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Usual cylinder constructions neglect planar analyticity and the resulting cylinder is
contaminated by j-plane cuts, Beginning with input planar amplitudes that are manifestly
consistent with a pole-to-pole planar bootstrap, a three-dimensional cylinder equation is
formulated, incorporating planar analyticity. The output cylinder is now free of j-plane
cuts. The bare pomeron is a simple pole with trajectory intercept slightly above one.

1. Introduction

In this paper I address myself to building a cylinder in the topological expansion
[1] (TE) or dual unitarization [2]. While there have appeared in the literature several
studies [2—8] of the cylinder correction to the planar S-matrix, these analyses do
not take full account of the analyticity properties of the planar amplitudes that are
sewn together to construct the cylinder. Specifically, these works neglect in their
cylinder the subtleties of the low-energy behavior of planar amplitudes and incor-
porate only the planar high-energy Regge asymptotic form.

Study of planar unitarity has shown that approximating planar amplitudes by
simply their high-energy Regge asymptotic form is inadequate if planar self-consis-
tency is to be attained. The correct inclusion of low-energy planar amplitudes is vital
in achieving a pure pole-to-pole bootstrap without j-plane cuts [9-11]. Since the

--same planar amplitudes that are consistent with the planar bootstrap ought to be

used in cylinder building, there is no justification for sewing together only high-
energy planar amplitudes.

In this paper, I build a cylinder using input planar amplitudes manifestly consis-
tent with planar unitarity. Despite the complication of maintaining full planar
analyticity, the output cylinder is amazingly simple. It consists of two j-plane poles
and no cuts! The leading singularity, the bare pomeron, has a trajectory function
whose intercept is slightly above unity. The subdominant cylinder singularity exactly
cancels with the high-energy singlet planar exchange, consistent with the “fextinc-
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tion” or “pomeron-f identity” advocated by Chew and Rosenzweig [4] and Schmic
and Sorensen [5]. In the one-dimensional limit where transverse directions are sup-
pressed, this cylinder becomes equivalent to the diagram-counting model of Huan-
Lee [12] with a unit-intercept bare pomeron.

The structure of this paper is as follows. Sect. 2 reviews the essential features of
self-consistent planar amplitudes that will subsequently be important in erecting a
cylinder. Sect. 3 analyzes the one-twist contribution to the cylinder. The result is
not what is gotten when, as is usually done, planar analyticity is neglected. Subsect
4.1 contains a cylinder integral equation and its solution. Both the J-plane integral
equation and the solution differ significantly from the commonly assumed forms
which are presented in subsect. 4.2. Sect. 5 presents some remarks and conclusions.

2. Properties of planar reggeon amplitudes

This section describes the essential features of self-consistent planar reggeon
amplitudes [11]. These same reggeon amplitudes will be used later on in cylinder
building.

The planar reggeon + reggeon - reggeon + reggeon amplitude shown in fig. 1 ma
be extracted from the appropriate eight-point function as in subsect. 2.1 and table
of ref. [11]. To some extent the notation of ref. [11] will be followed. The four-
reggeon amplitude of fig. 1 is denoted A g, g, (M2, M3; 1; £1, £5), where M} = M? + |
with P} a non-negative function of the fixed momentum-transfer variables t, 5,65,
This M? dependence is associated with a kinematic (left-hand) cut at M? = —P? that
is present in the amplitude in addition to the (right-hand) physical M? singularities.
Note that rapidity-variable forms of reggeon amplitudes implicitly neglect the impo
tant distinction between M? and M3 variables.

Planar (actually, ordered) unitarity severely constrains the planar reggeon ampli-
tudes. One such unitarity equation is shown symbolically in fig. 2 and may be writ-
ten [11]

% AARRy(523, 533: 8 11; 15) 0(523 — 9)

Fig. 1. (a) Planar reggeon amplitude. (b) Quark diagram representation.
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23 %23
O 5 —0ip 1 ~0p. 32
'-'*9(523--F)NfCM’:’?;'Sz".:’,’2 il f d-fzf ds3
0 0

X 05— 52) 6 (7523 — $3)(s3)

1 +1 1
X 5 AR R,y (52, s5: 15 1], 5)s3) 03 T AAR,Rr,(s3,5%: 1, 15, 13) , (2.1)
where a(z;) is a trajectory function and
e x=altp) taly) -1,

