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This note examines how the various intermediate-state configurations and different regions of phase space
contribute to building up the planar and cylinder contributions of the topological expansion. Various factors
of 2 are generated on the planar and cylinder level. For the cylinder, the doubling mechanism is different
depending on whether the number of intermediate-state clusters is even or odd. Despite the cylinder

doubling, the Pomeron-f identity is retained.

L. INTRODUCTION

In the topological expansion®'® or dual unitariza-
tion,®* the Pomeron contribution to high-energy
scattering first occurs at the cylinder level. Sev-
eral calculations*® show that, when the planar
and cylinder terms are combined, the singlet-
exchange Regge pole in the planar amplitude is
replaced by a single leading pole with vacuum-
exchange quantum numbers and trajectory inter-
cept near one. This promotion of the f trajectory
by the cylinder insertion—without generating a
new unique pole in addition to the planar f—is
called the Pomeron-f identity.** Intense question-
ing of the validity of the Pomeron-f identity has
led the present authors to a careful study of the
manner in which the cylinder and planar ampli-
tudes combine. In particular, we have examined
the contributions of “flipped” ordered amplitudes
(i-e., different ordered amplitudes having the same
channel structure) to see whether including both
amplitudes and their flips has any influence on
the Pomeron-f identity. It turns out that various
factors of 2 are introduced on both the planar level
and cylinder level. On the cylinder level the
mechanism which produces the factor of 2 is dif-
ferent, depending on whether the number of inter-
mediate-state clusters is odd or even. Despite
these factors of 2 required by the presence of
flipped amplitudes, the phenomenon of the Pom-
eron-f identity is not altered.

In the process of examining the role of flipped
amplitudes, we also present some practical un-
derstanding of the relation of hadron and quark
diagrams.

II. THE FLIPPED AMPLITUDE

The basic ingredient of the topological expansion
is the ordered amplitude,® examples of which are
shown in Fig. 1 for a four-line process. The
labels A, B, C, and D include not only the particle
type but also its momentum, spin, ete. The

clockwise arrow in Fig. 1 indicates a “sense” or
orientation and the six different noncyclic per-
mutations of the labels gives six different ordered
amplitudes. Ordered amplitudes possess energy
cuts only in channels where particles are adjacent
in the order. In Fig. 1(a), for example, cuts exist
corresponding to the AB channel (the s channel)
and the CD channel (the { channel) but not the AC
channel (the u channel).

The amplitude in Fig. 1(b) is the flip of the one
in Fig. 1(a). Both amplitudes in Fig. 1 are cut in
the same channels yet they represent different
ordered amplitudes. Both diagrams in Fig. 1
have an s-channel discontinuity, thus making them
relevant for an s-channel unitary calculation. The
other four ordered amplitudes having different
Permutations of the labels A, B, C, D are either
strongly damped for the large-s, fixed-¢ asymp-
totic limit we consider or else have no s-channel
discontinuity.

In a standard quark model the hadron amplitudes
in Fig. 1 have corresponding quark diagrams
shown in Fig. 2. For simplicity, we assume only
two quarks. With the standard assumptions about
SU(2) symmetry, the two amplitudes in Figs. 2(a)
and 2(b) are equal. :

In both Figs. 1(b) and 2(b), the orientation of
the flipped amplitudes is still given by clockwise
arrows. Thus these graphs are not literally flips
of Figs. 1(a) and 2(a) but simply have the inverted
cyclic order for the labels A, B, C, D.

(a) (b)
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FIG. 1. (a) Ordered four-line amplitude. (b) Flip
amplitude of (a),
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FIG. 2. (a) Quark-line model example of Fig. 1(a).
() Quark-line model example of Fig. 1(b).

In Figs. 2(a) and 2(b) the amplitude and its flip
correspond to different quark diagrams so that
there is no confusion about the need to include
both terms. Confusion may arise when both the
amplitude and its flip have the same quark dia-
gram, as is shown in Figs. 3(a) and 3(b). It
might appear that including both Figs. 3(a) and
3(b) is double counting but this is not the case.
We shall see later that both graphs must be kept

to consistently combine planar and cylinder terms.

One final point relevant in our later discussion
is that a quark diagram has a nonzero flip ampli-
tude only if every other quark line in the diagram
(as one follows the quark lines around the dia-
gram) is of the same quark type.

