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A TWO SERVER QUEUE WITH NONWAITING
CUSTOMERS RECEIVING SPECIALIZED SERVICE*
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The stationary distributions of the wailing time and number in the system are obtained for a
variant of an A /M /2 queue in which non-waiting customers receive a different rate of service
from those who must wait in line. Characteristics of the solution, and applications of the
model are discussed. The solution has also been generalized to any finite number of servers,
using the same technique. The analysis utilizes the new System Point (SP) method for
analyzing queues. This method employs the relationship between virtual waiting time sample
function down- and up-crossings of a level, and the probability density function of the virtual
wait at that level. Brief outlines of the SP approach, and relevant theory are included.
(QUEUES; MULTIPLE SERVER; WAITING TIME DEPENDENT SERVICE)

1. Introduction

The purpose of this paper is two-fold. Firstly, it introduces a relatively new class of
multiple server queues with potentially wide application: multiple server queues with
service time depending on waiting time. Secondly, it demonstrates the usefulness of the
System Point (SP) method, which was discovered while one of the authors was solving
this particular class of queueing models by conventional means.

Results for single server queues with service time depending on waiting time have
been obtained by means of classical methods in J. A. Buzacott [8], J. R. Callahan [10],
M. Libura [12], M. J. M. Posner [15], and P. D. Welch {17]. Little or no work in this
area has been reported previously for multiple server queues. However, a criterion for
ergodicity was obtained in S. Sugawara and M. Takahashi [16]. This paper treats a
variant of the M /M /2 queue in which non-waiting customers receive a different rate
of service from those who must wait in line. The analysis is by means of the SP
method, and is based on Chapter 3 of [3]. The solution has also been generalized to
any finite number of servers in Chapter 5 of [3]. It has also been solved for the case
where the service time parameter is a general step function of the waiting time in
Chapter 4 of {3]. In maintaining the stated purpose of this paper, only the two-server
model with two levels of service is presented here. The SP method was originally
introduced, developed, and applied by Brill during 1974 [3], and is further elucidated
in [4] and [5].

Queues with service time depending on waiting time arise whenever the customer
who starts the busy period of a server requires a setup time from that server. This
situation may arise among bank tellers, machine repairmen, hospital emergency teams,
copying systems in offices, computer terminals, automatic parking gates, etc.

Specifically, the initial customer to use a bank teller may incur a longer service time
if the teller is performing another noninterruptable task when he arrives. Customers
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TWO SERVER QUEUE WITH NONWAITING CUSTOMERS . 915

who arrive when other customers are present, consequently obtain a faster rate of
service. Similarly, the initial machine requiring repair by a repairman may incur a
setup time by the repairman, while those which arrive when the repairman is “tooled
up” obtain a faster service rate. In hospital situations following a disaster, patients who
initially require an emergency team, may incur a setup time (gathering the team from
around the hospital, equipment setup time). Those who arrive while the team is already
active obtain a faster service rate. In some offices the copying machine power supply is
turned on by start-of-busy-period (nonwaiting) users. The machine warm up time must
then be added to the workload for this type of customer. Users who arrive while the
machine is in use obtain a faster rate of service, since the power supply is left on if
there are people waiting. A similar remark applies to computer terminal rooms where
users turn off the power supply to a terminal if no customers are waiting for that
terminal.

Queues with service time depending on waiting also arise in supermarkets, steel
plants, and in natural phenomena. In supermarket checkout lines, customers who wait
in line may increase their checkout time by purchasing magazines, candy bars,
cosmetics, etc., which are marketed next to the lines for this purpose. In a steel plant,
hot ingots arrive at a mill to be rolled into sheets of steel, but must be stripped of their
outer molds before the mill can process them. For this operation their outer shells are
first required to cool down. Then the ingots must be reheated in soaking pits to the
required “rolling” temperature. The longer they wait before stripping and /or reheating
the more they cool, and then it takes a longer time for them to be reheated. This
“nothing hot” delay has been dealt with in J. A. Buzacott and J. R. Callahan [9].