2 =T (= (t2)) T (—a(t3)) cos [a(13) — a(t7)] ,

1 dyde5 6(-AG, £, £7))
167%  [-A(@t, 15, 15)]1/2

A is the usual triangle function. The discontinuities across the reggeon amplitudes
are taken only across the physical singularities. The AV factor is due to the assumed
internal SU(V) symmetry. The lower limit of integration over the s, and s3 blobs
actually begins at the physical threshold M3 which is already built into the reggeon
amplitudes AR g, (52, s3 ...) and AR,R5(53, 53, ...). The 6-function constraints in
(2.1) have been chosen to strictly avoid double counting [10,11,13] of intermediate-
state particle configurations in the unitarity sum. The v factor is just a scale factor.
Explicit realization (i.e. models) of planar reggeon amplitudes that meet not only

1l

d¢, (2.2)

i | -
v : hoT
___________ CI0-D)
+ 1;1; :
H 55 LFY
%23 L PR

Fig. 2. Planar unitarity equation for s33 > 5.
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the demands of analyticity but also unitarity requirements such as (2.1) are dealt
with elsewhere [14—16]. For the present purposes, it will suffice to focus only on
certain essential properties of self-consistent planar amplitudes.

The amplitude AR, g, (M?, M3, ...) displays Regge asymptotic behavior for suffi-
ciently large M?. In particular

1
57 AR R, M, M; ...)

large M2 LS ; . gk (B0, 1 —¢c,2 -2
¢ ; il e
o+ 1)3( ) &(t; Z)M?)
where the g’s are triple-Regge couplings.
To achieve a pole-to-pole bootstrap uncontaminated by Regge cuts, reggeon
amplitudes must satisfy certain good finite-mass sum rules [9-11,14] (FMSR):

; (23)

V4

+1 1
J RN - A, O M: 1 15, 1)
0

" ; D~ o
“Te®D gt 1) g(r; é)m : (2.4)

z

1
f W(M&)“C,lflz_i AAR]RZMaA{z]_;t; ti: t!?c.)
0

D¢ 1

N (— .
P(Q(!') + ])g(r, l‘f)g(t, !%) _"‘—"a(r) o s (25)

The crucial point is that there are no Z-independent terms on the right-hand side of
(2.4) or (2.5). This simply reflects the vanishing of contour integrals encircling the
kinematic cut of (MF)%e.1*14 RiR, (M2, MR, ..) or (MP)%2* 4, R, %, M1, ).

Using (2.3), (2.4), and (2.5) in the unitarity equation (2.1), it is straightforward
to show planar pole self-consistency is indeed achieved provided the usual bootstrap
condition [17] is satisfied:

~ e . / alf)—e 2
l—mﬂf f dp, £2(t; £2) i (26)

Y
O —a? P

This non-linear normalization of the triple-Regge couplings will be used in sect. 4 in
estimating cylinder parameters.

A few additional comments are in order. Recent work [14—16] has shown that
there are undoubtedly in addition, unconventional terms on the right-hand side of
(2.3) and the good FMSR (2.4), (2.5). For example, the general analytic requirement
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that, when the reggeons R, and R; are continued to particle poles (i.e., a(z,),

a(z) = 0), the good FMSR (2.4) must fail (i.e. develop a constant, Z-independent
piece) necessitates an unconventional (MP)~1=%,179%,22 piace in the asymptotic
form of (1/2) A,p AR R, (M2, M3, ...). Such unconventional terms have the virtue
of preventing unwanted singularities in A 2 AR R, M2, M3, ...) at the “trouble
spots™ a(f) = ~1,-2,-3,.... They also decouple from the four-external particle
amplitude. To avoid possible complications coming from these unconventional terms,
we simply keep a(r) sufficiently greater than —1 so that the unconventional terms
are subdominant and may be safely ignored.