II. UNITARITY FOR ORDERED AMPLITUDES

Ordered amplitudes are postulated to satisfy
unitarity. In this section we illustrate by a sim-
Ple example how unitarity “works” for the two-
particle discontinuity in hadron or quark dia-
grams.

Unitarity for Fig. 2(a) is shown in Fig. 4(a).
Assigning, for simplicity, the coupling g% to each
intermediate-state planar insertion, we see that
Fig. 4 requires g2~2¢g* or g®~4. This is the
familiar result that g2~ 1/N, where N is the num-
ber of quark flavors.

It is interesting to reexamine the unitarity con-

(a) (b)
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FIG. 3. (a) Quark-line diagram with a single quark,
(b) Flip amplitude of (a),
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FIG. 4. Unitarity for amplitude in Fig, 2(a),

dition of Fig. 4 in terms of hadron diagrams as
shown in Fig. 5. Note that (i) both orders for the
intermediate-state particles should be summed
over unless the particles are identical, (ii) exotic
channels (i.e., 7°7*) are absent, (iii) the 7°is the
neutral member of the triplet, namely

ui —dd
0= 5 3.1
i (3.1)
whereas the 7%is the singlet
o o Wlh+dd 3.2)
vz

To achieve consistency between Fig. 4 and Fig.
5, there must be weighting factors which relate
the various amplitudes. I g2 is the weight for a
planar quark diagram insertion, then, from Egs.
(3.1) and (3.2) it follows that all the ordered amp-
litudes for 777~ - 2 neutrals have a weight g%/2
(see, for example, Fig. 6). In orders of g% Fig.
5 becomes

gi~glrax (i g"),
or

g~ 2g*, (3.3)
which agrees with the results of Fig. 4.

IV. THE EXCHANGED CYLINDER FOR TWO-BODY
INTERMEDIATE STATES

Let us now turn to the cylinder correction to
Figs. 1(a) and 1(b). In particular consider the
two-particle intermediate state shown in Figs.
7(a) and 7(b) where as before, we go to high s and
fixed ¢.

Figures 7(a) and 7(b) include two terms corres-
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FIG. 5. Unitarity for hadron diagrams.
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FIG. 6. Example of relation of hadron and quark
diagrams.

ponding to the insertion into s-channel unitarity
of an amplitude and its flip; if particles E and

F are of the same type, then only one of the two
diagrams in Fig. 7 is to be kept, since in that
case the phase-space integration for E and F will
automatically include the flip amplitude.

Another subtlety in assembling the cylinder con-
tributions is illustrated in Fig. 8. Starting with
Figs. 1(a) and 1(b), one might think that the cylin-
der corrections to Fig. 1(a) are given by Figs.
7(a) and 7(b) and those to Fig. 1(b) are given by
Figs. 8(a) and 8(b). But this is incorrect—the
diagrams of Figs. 8(a) and 8(b) are the same con-
tribution as that of Figs. 7(a) and 7(b), since the
same ordered amplitudes occur in both cases.

In particular, Fig. 8(a) represents the same con-
tribution as Fig. 7(b), while Fig. 8(b) is the same
as Fig. 7(a).

In terms of quark diagrams, the remarks of the
last paragraph mean that the cylinder contributions
of Fig. 9(a) are identical to those of 9(b) so that
only one of them is kept as a correction to Figs.
2(a) and 2(b).

Next we consider another double-counting ques-
tion by examining the diagram in Fig. 10. This
diagram looks like Fig. 9(a) except that the uf
and dd intermediate states have been slipped past
each other to exchange their relative positions.
Clearly, Fig. 10 involves unitarity for the same
ordered amplitudes as Fig. 9(a) so one wonders
whether Fig. 10 is a separate contribution from
Fig. 9(a). Certainly if one assumed no connection
between particle order and longitudinal momentum
or rapidity ordering, then integrating over the full

(b)

FIG. 7. Exchanged cylinder contribution for two-par-
ticle intermediate state.

