e

7th ISRAELI COMFERENCE ON CAD/CAM Aﬁ) ROBOTICS (Nov.835 , Tel Aviv)

] EBEDELGFM L-TiME SOFTIIARE
BY GRAPHIC CRE/CEM METRODS

by H.6. Mendelbaum, H. Reiff, D.Pisarti
B.Z. Fridman, Y. Levian, Y. Meoz

( Jerueoiem College of Teechnology
Industrial Brogremming Leb, 21 hovood haleusi Str.)

A) INTROGUCTION :

Highly sophisticated technology is & vital need for future
industry. One importent field is the "PROCESS CONTROL® sofiwsre
technology, which includes the progremming of computerized industrial
machines, roi st-control progremming, fiexible menufecturing scfiwere
systems elc...”

An other importent festure is the development of micro-computer
intersctive grephic systems which ere very useful for cheep CAD/CAM and
industris! progremming design.

Generaliy in softwaere development, there is & distinction between
four aclivities : problem specificetion, softwere design, then progremming
and execution tests, Esch of these activities hes its ‘own methods,
fanguages or systems. ° :

For instance, SADT or ISDS/HOS ere methods for system requirements
specification (1). In software design , we cén use Petri-flow-charts
{2)(3X4) describing the flow of control {(actions) of the spplicetion, or we
cen use state-diagrems (sXe) describing the flow of evenis
( stete-transitions) in the system, or we cen use dete-flow techniques.
There sre also specific languages (7X12).

In the progremming activily we can use one of the numerous real time
lenguages : from the oldest RT-Fortran (8) to the newest ADA (9).

These last yeers, there is & tendance to creste big computer systems
giving & progremming envirenment which integrates : specificetion end
design tools,progremming lenguages and executive opersting systems
(10X11X13).

In this Paper, we study & very chesp and simple integrated
environment to design &nd produce softwere for industrial real time
control or robot commend , using flow-charts on grephic micro-computers.

The mein ides is to develop & technology which ensbles to design end
describe grephicelly Real Time Applications svoiding the lengusge
level and enabiing the design-grephs to be trenslated directly into
executable code.

4,2.1




This can now be done with cheap micro-computer based on interactive
graphic systems : In this paper we present such a simple integrated
environment built for Macintosh computers including a flow-chart
graphic editor, an interpreter which checks interactively the
flow-chart building errors, and an executor to perform the application |
described in the chart. '

B) FLOW-CHART DESIGN :
1) CHOICE ;  We choosed PETRI-like desi gn-graphs for several reasons :
4 we think that a graphical representation of the logical flow of an
application is simpler for the engineer than a language !
representation; 1
A Petri-like graphs give the flow of control (actions) in the :
application,this is closer to the way of thinking of the
automatician, who deals more often with actions and events
(signals) than with flows of data;
4 Nevertheless, each action is yiewed as & procedure with .
.. parameters and data, which enables to represent also the flow of |
data; ;
4 the Petri-like graphs enable to represent in & unified mode all
types of actions (1/0, commands, computations, tests etc..);
A the Petri-like graphs enable to represent synchronizations between
events or actions, triggering conditions and timing;
- A the Petri-graphs have been studied in various R&D centers in the '
world and have a large theoretical background, this means that they
can be validated and proved as "safe", "clean”, "alife” etc..(2xX3X4)
& Numerous applications have been made in the world for hardware
or software using Petri modelling : such as in telephone switching
(14), space industry (15), mechanical industry (16) etc... _ '
2) DESIGNING RULES : : !
The Real-Time-Charts that we use, are an interpreted form !
of PETRI-graphs and there are biunivoqual relations between
them. The components of these charts are :

\ is an arrow relating the various components ( also
called internal event);

e\, /s is an action A activated either by evente or s
(inclusive OR)and giving event t
ﬁ‘ at the end of its execution. This
t action is called procedure A with parameters P;

is a procedure T of tests (on variables or sensors)

C_T{P] D with two possible output-events t or t"
t t* ¥ (exclusive OR)

4,2,2




Ejf/ is only the expression of an * inclusive OR"

between various events
(it is considered as a null action);

e\, /s isa transition-gate allowing towait on condition C
C [  after the occurrence of events e "AND"s

1 and then to continue the following actions.