Two natural phenomena which generate these queueing models are forest fires and
epidemics. Forest fire initial attack systems are modelled as ordinary multiple-server
queues in J. H. Bookbinder and D. L. Martell [1]. The perimeter of a fire will depend
on the waiting time between the first report of its occurrence and the moment it is
“attacked” by a helicopter crew. Epidemics are similar to forest fires in that they
spread while waiting to be “attacked” by a mass immunization program or other
corrective measures.

The work in [2] utilizes the method of D. V. Lindley [13] which treats the sequence
of customer waiting times as an embedded Markov chain. The appropriately simplified
integral equations for the waiting time distribution are then derived after much
algebraic manipulation, and the solution is tedious. In M. Eizenman and M. J. M.
Posner [11], generating functions are used in a birth-and-death analysis of the
two-server model. The complete probability distribution of the number in the system
can be obtained only by extensive transform inversions, or numerical recursion. The
resulting Laplace-Stieltjes transforms for the waiting time distribution are too complex
to be inverted without a considerable expenditure of time and effort.

This model would seem to fit very simply into the context of Neuts’ “matrix
geometric method” [14), although care is required because the Markov chain derived
from the matrix generator is reducible. For the two-server model presented in this
paper, the system point method calculations are much easier than those of the matrix
geometric method. However, this may not be true for more complex models. The
system point method is an alternative approach, which is sometimes easier to imple-
ment, and often leads to insights into system behavior.

The SP method works for a very broad class of models, far from being restricted to
queues with service time depending on waiting time. It has been successfully applied to
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916 P. H. BRILL AND M. I. M. POSNER

the solution of problems which involve: dams with general release rule {6), multiple
server queues with heterogeneous servers and reneging depending on waiting time [7],
queues depending on the number in the system at start of service epochs (Example 5 of
[4]), queues with multiple Poisson inputs (Example 4 of [4], Chapter 8 of [3]),
computers with several buffers having finite capacity (Example 1 of [5]).

This paper briefly outlines the concepts and theory of the SP method in the
framework of the M/M /2 variant under consideration. The SP approach gives
intuitive insight into the mathematical structure of the model not readily apparent
using the aforementioned methods of analysis. It leads to a simpler, less tedious
solution technique. A complete description of the SP method for a general exponential
model is given in [5].

2. The Model and System Point Method

The variant of M/M /2 treated here has first-come, first-served queue discipline,
and customer arrival rate A. For the nth customer the waiting time before using the
first available server is denoted by W, and the service time is denoted by S,(W,).
S,(W,) is distributed exponentially with parameter u(#,). The service parameter
depends on the value of W, only, and not on n. Thus, for all n,

Pr(S,(W,) < x|W,=w)=1—exp(—p(w)x), x>0w>0. Q)]

Arriving customers who find at least one free server start service immediately, without
waiting, and receive “special” service rate p,. All other customers receive service rate
;. This represents an extension of the single server model in Posner {15]. Customers
whose service times have parameter y; are called type j customers, j = 0, 1. A sufficient
condition for the stationary distributions of the waiting time and of the number in the
system to exist is A < 2p, [3], [5], [10].

The SP method, specific to this model, utilizes the following model description. Let
W(t) denote the virtual wait in the queue at time ¢, and let m; denote the number of
servers occupied by type j customers, j =0, 1. A server configuration is defined to be
any vector (mg,m;) such that 0 < my+ m, < (number of servers)—1=2—1=1.
This model has, therefore, three possible server configurations. Let the random
variable M(¢) denote the system configuration ar time t. Then M(¢) is said to be
m = (mg,m,) if a customer who arrives at time ¢ would enter service when the server
configuration is (mgy,m;). Thus M(r) depends on the server configuration at time
t + W(t). The occupancy numbers (mgy,m,) are distributed among the servers other
than those being entered. That is, (mq, m,) represents the type of the other customer in
service, if any, that an arrival at time ¢ would find when he enters service. Partition the
set of possible configurations into two disjoint subsets 9 = {(1,0),(0, 1)} and M, =
{(0,0)}. Hence 9 contains the two possible system configurations which might occur
at arrival epochs of customers who must either wait or find exactly one server free. 9,
contains that single configuration (0,0) which occurs at arrival epochs of customers
who find the system empty.

