integral of the discontinuity over
the left-hand cut. (This integral, of course, may
have to be defined by analytic continuation.)

If the amplitude in (10) is to have a good FMSR,
we see that either (i) it must have no left-hand
cut or (ii) the infegral over the left-hand cut must
vanish, in which case the amplitude superconver-
ges separately on the right- and left-hand cuts.
Since the Reggeon amplitude that we are consider-
ing definitely possesses a left-hand cut only op-

tion (ii) is open. We stress that the presence of
a left-hand cut (coming from k dependence) does
not automatically preclude the existence of a
good FMSR.

We now show that if good FMSR's exist at all
then there must be an unconventional term in the
Regge asymptotic behavior of (1/2i)AV.

First we note that a good FMSR mus/ fail to exist
when a,(£,)=0. Inthis case V,, becomes just the
Reggeon amplitude with one external Reggeon,
shown in Fig. 4 (note that the function V,, vanishes



at a,=0 but V,, does not). Whenever ¢, =n, the
function V,, is a polynomial of order n in k. An-
gular momentum considerations show that when
@,{t,) is an integer the k behavior in V,, is a poly-

mnial limited in degree by the spin @,(t,). Thus
wuen a,(¢,)=0, V,, has no dependence on k. Ac-
cordingly, for a,(¢,)=0 the integral over the left-
hand cut in (10) cannot vanish for it becomes of the
form

j—e dMa[Vm{Mz,...)j% Ay (M2+e)o2 ) (11)

where V,, is now independent of €. The integral
in (11) cannot vanish as an identity in € if V, is
independent of €. An example of this general truth
can be seen by setting a,(¢,)= -1in (11); the entire
integral comes from a pole whose residue is pro-
portional to V,, (M*= —¢, . ..) which cannot vanish
for arbitrary € unless V, is identically zero. Thus
there is no good FMSR in Eq. (10) when o,(¢,)=0.
We may conclude that if the amplitude in (10)
satisfies a good FMSR,
M2
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then this FMSR must fail, i.e., develop a constant
term when «,(¢,)=0. This can happen only if (12)
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includes a term where o' = -1 and such that D has
a linear zero at o, (f,)=0.

This then establishes a necessary condition on
the Reggeon amplitude V in order that it satisfy
a good FMSR: The physical M? discontinuity of V
in (7) must have an asymptotic term of the form
(M2)-1"0t1{t1) —aglty)

The Reggeon amplitude corresponding to the Ay
of the dual resonance model does nof possess the
unconventional asymptotic term required for a
good FMSR. Whereas recent studies of A, in the

~ dual resonance model by Hoyer ef ul.” have shown

the presence of new-type Regge asymptotic be-
havior, the so-called f§ trajectories, this asymp-
totic behavior does not correspond to the uncon-
ventional type discussed here. Thus, even though
planar dual amplitudes pass some of the consis-
tency requirements of planar unitarity® [for ex-
ample, the unitarity requirement shown in Fig. 2
but with a,(¢,) continued to a particle leg|, never-
theless the dual amplitude for A, lacks a neces~
sary ingredient for planar self-consisteney,
namely a “good” FMSR.

In the following paper, we consider the general
question of finding Reggeon amplitudes V satisfy-
ing good FMSR’s. We present there a simple
model amplitude for V which satisfies a good
FMSR and we also give a sufficiency condition for
the existence of good FMSR’s. Whether such am-
plitudes can be used as the basis for a satisfactory
self-consistent planar bootstrap is under study.
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