FIG. 8. Equivalent diagrams to Figs. 7(a) and 7(b).

phase space of Fig. 9(a) would include the con-
figuration of Fig. 10. However, quark diagrams
are usually assumed to specify not only particle
order but also rapidity order. Thus in Fig. 9(a)
the uu intermediate state has negative rapidity

in the center of mass while the dd state has posi-
tive rapidity. On the other hand, Fig. 10 repre-
sents a region of phase space where dd has nega-
tive rapidity while «& has positive rapidity. Since
Figs. 9(a) and 10 are interpreted as representing
two different regions of phase space, both con-
tribute to building up the cylinder. Note that such
a doubling mechanism is absent on the planar
level.

To further illustrate the different phase-space
regions represented by Figs. 9(a) and 10, we
show in Figs. 11(a) and 11(b) hadron diagrams.
The contributions in Figs. 11(a) and 11(b) comprise
the cylinder term Fig. T(a). Note that the ex-
changed Regge poles in Fig. 11(a) may have dif-
ferent quantum numbers from those in Fig. 11(b),
consistent with these two diagrams, each repre-
senting distinct contributions.

In Fig. 12 we show the hadron graphs that con-
tribute to the two-particle intermediate states of
the exchanged cylinder. The appropriate weighting
in g? is given for each term including the phase-
space factor of 2. The cylinder strength is thus
2g*, which is of the order g? since g?~%. This
is to be compared with the planar singlet which is
% (i.e., 1/N) of the planar amplitude Figs. 2(a)
and 2(b) —that is, $x (2% =g?. That the planar
singlet and cylinder strengths be the same is a
necessary condition for the Pomeron-f identity.

(a) (b)
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FIG. 9. Two diagrams for the same unitarity contribu-
tion.
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FIG. 10. A different region of phase space for the dia-
gram in Fig. 9(a).

V. MANY-PARTICLE INTERMEDIATE STATES IN THE
CYLINDER

We now consider the many-particle (or many-
cluster) contributions to the cylinder having at
least two pairs of twists. The simplest example
is in Fig. 13(a) where momentum transfers AE,
BG, ED, CG are all taken to be small so that
Regge exchanges can be used in these channels.
The intermediate states in Fig. 13 are planar clus-
ters of particles or single particles. We shall
now show that if the number of clusters separated
by small momentum transfers is odd [as in Fig.
13(a)] there is a new doubling mechanism unlike
that discussed in the previous section.

If in Fig. 13(a) the momentum transfers AE,
BG, ED, CG are small and the energy is asymp-
totic, then one has a cylinder diagram with two
pairs of twisted Reggeons. Let us now ask ifa
mechanism for doubling this cylinder contribution
[Fig. 13(a)] exists in analogy with that of Figs.
11(a) and 11(b). This would involve in Fig. 13(a),
e.g., slipping the lines E and F past each other
[as in Figs. 11(a) and 11(b)]. However, at high
energy this means a Regge region where the mo-
mentum transfers DF, CG, AF, BG are small
and one has only one pair of twisted Reggeons
instead of two. In this case E and G can be com-
bined into a single planar cluster and this con-
tribution has already been counted in, e.g., Fig.
9(a) which has only one pair of twists between
clusters.

Fig. 13(b) is the diagram which does lead to the
numerical doubling of Fig. 13(a). In Fig. 13(b)
the ordered amplitudes at the top and bottom of

A B

FIG. 11. Two regions of Regge phase space for cylin-
der.

FIG. 12. Cylinder contribution in terms of hadron dia-
grams.

the diagram are the flip amplitudes of those oc-
curring in Fig. 13(a). One might think that the
relation of the contribution of Fig. 13(b) to Fig.
13(a) is the same as that of Fig. 7(a) to Fig. T(b)
where flip amplitudes also appear in Fig. 7(b).
There is, however, an important difference be-
tween the two situations. The contribution of Fig.
7(b) can be thought of as already included in the
unitarity sum of Fig. 7(a) if we agree in Fig. 7(a)
to sum over particle types as one normally would.
In fact, the quark diagram Fig. 9(a) includes both
Figs. 7(a) and 7(b), for in quark diagram language
there is only one intermediate two-cluster state,
since there are no closed quark loops [in terms

of the hadron diagrams of Fig. 12, of course, Fig.
9(a) is broken down into four pieces as shown].

