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A one-glass achromatic doublet
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Abstract. This note presents the design of a doublet, of positive power, whose
focal points at two arbitrary wavelengths coincide, the two components being made
of identical material. Achromatism is achieved by having the rear focal points of
the first component (at the two wavelengths) straddle the second component.

1. Introduction

In work with LR. lasers, it is often convenient to superimpose, upon the
LR. beam, the beam from a low-power laser operating in the visible portion of
the spectrum. This may facilitate alignment and aiming of the LR. laser.
The effectiveness of this procedure depends on the achromatization of the
optical system for the two wavelengths. Such achromatization may be very
difficult in the mid-I.R., where available optical materials—transparent in the
visible as well—are quite limited. In such instances, as well as in other applica-
tions, a one-glass achromatic doublet may be helpful. Indeed, it is pessible to
construct such a doublet with positive power by having the rear focal points
of the first element, taken at the two wavelengths, straddle the second element.
With such a doublet, the change in effective focal length can be compensated
for exactly by the change in principal plane distance. This note presents the
specifications for such a doublet, followed by an illustrative example and the
proof of the results given. These cover a special case ; the derivation of the
general solution is rather complex and is presented in the Appendix.

2. Specifications

The total curvature of the first and second components and their spacing
are, respectively,

Vru+1frp=c,=p/(n—1)(p+1)f, (1)
Ury + 1/722_=Cz="71/?2, (2)
d=(1-p*)f/p. ()
The resulting back focal length is
fo=pf- _ )

Here f is the effective focal length of the doublet, 7;; 1s the jth radius of the 7th
element, with convex surfaces taken as positive, and

p=(""—n)j(n' +n—2), (5)

where 7 and #” are the refractive indices at the two wavelengths.
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3. Illustrations

By way of illustration, consider an arsenic trisulphide glass doublet to be
achromatized for the 0-6328 um line of the He—Ne laser and the 10-6 um line
of the CO, laser. The corresponding refractive indices are 2-6062 and 2-3770
respectively [1]. The corresponding value of p is then found to be 0-07683
and the required design parameters are

€,=0-5181x 10—2 =(1930)-2

¢, =0-08778 =(11-39)-1,
d=1294,
fb = 7'683,

all for an effective focal length of 100.

Finite object-to-image distances

The above is for an infinitely distant object. To deal with finite object and
image distances, two doublets, with focal lengths equal to object and image
distances, respectively, may be used in combination, with the doublet on the
object side inverted. The second lens of the object doublet may then be com-
bined with the first lens of the image doublet into a single lens having the com-
bined power. In this way, a triplet results.

For instance, if it is desired to image an object at 2 x magnification, we may
place before the above doublet an inverted doublet which is scaled down from
the former by a factor of one-half. The resulting triplet would then have the
following parameters :

1/, =11-39/2 = 5-696,
€g=2[1930+1/1930=1/643,
1/e3=11-39,
dyy=647, dp—1294,
distance of object to first lens=3-842,
distance of image to last lens =7-683.

Note that object and image distances are small compared to the effective focal
length and that the lens separation is large compared to it. These facts must be
considered in weighing the practicability of this design.

4. Proof of formula

We now show that the formulae (1)-(3) do, indeed, yield a system which
exhibits a common focal point for refractive indices 7 and »’.  For a combination
of two thin lenses, the basic formulae for effective focal length (f) and rear
principal plane distance (d,,) are

- f=hfal(fi+ fo—d) (6)
and
dyo=dff;, (7)
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where f, and f, are the focal lengths of the two components and d is their spacing.
For the thin lenses,

Vfi=(n—1)c;y e;=1ry+1/ry, i=1,2, (8)

where # is the refractive index, ¢ is the total curvature, and 7;; and 7,, are the radii
of curvature of the ith thin lens. Formulae (6)-(8) are found in standard
texts on geometrical optics under the heading ‘ Gaussian optics * (see, for ex-
ample, [2]). From equations (7) and (6) we find the back focal distance :

fo=F=dya=f(1 = dlfy) = (ifa~ dfo)/(fy + fod). 9)
On substituting (1) and (2) into (8), we find
fi=1/(n—1)e;=(p+ 1)f/p, (10)
fa=p(p+1)f. (11)
On substituting these, together with (3), into (9), we find
f‘b =Pf’

confirming equation (4).

