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ABSTRACT

Incoherent image enhancement, such as unsharp masking, is more economical

than the couerent techniques, but also more limited. iere the limitations
on perfect image de-blurring are investigated. Both linear and non-linear
processes are treated and extensive results, based on computer simulation,
are presented.

1. Introduction

Unsharp masking is, perhaps, the oldest of the sophisticated methods of
image enhancement. Its original implementation, 45 years ago [1], in-
volved the combination of a blurred original negative with a positive copy
which was intentionally blurred further: the result was a sharper print. This
process was, in effect, a partial equalization of the spatial frequency spec-
trum. Since then, many processes have been devised, operating in widely
different ways, but all in a manner analagous to the above. [2] Some of
these involve scanning (with a spot which is either constant [3-7] or dyna-
mically controlled [8] [9]). Simultaneous methods have been developed based
on the Herschel effect of photography [10] and on the quenching of photophors.
[11, 12] With the exception of the scanning technique using a constant spot,
all of these are essentially non-linear processes. These we have analyzed
elsewhere [2]. They do not lend themselves to analysis in terms of the
transfer function (tf); only in the limiting case of vanishing modulation,
do they approach linearity. [2]

Because of this limit, however, and also because of the significance of
the constant-spot scanning techniques, the analysis of the linear unsharp
masking process is of interest.

2, Linear Unsharp Masking

In the linear version, the primary image spectrum S;, is the product of
the object spectrum, So’ with the tf,T,, of the original imaging system.
Unsharp masking consists of adding to this spectrum the spectrum, S, of the
"mask," where the mask is an attenuated and blurred negative version of the
primary image. Specifically, Sm= b STy

where T, is the tf of the blurring process associated with making the mask,
and b is the attenuation factor.

It is convenient to expréss the image signal (s) in terms of
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its mean value s, and its normalized variation:
L -
s = sf/s -1,
The spectrum of the primary image may then be written;
= = g = g
Sl 51(5 +5.) 5 (5 + SDT0 b 1
where ¢ stands for 5(v) and represents the Dirac delta function.
We may now write the spectrum resulting from linear masking:
+S =5, (§+ST )-bs T
S2 - sl Sm s.‘l.( so o Y ~b i Ll SoTc ) m (1)
_ l--b'].‘m
= 51(1—1)) (6 + | = I Toso ).
Here we have made use of the fact that

T,00) =1,
so that
T &= 6.
m

Note that the mean signal value has been attenuated by a
factor (1-b), showing that b must be maintained below unity. How-
ever, since the same attenuation is applied to the signal variation
at the origin, the modulation there has not been affected.

To compensate for the attenuation, the signal must be ampli-
fied, after masking, by a factor

g= 1/(1-b). (2)
3. Multiplicative Masking

In multiplicative masking, it is not the amplitude, but the
modulation of the mask that is attenuated by a factor, b. Also,
instead of adding it negatively, the sign of the modulation is re-
versed.

Consider a sinusoidal object function:

8= so(i + M cos 2wv ).

The primary image will be of the form:

5y = ;1 (1= MTO cos 2mvx ),

and the blurred mask function:
s =5 (1-bMT T cos 2rvx).
m m mo

The resulting image then has the form:

o slam

= ElE [1+ T M(1-bT ) cos 2mvx-bT T 22 cos?
m [+] m m o

2rvx]. (3)

We immediately note two fundamental differences between this and the
result (1):
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(2) In (3) the modulation at the origin is reduced by a factor
(1-b), whereas in (1) it rem&ined unaffected.

(b) A term containing cos“2mvx = (1 + cos 4mvx )/2 appears.
This represents a signal compoment of twice the object frequency
and therefore implies a distortion of the original signal ghape.
It can be seen that this distortion approaches zero with M“ and
may be negligible for small values of M.