In an interesting paper [18] Kwiecinski and Sakai argue against Regge-cut cancel-
lations when finite-size clusters are summed over in planar unitarity; however, their
conclusion follows from an analysis of particular j-plane unitarity equations whose
general validity is suspect. If planar unitarity is formulated carefully in the energy
plane as in ref. [11] or eq. (2.1), maintaining the important distinction between 85
and s} variables, then the J-plane projection via a Mellin transform does not generate
the diagonalized j-plane equations of Kwiecinski and Sakai. Thus their conclusion
applies only to those approximate formulations of planar unitarity, such as rapidity-
variable formulations, that neglect the difference between S; and S} variables. More
precise formulations such as eq. (2.1) indeed allow a self-consistent bootstrap (uncon-
taminated by Regge cuts) if the planar amplitudes are Regge behaved and obey cer-
tain good FMSR. Furthermore, the requirement of these good FMSR (2.4) and (2.5)
does not force undesirable threshold singularities on planar reggeon amplitudes, as is
evident from the explicit example in ref. [15].

3. The one-twist piece of the cylinder

Symbolically, a cylinder may be represented as in figs. 3, 4, by a sum of planar
amplitudes sewn together in a particular non-planar fashion [2]. The difficulty in

Y e
2z S

Fig. 3. A cylinder in series form.
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Fig. 4. A cylinder equation.

actually carrying out this summation lies in making sure that all the intermediate-
state particle configurations have been included. There are no “double counting”
subtleties [10,11,13] as in the planar bootstrap since in the cylinder construction
twisted propagators separate the sewn-together planar amplitudes. However, the
contributions from low-energy planar amplitudes may be overlooked unless care is
taken. To make this potential pitfall very clear, I will first analyze the contribution
of the first term in the series of fig. 3, namely the one-twist term, hereafter denoted

CEI)R3(323; t 1, 13).
Consider this one-twist term at sufficiently large energy, say
S33>w>7. (3.1)
Then
CE;)Rg(szﬁ t; 11, 13) 0 (523 — w)
3 23

2
=0(s23— w)fd%82(323)%’2_%’1_%’3_2 f ds; f ds3 0 (s23—5253)
0 0

+1 1 +
X (sé)“c,l -5; AAR]_R:(SZ: S%; L1, t%)

X (s§)"" 21—: AAR,Ry(s3,5%: 115, 15) , (.2)

where

£, =T (—a(@) I(-a()). (33)
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+ ;
S 23 w -] 23
Fig. 5. Phase-space division in eqs. (3.4a—c).

Note that: (i) there is no factor of N since there is no closed quark loop, (ii) the
exchanged reggeon is twisted and so has a constant phase, (iii) there is no need to
impose a fixed dividing line between the two blobs to prevent multiple counting.

The phase space in (3.2) may be visualized as a sum of three contributions
depending on the relative orientation of the two planar blobs with respect to the
minimum available energy w. Referring to fig. 5 these integration ranges are given
by: ' '

523 v523183

M 663-w) fdo, [ a3 [ dsye., (3.42)
w23/w 0 '
523 1523152

D) 6(sy3— w) fd% f ds, f dsg .. (3.4b)
w 0
w T$23/W

(1) 6(s53 — w) f dé, f ds, f dss ... (3.4¢)
0 0

Viewed this way, the phase space is seen to incorporate all the intermediate-state
particle configurations when there is no overlap between particles from the two
different blobs. '
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The integrals over the missing masses in (3.4a,b, c) are either FMSR of the type
(24) and (2.5) or integrals over the high-energy part of planar amplitudes (in whict
case the high-energy planar form (2.3) may be safely used). For example, for (3.4a)
one may integrate over s, via (2.4):

523 '
e Bl AL T i
8(323—w)fd¢2£23§§'2 Qg 1—C¢,3—2 f ; ds3 ___I‘(a(t)+1)g(t; ) g(t; 13)
7823 /w

[sza‘rrm*“"’z 1
x Sl e
53 a® - ag,

Now for sufficiently large s3,

1 s
(69" 5 Mpyryashitn 5,18 . 3.5

s5s3, (3.6
and the high-energy form (2.3) of (1/2i) AAR, R4 (53, ...) may be used, so that (3.5)

becomes

® 3(323“‘0)3'%"1(%!%%“_8;(?)%) O (D)sgP-oaes=2, 7

where

(-2
:-—-——l— S .T__;_ 7
0O=ran ) s GH = 68

Similarly one finds the contribution of (3.4b) to be

(1)) 6 (593 — w) w [0]6)) m(%) 3;(33)—%,1 —@p3-2 . 39

Me@®+1)
while the contribution of (3.4¢) is
(HD: 0z~ El%%*_ﬁ)@ (O e (3.10
where
a)-ccz
S RO My 2110
V(r)—r(a(t)ﬂ)fd:p;s,gz(r,ré) o0 e b
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Thus the one-twist term is, for 53 > o,