If we have the ill-condition C' wheneands

have arrived , there 15 an error;

€
. is a transition-gate allowing to make severai acuons
VAR in Parallel (in the same time)
t

According to Petri rules, there must be always a
transition-gate between two aclions (or tests); this means that there
must be always an explicit condition to pass from one action toi;__nuther;
Another Petri rule is that you cannof put two
transition-gates one after the other, this means that it is not necessary to
split 8 condition into two following parts, since if there is 2 conditions
occurring at the same moment they can be expressed in the same equation;

[[J\‘ T isan external event (signal) which can be

connected only to a transition-gate .
This signal can come from a timer
or from any external device (interrupts);

3) APPLICATION :

A simplified example of designing an application with these
real-time-charts. Let's take a washing-

machme with only 3 buttons :
HOT A =cold
B = warm (10 mn heating)
C = very warm(20 mn heating)
MOTOR D = stop
( E = low speed
F = High sneed

<the motor works during heating
time and then 30 mn

DRY tap] open 7 mn
( = high speed
H = super high speed
waterout| 1. without motor

4,2.3




!

The user of this washing-machine must first prepare the buttons
'HOT" and DRY', and afterwards the button ‘MOTOR' in order to
start the washing process. The machine stops alone. Then the user
may turn the button MOTOR' to the position D.

A design Real-time-chart describing this process is as follows:

1?2 button MOTORon For E

/ 7mn
status of bun HOT ? m status of button
A Bl ic F\__MOTOR ? -
S 10 20
Reat | 5 [heat] 5™ L
, _ P:=high P:=slow

Stop heater

\L/sm.ﬁw e
_ F30mn .
ﬂ@atus of button DRY ?)1

—_—

=F =7—H - open tap ]

P=high | | P:=super hign] N
N i | stop motor

K'”

4.2.4




On this design real-time-chart, we can see that the processor of the

Wnshmg -machine starts the washing process only when it receives a signal

* button MOTOR turned on F or E *. Then, it opens the tap K to pour in water,
waits 7 mn,and starts 3 operations in parallel : it stops the tap K, and
tests the status of the buttons MOTOR and HOT. According to the positions
of these buttons, the processor will start the motor and the heater with the
corresponding parameters of values and timings. Afterwards it waits 30
mn more, while still moving the motor, then it will start the drying process
according to the position of the button DRY. Finally it will stop the motor
and the tap J. '

C) GRAPHIC DEVELOPMENT SYSTEM ;

We built a software-environment based on the object-oriented
graphic-technology of the Macintosh Computer (17) with multiple windows
on the screen, scrolling menus, interactive dialogs and mouse- palnting
Qur developer's integrated environment is made of 3 pieces :

1) A FLOW-CHART GRAPHIC EDITOR :

This complete interactive editor works with the elementary figures
(Arrows, External Events, Actions, Tests, Gates, Ors) which are the
components of our Petri-like graphs (see section B 2 above) . These figures
appear on the left side of the screen. The engineer uses the mouse to
choose them and build his graphic real-time-chart on the right side of the
screen. The chart can be larger than the screen.

PART OF THE SCREEN OF THE REAL-TIME-CHART EDITOR:

\\ File Undo ScroliSize  JCT Petri-Editor ( 5745/198

While building his graph with the r;\ﬁuse , the user has the possibility
to scroll the chart on the screen, to insert new figures in the graph, to
delete figures, to modify them, to rename them, to save the chart ona
disk- file, to recall it , to print it etc..

4,2,5




Furthermore, with the editor the engineer has also the possibility to
write the text of new action-procedures and to give the waiting-conditions
of the transition-gates.

The real-time-chart is not represented in memory as a bitmap, it is in
a condensed form as a structure of 6 ‘figure-lists’ which are
interconnected through pointers, depending on the connections between
the Petri-like figures on the screen:

Actions-list External
Events

Arrows-list list

H HAEN

/

/ Gates-list

Tests-list Ora-fist .

For each type of elementary figures (Arrows, External Events,
Actions, Tests, Gates, Ors) there is a list describing the figures existing in
the edited real-time-chart.