Define { W(t), M(r)) as the state at time ¢, with W(z) > 0 and M(r) € My, U 9. The
stochastic process {{W(t), M(t)),t > 0} is called the System Point (SP) Process, and it
is assumed that the random variables { W(¢), M (t)) converge weakly to the equilibrium
random variables (W, M). That is, lim,, P(W () < w,M({)=m)=Pr(W < w,
M = m). For w > 0 denotes the mixed partial densities of (W, (1,0))> and (W, (0, 1)) at
W = w by fio(w) and f;,(w) respectively. Let Py, P o and Py, denote the probabilities
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that an arriving customer does not wait and the configuration is (0,0), (1,0}, and (0,1)
respectively, at the time of arrival. Let the density function of the waiting time of an
arbitrary arrival be denoted by g(w) = fio(w) + fo,(w),w > 0. For w > 0 and m € 9,
consider customers who find the state to be (w, m) upon arriving. These cusiomers will
obtain service at rate

o fw=0,meMyuU M,

pQv.m) = { w ifw >0 (only if m € W), @

The times from their start of service epochs until the first departures from the system
have a common probability distribution which is exponential with parameter mpy +
my g, + p(w,m). Denote the random variable with this common distribution function
by S(w,m). This variable plays an important role in SP theory.

If the realized state of the system is {w,m) at time ¢, the state may be pictured as a
point with coordinates (#,w) in a coordinate system corresponding to configuration m.
(1,w) is called the System Point (SP).! If m €91, then the range of values of w is
w > 0, and (t,w) would be a point in the nonnegative quadrant of a two-dimensional
Cartesian coordinate system. Since 9% contains two states, there are two such coordi-
nate systems, which are called “pages” in SP theory. For m € 9, the range of w is
w=0, and (#,0) is a point on a “line” corresponding to m. The two pages may be
thought of as being one behind the other, like the leaves of a book. The projection of
these pages is called the “cover.” Figure 1 depicts the pages, line and a possible sample
function traced out by the SP over time, for the present model.

If the two pages and the “zero line” in the figure are superimposed, the resulting
sample function will be piecewise continuous and resemble a graph of the usual virtual
waiting time for a single server queue. In Figure 1, the first customer arrives at 7, when
the state is <0,0). The SP jumps to (7;",0) on page 1; for any newly arriving customer
would find the system in configuration (1,0). The second customer arrives at 7, before
customer one has ended service. The resulting jump is to point (57, W(75")) on page 1
where W(r;') is the sample value of a random variable S(0, (1,0)) which is exponen-
tially distributed with parameter 2p,. This jump terminates on page 1 since any
immediately arriving customer would enter service with the configuration being (1.0).
At 7, the jump happens to be to page 1 because for this realization, any immediately
arriving customer would enter service with the system being in configuration (1,0).
This implies that of the two customers in service after customer 3 enters service, it is
the type 1 customer (customer 3) who completes service first. At 74, the jump happens
to be to page 2. Here any immediately arriving customer would start service with the
system being in configuration (0, 1), because it is the type 0 customer who completes
service first. Upon reflection it is seen that the length of any jump has an exponential
distribution and: any jump from (7,0) on page 1 has parameter 2y: any jump from
(t,w) on page 1, w > 0, has parameter py+ p,; any jump from (#,0) on page 2 has
parameter g, + g,, and any jump from (z,w), w > 0, on page 2 has parameter 2p,.

The SP theory makes an intimate connection between the down-crossing rates of
levels in the state space by the SP and the steady state waiting time density function.
General theorems, all definitions, and all proofs are given in [4]. Here is stated only the
theory relevant to the subsequent analysis.