CR{R3(523, 23 11, 135) = 0 (523 — W) [Q(®) In(s23/7) + V(D]

- o m
X 5557l —%3 zmg(“ gt 15). (3.12)

From the planar bootstrap condition (2.6) one may estimate Q (7), V'(r) ~ o(1/N)
so that the order of (3.12) is consistent with TE expectations.
To transform (3.12) into the j-plane, one may introduce the Mellin transform

R0 = [ dsgasid ™ )y amits th, 1), (3.13)

(=)

so that

CRIR,G = 0,1 — g3 = 2)

_ e g £5) w0 [ 20
F@®+Dl-e®] |[/-a®]

_me(t: 1D g(t; 1) O *_ faki £E8)  aaa
Pe@+ Dl -a®] |Fe®+D) " al)—a, |

x[1n9+ /=0 d :” (3.15)

+V@O+0®1n ‘j{—’] (3.14)

Y [a® - a;] /- a@)]

This simple result is not what one gets if analyticity is neglected and only the
high-energy form of planar amplitudes is used. To see this, consider the widely used
high-energy approximation (HE): :

3 —j 2-1 1
fdsz3szé+ac'l+%3+ EMRlns(st,Sis;f;t’f,fﬁ)
0
@ De@) _ 1, o
Ta@®+1)[j-a@] 2i AARIR3( - 1 — 3= 2), (3.16)

st ' (.17)

Apart from having no a priori justification, the HE approximation generates j-plane -
planar unitarity equations (of the type studied by Kwiecinski and Sakai [18]) which
are incompatible with a pure pole bootstrap. Nevertheless, consider the one-twist
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term in this HE approximation. It is usually written
~ l &
CRUEU - 01~ a3 =2) = [dbats o= AAWER,( — e e~ 2)

,’/ —Qe 2 1 “

j—os EMﬁ?Ra(f—%,z—%,a“z) (3.18)

_7g@t: ) et; £5) Y02 g2 (1 1h) -
“TehryJ b =l /- e Ma@)+1)’

which fails to reproduce the form of the precise result (3.15). This failure is not surpris-
ing since already in strictly planar calculations it is misleading to ignore vital analy-

1 ticity properties such as the FMSR (2.4) and (2.5) (see also subsect. 3.2.2 and appen-
3 dix B of ref. [10]).

The important point here is that, contrary to widespread practice, the Mellin

; transform does not in general diagonalize the one-twist term into a product of sym-
metric transforms over the planar blobs and the usual (j — a.,2)~" internal reggeon
loop propagator.

X

(3.19)

3
3
2]
4

Ll ) . s

4. Cylinder constructions

4.1. A cylinder construction maintaining planar analyticity

. Let me now turn to the cylinder integration equation of fig. 4. Denoting the
‘f cylinder by Cr, g4 (523; 3 1, £3), fig. 4 suggests: :

; 0,32
; CriR3(23: 15 11, 15) = CR)Ry (523 13 1, 1) +Nfd¢2523§'5’2_%'1 i >

923 523 1
X062~ ) [ dsy [ dss00rm23 — s289)6He2" @1
(1] 1]

1 _
X7 DAR Ry (2,57 151, 15 sJ_o;)“"’"'Cn,ng(ﬁ; 665,15 0063-w),

where w is now identified as the cylinder threshold. The threshold  is so chosen
that it exceeds the planar threshold and is sufficiently large so that for §3 > w, one’
may take s3 ~ s3. Note that the V factor in (4.1) is required by the closed internal
quark loops in the 2,3,... twist graphs (see fig. 3). Rewriting (4.1),

i | e
CRyR3 (523 5 11, 13) = CR)Ry (523 13 15, £3) + N [[dy 55527001 0372

523 1$23/53 i ki
X"(Sza—w)f ds3 f ds, (s7)" !
b H
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1 3+l ]
X :‘,}A—'{RI Ra (S2:S§; I rfn tg)s:c’ CR;R:;(SEI; I t:‘gs Z%) ] (4"2)
one may readily perform the s, integration via FMSR (2.4):