4. Complete Correction

Complete correction by unsharp masking is theoretically poss-
ible~ but only with linear (i.e. additive) processing. Referring
to (1) it is evident that the requirement for this is:

(1-b1, ) T,/ (1-b) = 1.
This is readily seen to imply
& - (4)
£ e, = L% b )/mo %

This tf becomes negative at the frequency at which T drops to the
value of (1-b). In the usual optical systenm, haviugoa low-pass
tf, it then rapidly tends toward negative infinity and this limits
the implementation of the ideal Tm.

To obtain a practical blurring function, the function (4) may
simply be truncated at some convenient value, or it may be damped,
for instance, by multiplying it with a bell-shaped curve.

The following considerations indicate the optimum truncation
point. Sharp truncation is equivalent to multiplication with a
step function and therefore tends to introduce extended oscilla-
tions into the corresponding spread function. These, in turn,
make physical implementation difficult. This effect may be mini-
mized by truncating the spectrum at its zero-crossing, that is
at the spatial frequency,vo, where

To(vo) = 1-b (5)
[CE.(4) with Tm-O.]

The damping, to be effective, must be stronger than the di-
vergence of the function (4). It has the advantage of suppressing
the inconvenient oscillations, but must be expected to yield a
less perfect enhancement.

The classical method for preparing the mask is by defocusing.
In terms of our ideal correction spectrum (4), this means that we
should pick a degree of defocusing, whose blur spread function
approximates, as closely as possible, that of the ideal correction
spectrum. Here the variables at our disposal are the amount of
defocusing (d) and the relative aperture. Rather than the rela-
tive aperture we use another parameter derived from it: the (geo-
metrical) blur diameter

a=d/F (6)
where F=L/D is the effective F/number of the imaging system,

D is the diameter of the exit pupil of the imaging system
and
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L is the distance from this pupil to the image plane.

This should be the primary determinant of the mask performance.

5. Results of Computer Simulation

Image enhancement by linear unsharp masking was tested by simu-

lation on a digital computer. Two objects were used:

a. A unit step function

b. A three-bar pattern with gaps between bars equal

to the bar width.

These were blurred by a Gaussian spread function ( to simulate at-
mospheric blurring which approaches a near-Gaussian shape on long
exposure [13] ): 22

To(“) = E—Zﬂoo v, . 7N

The blurring was normalized by setting the standard deviation, e
equal to unity. The blurred images were then restituted by means
of unsharp masks of three types:

a. The ideal function (4) truncated at its zero:

Tm(u) =0, u>v°,
where Vv, is defined by (5).

b. The function (4) again with T as given by (7),
damped by multiplication with a Gaussian. °The standard deviation
of this Gaussian was chosen so that the total area under the re-
sulting curve vanishes, i.e. so that the area element above the
v-axis equals that below the axis. The damped correction function
then has the form
22 2 2.2
where T ={-q-p)}e? ¥ e (8)

cu1/[1-(1-b)? ]
is the standard deviation of the damping function.

c. The function resulting when an aberrationless lens
is defocused. This has the form: [14]

=1
T(vr,A) = %l};r #l-u2 cos [ Zwvr Au -vr)] du,vr>1
=0

» v_>1
v_ = AFv £

and has béen evaluated accurately over the range (0<A<100) where

A is the defocusing, measured in units of Rayleigh's W/ 4-tolerance

on defocusing.[16]
Hence dR = 2AF2

ﬁnd!dnfdfzxrz

where d is the amount of defocusing and
F is the effective F/mumber of the system.
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The geometrical blur (6) is then
a=d/F = 2)F A.

For each type of restitution mask, results were computed for four
values of b:

b= 0, 0,5, 0.75, 0.9,
with the application of the corresponding gain values:

g= 1, 2, 4, 10.
The curve for b=0 represents the uncorrected primary image.

The results are shown in Figs. 1-6. Fig. 1 shows the results
obtained with the "ideal" function (4) truncated at the zero-
crossing. Figs. 2-5 depict the results obtained with a severely
defocused aberrationless lens ( A = 100) with geometrical blur
diameter varying from 1 - 10. In each of these figures are shown
(a) the primary blurred step function image ( b=0) and the results
obtained with b = 0.5, 0.75, 0.9. Also shown are the results ob-
tained with tri-bar patters of unit bar width (b) and of twice this
width (c).