By contrast, no sum over particle types in Fig.
13(a) will include the contribution of Fig. 13(b). In
terms of quark diagram language both Figs. 14(a)
and 14(b) must be separately included. The point
here is that the cylinder term with three inter-
mediate clusters gets a factor of 2 because Figs.
14(a) and 14(b) are topologically inequivalent but
numerically equal, whereas in the case of the two-
cluster intermediate state a factor of 2 arises
from a different mechanism: Figures 9(a) and 10
are equivalent topologically but they represent two
different (but numerically equal) regions of phase
space. This latter doubling mechanism does not
operate at the level of the three-particle inter-
mediate clusters of Figs. 14(a) and 14(b) because,
as already pointed out, sliding quark lines past

(a) (b)

FIG, 13. (a) Cylinder term with double twists. (b) An
additional double-twist team.
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FIG. 14. (a) Quark-line model example of Fig. 13(a).
The x quark line is summed over. (b) Quark-line model
example of Fig. 13(b). The x quark line is summed over.

each other in this case reduces the number of
twist pairs to one and this contribution has al-
ready been included in Figs. 9(a) and 10.

One final remark about the three-cluster inter-
mediate-state contribution to the cylinder which
points up to a difference in working with hadron
diagrams versus quark diagrams. We note that
the quark amplitudes at the top and bottom of Fig.
14(p) are not flips of those in Fig. 14(a). In fact,
the lower amplitude in Fig. 14(a) has no flip ampli-
tude as it violates the rule discussed earlier that
a quark line amplitude only has a nonzero flip
amplitude if every other quark line is of the same
type. Of course, if the quark diagrams in Figs.
14(a) and 14(b) were expanded in terms of their
hadron content, the terms would take the form of
Figs. 13(a) and 13(b).

Proceeding beyond three-cluster intermediate
states, one may show straightforwardly that all
even numbers of cluster configurations have a
doubling mechanism similar to the two-cluster
case and that all odd numbers of cluster configura-
tions have a doubling mechanism similar to the
three cluster case. For example, the doubling
that is shown in Figs. 11(a) and 11(b) has an analog
in the case of the four clusters shown in Figs.
15(2) and 15(b).

VI. SUMMING THE CYLINDER DIAGRAMS AND
POMERON-f IDENTITY

In this section we sum up the various cylinder
contributions to generate a cylinder integral equa-

FIG. 15. (a) Cylinder term with three twists. (b) A
different region of phase space for (a).

FIG. 16. Integral equation for the cylinder.

tion of the type proposed by Chan ef al.? Despite
the appropriate factors of 2 that are a consequence
of the doubling mechanisms discussed earlier,

the phenomenon of the Pomeron-f identity is un-
altered.

The cylinder summation may be summarized
by Fig. 16 where R represents the ordered (ring)
amplitude, N represents the number of quarks,
and the exchanged Reggeons are twisted. It is
straightforward to check that the factors of 2 and
N are indeed the correct ones to account for
closed quark loops and to generate the various
doublings discussed in the preceding sections.

To study the Pomeron-f identity issue it is con-
venient to focus on the sum of the cylinder and the
singlet planar projection, as suggested by Chew
and Rosenzweig.** The planar amplitude is built
from an ordered amplitude R and its flip—that is,
both Figs. 1(a) and 1(b) [or Figs. 2(a) and 2(b)].
The planar singlet is thus 2/N times the R ampli-
tude.

Figure 17 shows the integral equation for C’
=(2/N)R+C. The Pomeron-f identity follows im-
mediately from Fig. 17 since C’ cannot have a pole
at the Regge poles of R without generating a double
pole. In the case where a planar quark diagram
has no flip amplitude, the Pomeron-f identity still
holds. Although the flip amplitude is zero, the
singlet projection does not vanish and is still
equal to the singlet projection of the unflipped
amplitude. There are, of course, amplitudes for
which no singlet projection exists at all either
in the quark diagram or its flip.

Finally we point out that the integral equations

FIG. 17, Integral equation for cylinder plus planar
amplitudes.
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of Figs. 16 and 17 ignore those regions of phase
space when clusters overlap to the extent that
small-momentum-transfer Regge exchanges can-
not describe the process. The appropriate equa-
tions that include cluster overlap will be dig-
cussed elsewhere.
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