Cr,r3623: 1 1, 13) = CR)R 5 (23 f;ff.ﬁ)"‘Nfd%Ezsg%’z—a“ ~%,3-2

ng(t; 1) g(t; 13)
@+ Da@® - ac]

523
X 0(593—w) f dS3F(a
w

$237Y Q(f}—“cz
X[—i:—] $35% Cryry 63 135, 15) . (4.3)
The Mellin transform
Crirs¥) = f dsp3873 ' Cry R4 (23 15 11, 15) (4.4)
w

~projects (4.3) into the j-plane equation:
Crir3U — %1 — 3~ 2) = C)R,( — a1 — €3 — 2)

ng(t; 1)) N g(t: 15
e+ DU- @1 %22 0 - o

X Croral - Uz~ Go3—2) 102, (4.5)
integral equation is easily solved:
o030 - 1 — @3~ 2) = CdRy 0 — 1 — 03— 2)

off)—oe,2

- mgBN gDy Py
@0y a@] Jats =T U - aea ~ 23 = 2)
Nm 2 yo et a(t)-e,2
OO ("‘t’ o) — 0y

“6)

Snbicitnting the ot twist et (3.1 5) tnto (4.6) yilda:

CRIRa( — 0o — 3 —2)
IO . D

_me( ) gt 15) O [NV(:) +14NQ@In(w/y) 1
"~ Te®+)N j—a@-NQ® j-a)

Cryrs(— Gt — 03— 2)=

., (4.3)
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or equivalently, in the energy plane

ng(t; 1) g(t; 1)

sipgh v
CR1R3(523: t tl’tg) P(CI(I) + I)N

0(s23 — w)

X {w ™ COWV(@©) + 1 +NQ() In(w/y)]

i e A A L. i i 45 i i

X s;t(sﬂ'*NQ(f)—ac,l —Gc,3-2 sggﬂ—%,l—%,s—l} ) (4.9)

This cylinder displays a leading j-plane pole, the bare pomeron singularity P with a
trajectory function ap(f), where

gz @ tﬁ) 70(0—%,2
a() - a2

3 | ap() =a()+ Te®+1) fd%'s'z

=a®+NQ@® , (4.10)

_ which is completely determined by quantities already appearing on the planar level,
To get a qualitative estimate of the bare pomeron parameters, we use the coupling
i normalization condition (2.6). Going to ¢ = 0, one has:

| I\ s (4 8@ = 1) 10702200, 89)
- S 1‘r'(as(o)+1)fd"’fd‘2 1673 [@(0) — o, ,]2

XT(—a(f5) M'(—a @) (4.11)

The bare pomeron intercept now becomes

5(5 = 13) 002 22(0; %)
167 [(0) — o]

N N T
ap(0) = a(0) + WB fdt fdt

X M(—a() T(~a(t)) , ' @.12)

=a(0) +(@(0) — & )ayerage
=1+2a(0) — 2¢(*" average - ‘ (4.13)
For approximately linear Regge trajectories

(@t Paverage ~ @(0) + &'t Daverage » (4.14)
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where o' ~ 1 GeV~1 is the Regge slope. Thus

ep(0) = 1 = 204 Dverags - (4.15)

The bare pomeron intercept is slightly above unity!

The residue strength of the bare pomeron may similarly be estimated. Taking
w =7y~ ] GeV one finds that at ¢ = 0 this residue is ~2N"1g(0; tDg(0: 3) nf
T(e(0) +1).

The bare pomeron slope is rather sensitive to the choice of triple-Regge couplings
and will be analyzed in a future work.

In addition to the leading, bare pomeron pole, the cylinder (4.8) has another pole
at j = a(f) with negative residue of the same strength as the SU(V) singlet component
of the planar pole. Thus, at sufficiently high energies, where planar amplitudes may

be approximated by their Regge asymptotic forms, the cylinder (4.8) in effect extin-
guishes the planar singlet:

+ 1 i
CRiR3(23i 13 13, 13) + - AARTR (523, 5353 1511, 1)

tarSesz;gﬂuN“lﬂZg(f;ff)g(f; !;)sap(f)_ac,]_%,s_z (416)
small ¢ F(C!(I) + 1) 23 . .