ISP is an abbreviation for System Point (point). It may be adjectival as in “SP process.” or nominal as in
“SP,” which refers to the point (¢, w). The meaning will always be clear from the context.
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TWO SERVER QUEUE WITH NONWAITING CUSTOMERS 919

Let 9, (w,m) and §, (m) denote the number of down-crossings of level w > 0, and
impacts with level 0, on page m € 9t during (0, ], respectively. Let E[-] denote
expectation.

THEOREM 1.

tl_i)rgE[@,(w,m)]/t = f(w,m), w>0, 3)

lim E[$,(m)]/1= f(0%,m). )
Here

Siolw) . m=(1,0)

Juw) Em=(01y. ®)

fiw,m)= [

Let U, (w,m,k) and L,(v,m,k) denote the number of up-crossings of level w >0
and leaps of a level w > 0 during (0,7] which originate on page m and terminate on
page k, for m and k € 9. Leaps are defined to originate from level zero.

THEOREM 2.

lim E[0,(wm,k)]/t = [ ‘:op(a,m, K)exp(— Com(w — @))F(daym) (6

ll_l)ﬂ; E[&(w,m, k)]/t = Ap(0,m, k)exp(— C,,,w)F(0,m), O]
where
1
Ca.m = _,g()”!’p] + ’1,((!, m) (8)
_ [P ,m=(10)
F(da,m) = f(a,m)da ifa>0
=F0O,m) ifa=0. (10)

p(et,m, k) = Pr(a jump from level a on page m
terminates on page k). (11
In the present model
P(w:(L,0). (0. 1)) = po/ (o + 1), w>0
»(0.(1,0),(0.1)) =0,
P(w:(0,1),(1,0)) =0, w>0
P(0,(0,1),(1,0)) = p/(po+ m)-

The first formula of (12) is the probability that a type 0 customer completes service
before a type 1 customer when both are in service together. The second indicates that
if a type O customer is in service alone, an arriving customer receives rate p, so that

(12)

(13)
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any additional newly arriving customer cannot then enter service with the other
customer being type 1. The first formula of (13) indicates that if two type I’s are in
service together an immediate arrival, upon entry into service can see only a type 1 in
the other server. The last is the probability of a type 1 completing service before a type
0 when both types are in service together. Comparison with Figure | indicates the
intuitive connotation associated with (12) and (13).

Let @,(w)=3,,exD,(w,m) and U, (W)= ,,em Zrex, (w,m,k) denote the
total numbers of upcrossings and downcrossings of level w respectively during (0, t].

THEOREM 3.
lim E["D,(w)]/t=llim E[GZL,(W)]/t= g(w), w>0. (14)
THEOREM 4.
g(w)y=XA > fwexp(— Com(W — @))F(da,m), w >0, (15)
mexJo
g0 )=A > F(O,m). (16)
meMm

THEOREM 5. For every m €9, and w > 0

fovmy+A > fw plal,m)[1—exp(C, (W — )] f(a,])dat
tem Ja=0

l=m

+X Y p(0,4,m)[ 1~ exp(— Co,w)]F(0,1)
rem
= f(0*,m) + }\j;wp(a,m,m)exp(— Com(W — a))f(a, m)da

A f“'p(a,m,l)f(a,m)da. (17)
1em /0

I=m

The balance equations for the zero waiting time states <0;m), m € My U M can
also be obtained by usual stationary set balance yielding

SO, my+ A3 p(O,r,m)F(O,m), meMN,

(A+ é mjpj)F(O,m) =1AX p(0,r,m)F(0,r)+ > é 5;p(0,5,m)F(0,5), (18)
f=o g = j=0

m € M,

where r € 9, with Tgr, = Sigm; — 1, and s € MU M with Sgs; = Sgm; + 1, and
J =1 for the present model.

In (18) the LHS represents the long run average rate of exit by the SP from state
{0;m), m € MyU M, while the terms on the RHS are the corresponding rates of
entry into <0,m) for m € M and m € M respectively.