The method is not very semsitive to the amount of defocusing:
in Fig. 6 we compare the results obtained with A = 10 to these with
A = 100, both for the case of blur diameter a=4.

Results obtained with the damped "ideal" function (8) were
quite similar to those shown in Fig.6. They are included in Table
1 described in the next section.

6. Quality Criteria
To compare and evaluate the results, we must first establish
image quality criteria.

Classically, such criteria are based on the integrated squared
deviation of the image from the object

B=2i[1 - s(x) ]° dx.
lo

To obtain a eriterion which correlates positively with image quali-
ty, we define the enhancement criterion Q, as the reduction in B,
normalized with respect to B ,the value of B obtained in the primary
blurred image: °

Q, = (8 -B J/Bo. (12)

In terms related to the image parameters more directly acces-
ible to measurement, we note that in the case of the step
function, the effect of blurring appears as a decrease in the angle
of the transition. This angle is maximum at the origin and we may
take its value there as a criterion of image quality. In terms of
this criterion, all the proposed mask generating methods can yield
substantial image enhancement. However, this is invariably accom-
panied by a distortion of the image contour - in the form of over-
shoot adjacent to the transition. In an actual system, such over-
shoots may mask weak (even strong) object detail near a pronounced
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contour. The amount of overshoot should therefore enter the qual-
ity criterion negatively. We have chosen as the criterion the
slope angle © at the origin divided by the square of the peak
height. [This factor is squared in order to permit it to be rela-
tively insignificant for small values of overshoot (h) and to be-
come duly important for large values]. Specifically, this second
criterion is defined:

Q= %/t (L+h G (13)

where the factor 2/n is introduced to normalize the quality cri-
terion.

Discussion of Results

In Table 1 we list the integrated squared deviation, the angle
at the origin and the overshoot for the cases illustwated in Figs.
1-6 and for the damped "ideal" enhancement method. Together with
these are listed the quality criteria Q1 and Qz.

It can be seen that in all columns the truncated "ideal" fil-
ter yields the best results, the advantage becoming more pronounced
with increasing enhancement - at b =0.9, the enhancement criter-
ion is superior by about 50% to that of the best factor obtained
with defocusing.
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Fig. 1. Results obtained with truncated ideal mask.
a. Unit step function (only upper half is shown)
b. Tri-bar pattern, unity bar width
c. Tri-bar pattern
In each graph, curves shown are for subtraction weights
b=0, 0.5, 0.75, 0.9
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lz. 2. Results obtained with defocusing - blur diameter: unity
a. Unit step function (only upper half is shown)
b, Tpri-bar pattern, unity bar width
¢. Tri-bar pattern
In each graph curves shown are for subtraction weights
b=0, 0.5, 0.75, 0.9
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Fig. 3. Results obtained with defocusing - blur diameter: +two units
a. Unit step function (only upper half is shown)
b. Tri-bar Pattern, unity bar width
c¢. Tri-bar pattern
In each graph curves shown are for subtraction weights
b=0, 0.5, 0.75, 0.9 '
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Fig. 4. Results obtained
a. Unit step F

with defocusing - blur diameter
unction (only upper half is shown )

b. Tri-bar pattern, unity bar width
¢. Tri-bar pattern

In

each graph curves are for subtraction weights

b=0, 0.5, 0.75, 0.9

four units
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Fig. 5. Results obtained with defocusing - blur diameter: ten units

a. Unit step function (only upper half is shown)

b. Tri-bar pattern, unity bar width

¢. Tri-bar patterm
In each graph curves shown are for subtraction weights
b=0, 0.5, 0.75, 0.9
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Comparison of results obtained with different degrees of defocusing
a. Defocusing 10 times Rayleigh's A/4- criterion tolerance
b. Defocusing 100 times Rayleigh's A/4- criterion tolerance
In both cases results are for a unit step junction with blur diameters:
4. Curves are shown for subtraction weights
b=0, 0.5, 0.75, 0.9