We now calculate the back focal length at the other wavelength, denoting the
corresponding focal length by a prime. This f', must also equal pf. We first
note that, from (5),

_(+n-2)—(n"-n)

(=PI +p)= e == -1, ()
Now, from (8) and (1),
A e’ (13)

On substituting (12) for the first factor of this, we obtain
fa=(-p)flp- (14)

From (8) we note that f, is inversely proportional to ¢;. Hence from (2), it is
evident that

f'2=P2f'1=P(1_’P)f- (15)
By analogy from (9), we now write the expression for [’y as
fo=Fuf'1=ad)(f's+f2—d). (16)

On substituting into this the values of f',, f’, and d from equations (14), (15) and
(3); respectively, we find after some algebraic simplification that

F'o=pf=fp 4)

confirming the coincidence of the two foci.
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Appendix
Derivation of specifications for achromaticity

1. Condition for achromatism

On substituting equation (8) into equation (6), we find

f=Fl(1+folfs = dlfs) =fo/(R+ 4), (A1)
where we have introduced the arbitrary variables
R=fylf, (A2)
A=fo/f=1-dJf, (A3)
(see equation (9)). Similarly, we define
A=fup=1-df -1-G =0 (a4

(For the last step see equation (A 7).) From (A 3), upon substitution of (A 1),
we find that

1y —1/Af = (1+ R/ A)/f,. (AS)
Hence
Vf'y=1/fo=(1+RIA")/f' s~ (1 + R[A)/f,. (A 6)
Multiplying through by f, and noting that, from (8),
folf's=(n"=1)/(n—1), (A7)
we find .

fa1f'y = 1/fy) =(1+ R/A')(n' —1)/(n—1) - (1+ R/ 4)
=[(»"-1)/(n—-1)]-1+R[(n' —1)/(n—1)4"'—1/4]. (A 8)
On simplifying and factoring out (n— 1)-1, this becomes
f(1/fs=1/f) ={(n" —n) + R[(n' ~1)A - (n—1)4') A4’} |(n - 1).

Substituting for 4 and 4’ (within the brackets) from (A 3) and (A 4), and
simplifying, gives

f2(Uf's=1/fy) =(1+ R/ AA")(n' —n)(n—1). (A9)
For the two back foci to coincide, this expression must vanish, i.e.
R=—-44". (A 10)

This is the condition yielding achromatism.

2. Conditions for reality of image

Assuming that the material characteristics and the desired system focal
length are known, equations (A 1) and (A 10) are a system of two equations
with three unknown quantities (f,, fo, 4). This would permit us to choose
one of these arbitrarily. There are, however, some restrictions we must
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observe-in order to obtain a real image, viz. the back focal length of the system
must be positive :

fu>0. (A11)

In addition, the distance d between the first and second elements is positive,
by definition :
d>0. (A12)

Hence, substituting R from (A 10) into (A 5) and applying (A 12), we find that
Ufy=(1=4")/fo=(n'—1)d|(n~1)fsf, >0, (A 13)

with the last step following from (A 4). Since 4 and the parenthetical factor
are positive, f; and f, must have the same sign. Therefore, from (A 2),

R>0 (A14)

and, hence, from (A 10), 4 and 4" must have opposite signs. Note that from
(A3)-(A4)
A-4"=[(n"-1)[(n—1)-1]d/f,

=d(n' —n)/(n—1)f,. (A 15)
Arbitrarily denoting the greater of the two indices by 7/,
Az4. _ (A 16)
Then it follows from (A 15) that
0< 4 <d(n' —n)/(n—1)f,. (A17)
Hence, we write for the arbitrary factor, &, -
O<k<1, (A 18)
A=kd(n'—n)[(n—1)f, (A 19)
and .
A" =(k—1)d(n' —n)/(n—1)f,. (A 20)

The choice of %, together with (A 1) and (A 10), now fixes all the unknown
variables.