The SP method generates the model equations in a much simpler form than
traditional techniques, based on the interconnections between: the motion of the SP,
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TWO SERVER QUEUE WITH NONWAITING CUSTOMERS 921

the geometry of the sample function space, the theorems on level crossings and set
balance, and the normalizing condition that all probabilities sum to 1. The ease of
equation generation is due to the fact that these interconnections seem to be “easy” for
the vast majority of potential users.

3. The System Point Analysis

Focussing attention on the motion of the SP over the “line” and “pages,” and
applying the theorems, leads to the model equations directly. In particular, (15), (17)
and (18) facilitate the construction of these model equations. Ry this means, from (17),
_the following model equation for the partial density f)q is obtained:

Sio(w) + A1 - e—zwf)Plo + (A, /)1~ e™™)Py,
= (Am/7) fo Ve re=2, (2 dz

+ Owo/ ) [ @)+ o0 ). w>0, (19)
where » = py+ p,. Take the derivative with respect to w in (19) yielding
(D = Mofro(w) = —2AoPyge ™ — Ay Pyye ™™

- }\p.,f Oe""“'_:fflo(z)dz (20)

where (D) is the usual differential operator ie., (D)f= f’, (D —A)f= [’ — }f, etc.
Operate on (20) with (D + »), resulting in
(D + (2 = N)D — Miodfyo(W) = — 2ApgA Pyge ™20, 21y
Since lim,._,, fio(w) = 0, it follows that
fio(w)=age®™ + BPye™ ", w>0, (22)
where aj, is a constant to be determined, and R is the negative root of x> + (¥ — A)x -

Apo=0.
Similarly, the model equation for the total density g can be written using (15) as:

g(w)= AP e~ 2" + APy e ™™ + Af“. Oe"" o)z

+A f :oe-zm“"‘= for(2)dz. (23)
Operating on (23) with {D + 2p,», and using g(w) = fio(w) + fo,(w) yields

<D + 2”’] - A)g(w) = M[Zploe—lllow + Pme—m.

+£:0e"(““=fflo(z)dz : (24)

2The definitions of 4, and of the other symbols used to simplify the expressions, are summarized in Table
1 along with the numbers of the equations in which they first occur.
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922 P. H. BRILL AND M. J. M. POSNER

Substitute for the integral in (24) from equation (20), and then substitute for (D —
A>fio(w) using (22), resulting in

(D +2p, — A)g(w) = Cape™ + EPje =2 (25)
from which we obtain
g(w)=ae” V" 4 HaeR + QP o2 (26)

where a, is a constant to be determined. The mixed partial density f;;(w) is then found
by taking g(w) — fi4(w) so that

fo(w)=ae™ @ 4 (H— )ae®™ + (Q — B)Pye ", w>0. (27)
The model equations for the zero waiting time states are obtained by balancing SP

rates into and out of the states (0,(1,0)), <0,(0,1)), and {0,(0,0)> respectively,
following the result in (18). This yields

J1o(0") + APgg = (A + ) Py, (28)
g(0")=A(Pyo+ Pg), (29)
Ju(@) = A+ )Py, (30)

APy = poPro + Py (3N

Moreover, substitute into (20) for fi(w) and fio(w) using (22), and then let w]0,
yielding

(R—=N)ag+ (—=2poB — AB + 2A\pg) P g + Ay Po; = 0. 32)
Finally, the normalizing condition is
P+ Pig+ Py, + f ®g(2)dz=1. (33)
0
TABLE 1
Symbols for Simplifying Expressions in the Equations
Equation
of First
Symbol Definition Occurrence
A [ ) @n
R A~ 1o — my = (g + py = A + Ahpg)'/2]/2 (22)
B —~ 20 /(2pg — 2y + ) (22)
C A—-R)A/py (25)
E 24B (25)
H C/(R + 2, - N) (26)
Q ~B*/A (26)
S AR = 20)/[(M + pol(R — A) — B(R + 2p0) + Ao} 27
T (A= 1oS)/my (38)
U —AX+A+po— B)S (39)
\ A= Q)S+AT - HU (40)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TWO SERVER QUEUE WITH NONWAITING CUSTOMERS 923