Such a mechanism, whereby the bare pomeron may be viewed simply as a shifted
olanar, vacuum-quantum-number trajectory, has been advocated in several papers
[(£.3.19].

In the one-dimensional limit where transverse variables (i.e. momentum transfers)
ir= suppressed, the bare pomeron intercept (4.15) becomes exactly one. In fact the
> Inder constructed in this section is the three-dimensional generalization of the
£=ple, one-dimensional Huan Lee model [12] that was based on diagram counting,

#

< 2 An approximate cylinder construction neglecting planar analyticity

iz s worthwhile to contrast cylinder (4.8) with the usual constructions that
¢ planar analyticity. With the high-energy approximation (3.16) and (3.17)
~7izes the approximate j-plane cylinder equation:

™y

Rl — Gt — 03—~ 2) = COFE( - @y — g3 — 2)

J=te 2

: 1 : Y
* N [ty 5- AARER, G - ~teg~ D)~

X CRoRa ~ 02—~ 53~ 2) . (4.17)
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Substituting (3.16) and (3.19) into (4.17), ons Jnds tae sclution

RSV - —as-2)

FHE . =
CRiR3 U — 1 — 23— 2) = o1 b2 ) 7 f=2c,2 (4.18)

" Ta@)+ 1)-J (i~ a:_r,ll U-esl

_me: ) et 13) 1
TF'e@®+1)N

v £y
~O-fepn kT

o L (:)} . (4.19)

| which is essentially equivalent to Bishari’s cylinder [6]. Instead of a simple pole

; singularity structure as in (4.8) the approximate cylinder in (4.19) is contaminated

? by j-plane cuts. The singularity structure of (4.19) is now determined by a compli-
cated eigenvalue equation [6]. Furthermore, the oversimplified planar reggeon am-
plitudes (3.16) used to build the cylinder (4.19) are not themselves compatible with
a self-consistent pole-to-pole planar unitarity; so one wonders in what sense the
triple-Regge couplings in (4.19) are to be normalized. This last point is well-illus-
trated by taking the one-dimensional limit (and settmg ¥~ 1). The leading pole of
(4.19) is now determined from

-ealj-el=

I‘(a + l) &> (420)

where now a, = 2a — 1. A unit intercept bare pomeron is now forbidden if a = 1.
(See also sect. 3 of ref. [10].) Since this model certainly does not correspond to
the usual diagram-counting model of Huan Lee [12] it is now dubious to adopt the

planar bootstrap normalization condition:

Nng?
' e -

which can be derived by diagram counting.

5. Remarks and conclusions

(i) If planar reggeon amplitudes consistent with a cut-free, pole-to-pole planar
bootstrap are sewn together to generate a (exchanged) cylinder then this cylinder
will itself be free of j-plane cuts. Interestingly, no further information about reg
geon amplitudes other than that already needed for planar self-consistency (namely,
Regge asymptotic behavior and certain good FMSR) is used in calculating the cylin-
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der of subsect. 4.1. This cylinder has a leading singularity, the bare pomeron pole,
with intercept slightly above one. In addition, this cylinder has a negative residue
pole that exactly cancels with the singlet component of the high-energy planar
exchange.

(i) If, on the other hand, planar reggeon amplitudes are approximated by only
their high-energy form then the corresponding approximate cylinder of subsect. 4.2
has a rather complicated singularity structure contaminated by j-plane cuts.

(iii) The intriguing question whether a cylinder model can be formulated that
avoids pomeron-f identity but still has a simple j-plane singularity structure warrants
investigation. For example. the simple (but mysterious) dynamical assumption that
in building up the cyvlinder, the leading particles (at the edges of the chain) must be
emitted from different quark lines alters the cylinder equation (4.1) so as to gener-
ate only the bare pomeron pole singularity (4.10) with no f-extinction piece.

I'amindebted 10 Y. Zarmi for discussions at the earliest stages of this work.
I thank J. Kwiecinski and N. Sakai for discussions on planar self-consistency.
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