3. Explicit solutions for the unknown variables
Equating (A 3) to (A 19), we find
| 1—djfy=kd(n' ~n)/(n~ D,
which yields, on solving for f;,
fi=d[l +k(n' —n)/(n—1)] =d[n—1+k(# —n)]/(n— 1)
=dg/(n—1), (A21)
where we have used the abbreviation

g=n—1+k(n"—n). (A 22)
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From (A 10), and on substitution from (A 19)-(A 20),

fifa=f* R= —f,2 A4’ =k(1-k)(n' —n)* d*(n—1)" (A 23)
The third equation required is obtained by solving (6) for d, yielding
d=f,+ fo—fafalf = fof 11 + 1f2—1/f)- (A 24)

We now proceed to solve equations (A 21), (A 23) and (A 24) for the unknown
quantities. First we solve (A 21) for d and equate the result to (A 24):

(n—Dfilg=fi+fo—fifolf 5 (A 25)
on dividing through by f,, this becomes
1+ foffy~falf = (= 1)/g: (A 26)
From (A 23) we find
&2 ={ fo(n—1)2k(1 = R)(# —n). (A27)
Equating this to the square of the first member of (A 25) gives
(n—1)2 f,2lg2 = fufoln— 1)2/K(1 — K)o = n)". (A 28)
Multiplying through by k(1 —k)/(n—1)? f,* and solving the result for f,/f; gives
Folfy= (1 —n)* R(1—R)/g™ (A 29)
Solving (A 26) for f,/f, and equating the result to (A 29) yields
(n—1)fg+falf 1= (' —n)* K1 —R)g™ (A 30)

Solving this for f,/f, we find
folf =[g—(n—1D)lg+(n' —n)* k(1 - k)/g"
On substituting for g (in the numerator only) from (A 22), we obtain
folf =k(n' —n)lg+(n' —n)* k(1—k)/g*

Combining the fractions, and again substituting for g in the numerator, we
finally find

falf =k(n" —n)(n’ —1)]g* (A31)

This determines f, from the given constants. To find f,, we invert (A 29) and
multiply through by f,/f,, yielding

fulf = (folf)g*/(n’ —n)* k(1 —k)
and, on substituting for f,/f from (A 31),

falf = (n' = 1)/(n" —n)(1 - k). (A 32)

We find 4 by dividing (A 27) by f?, substituting for fljf and f,/f from (A 31)
and (A 32), and taking the root :

dff =(n' —1)(n—1)/(1 - k)(n' —n)g. (A 33)
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Formulae (A 31)-(A 33) are the required solutions. In conclusion we note
from (A 3) that
folf = A=kd(n' —n)[(n—1)f, = k(n" —n)/g, (A 34)

where we have used (A 19) and substituted for 4 and f from (A 33) and (A 32),
respectively.

4. The choice of k

As mentioned in the body of the paper, a major limitation of these achro-
matic systems lies in the short back focal lengths obtained. We would therefore
optimize the system by maximizing f,/f and f,/d. It can readily be shown
that, as k approaches zero, the former decreases and the latter increases, and
vice versa as k approaches unity.

The formulae given in the paper were derived by arbitrarily choosing
k=}. When this is done, (A 22) becomes

g=%n+n'-2) (A 35)

and equations (A 31)—(A 34) become
hlf=2(n" = 1)[(n" —n) (A 36)
f2/f=2(n'—n)(n'—1)/(ﬂ+n'—2)2_ (A 37)
B2lf=4(n'—1)(n—1)/(n' —n)(n+n"—2) (A 38)
folf=(n'—n)[(n+n"=2). (A39)

To obtain formulae (1)-(4) from these we note that, for (equation (5))

p=(@"—n)/(n' +n-2),

1+1/p=2(n"—1)/(n' —n), : (A 40)
PP+p=(1+1/p)p*=2(n"—n)(n'—1)/(n+n"—2)?, (A 41)
1p=p=4n—1)n"—1)/(n' —n)(n+n' —2), (A 42)
results readily confirmable from equation (5). Accordingly (A 40) yields

hif=1+1/p, (A 43)

(A 41) yields
falf =p*+p =p*F:/f), - (A 44)

(A 42) yields
dlf=1/p—p (A 45)

and (5) yields
folf=p- (A 46)

The above are equivalent to equations (1)-(4).
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