Any three, of equations (28)-(31) together with (32) and (33), can be solved to obtain
ag, a,, Py, Py and Py, uniquely. First, substitute from (22) into (28) to yield

ay= —APy+ (A + pg— B)Py,. (34)
Then from (26) and (29) we obtain
a,+ Hay=(A— Q)P p+ APy,. (35)
From (31) and (32) it follows that
(R =N)ag + (—2pyB — AB + Apg)Pyo + A%Pyy = 0. (36)

Now, eliminate a, from (34) and (36); substitute for P,y in (31), and then in (34);
finally substitute for Py, Py, and a, in (35). These operations respectively yield

Pyo= SPy, (37
Po, = TPy, (38)
ay= UPy, (39)

and
a,= VPyg. (40)

Substitute from (37)-(40) into (33), and use (26) to obtain
Po=[1+S+T+V/2p,-N~U-H/R+0S/2p]"". (41)

The solution for the steady state distribution of the virtual waiting time is then given
by (22), (26), (27), and (37)-(41). The probability of a zero wait is

G(0) = Py + Pyo+ Py,. 2)

Let P, denote the stationary probability of n customers in the system at an instant at
which service begins, # > 0. Then we obtain in the usual way, by conditioning on the
waiting time, that

o Az Az)n—Z
[

P = -0 ——(n__z)!— g(Z)dZ

n

=[@/2m)""" + Hag(A/(A = R))"™™' + QPio(A/(A+ 2p0))" '/ (43)

for n > 2, with Py= Py, and P, = Py + P,.

Table 1 is essentially a computer program for evaluating Py, using (41). Once Py, is
obtained, the values of Py, Py, a, and a, can be evaluated from (37)-(40). These
values then yield the total waiting time pdf g, and the partial waiting time pdf’s f,, and
for from (26), (22), and (27) respectively. The pdf of the number in the system is
calculated from (43). Since the solution is in a closed form, all questions of sensitivity
of waiting time, number-in-the-system, or throughput characteristics with respect to
changes in the parameters A, g, and g, can be answered. These sensitivity results can
be obtained analytically, or conveniently by means of a computer program. Compari-
son of the solution with the simple M /M /2 queue having the same arrival rate, and
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service parameter (o + g;)/2 in each server, is of interest. In the two cases

+
(2) po< Bt <,
(44)
+
(b) m< Bt <y

the anticipated results occur. The values of G(0) and p, are smaller in case (a), and in
case (b) these values are larger than in the M /M /2 model. Recall that for M/M /2
the pdf of the waiting time in the queue is

g(w) = aexp(— (21 — A))w, w>0,

~

where

a= (AZ/"')POv

Py =(a/A\)P,, 45)
Po=[1+A/p+N/(u@p—-1)] ",
p= 1o+ m)/2.

Results for G(0), Py and AE[W), where E[W] is the expected wait in the queue, are
summarized in Table 2 for various values of p; =A/p;, j =0, 1. In Table 2 the values of
po=p;=3/2 correspond to the M/M/2 queue with A=3 and p=(p+ p,)/2
={(2+2)/2=2. It is clear that the waiting time distribution in cases (a) and (b)
envelope that for the M/M /2 model. Observe also that the expected wait is quite
sensitive to deviations in p;: a 5% deviation of each p; from (po, p;) = (2,2) to (1.9,2.1)
leads to a change of 14%, and to a change of 24% for (p,, g,)) = (2.1, 1.9).

TABLE 2

Probabilities of No Wait in Queue. Zero in System, and
Expected Queue Size for Various p;. j =0, 1

o oy G(0) P, AE[W)
3/1.90 3/2.10 0.370063 0.145717 1.646934
3/1.99 3/201 0.358784 0.1432970 1.893396
3/2 3/2 0357143 0.14285 1.928571
3/201 3/199 0355415 0.142378 1.965671
3/2.10 3/1.90 0.335399 0.136090 2412708
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