For each figure there are:its coordinates on the screen, its name, its
parameters and pointers connecting each figure with its neighbouring
figures in the graph. The interpreter fills in these figure-lists each time
a new figure is introduced and accepted. The texts of the procedures are
also saved with the figure-lists.

2) A FLOW-CHART GRAPHIC INTERACTIYE INTERPRETER :

During the editing time of the graph, after each insertion of a new
figure in the graph by the user, the interpreter tests the chart to see if it
fits to the rules of Petri-like graphs (see section B 2 above) . If it does not
fit to these rules, it gives immediately an error message and deletes the
new figure inserted in the graph. Typical error messages are of the form :
NO ACTION DIRECTLY AFTER ACTION , NOT 2 ARROWS AFTER ACTION , NO -
EXTERNAL EVENT BEFORE TEST,NO GATE DIRECTLY AFTER GATE etc.There are
20 types of such logical errors detected interactively at editing time.

4.2.6




In such a graphic editor, the user may arbitrarily design his graph as he
wants on the 2-dimensional chart , for instance : he may first insert @ gate,
a following action and then connect them with an arrow, or he may first
insert a gats, then the arrow and afterwards the action, or he may insert
first the arrow and then the action and finally the initial gate stc...

In all the cases the interpreter must test and scen the figures actually
present in the chart in order to connect this new figure to the already
existing ones.

when the user tried to connect directly ' P=high* to ‘speed’

refresh

INSERT MODE

NO ACTION AFTER ACTION [0K

This implies an interpreting technics using 8 special grammar
describing both ¢ the correctness rules of the Petri-like graphs,
% the possible ways of building the greph.
, For this, we found that the easiest method was to use ternary-
succession-rules which describe the suthorised flow of figures in the chart :

1 - Action -> Arrow -> Gate
2 Test -> Arrow -> G.le
*3 ‘Or  -> Arrow -> Gate
#4 External Event  -» Gate
*5 Gate -> Arrow -> Action
5 Gate -> Arrow -> Test
*7 Gate -> Arrow -> Or

All other combinations of figures lead to an incorrect graph .

Each time a figure is introduced, the interpreter activates a special
algorithm for scanning the 2D-figures and connect them together. For
instance,if the user inserts a new Gate : the interpreter must seek what
figures are already around the Gate on the screen (after it and pefore it) and
what figures can be connected to it.

4.2.7




To find what figures are after the Gate, the interpreter tries to apply
the ternary-succession-rules #5 #6 #7?. It will seek the neighbouring
Arrows and their connected Ors, Actions or Tests. If authorized figures are
found,the connections can be set up as pointers between the corresponding
figure-lists and the new Gatse.
To find what figures are before the Gate, the interpreter makes the |
-same kind of search using the rules #1 to #4 , but backwards . i
If the interpreter finds neighbouring figures which are not in the '
ternary-succession-rules, it edits an error message as those quoted above.
All these connections and these verifications are made each time the
user inserts or deletes a figure in the graph, in a time shorter than the
engineer reaction-time using the mouse (generally 0.5 to 1 sec) .

FLOW-CHART EX OR:

The executor uses 3 types of library : a list of external events with
the corresponding physical signals, a list of procedures corresponding to
the gates waiting-conditions, and a list of procedures corresponding to the
various actions and tests. For a given ‘physical process’ these libraries are
quite standard since they depend strongly on it, nevertheless with the
editor it is possible to extend them and to write additive procedurss.

Before execution, the internal structure of figure-lists is scanned
finally in order to verify if all the figures are well connected together. If a
figure remains without connection, an error message is given and the figure
in question is shown ‘blinking'. If everything is 0K , all the procedures and
the signal Iist are brought into memory for linking.

The execution is based on an automaton-nucleus-system (i) which
makes the interface between the physical process and the internal

description of the real-time-chart which represents the application to
perform :

signals
fr)m the
prucess

Events queue

e
Internal graph
description of
the Application

—> data _ 2
—> control Actions,tests,conditions

4.2.8




—

The automaten-nucleus-system scans continuously the physical process and
the internal condensed form of the graph. This sutomaton-nucleus system
receives, waits or tests the conditions or signals of the process according
to the graph description, and it ectivates the corresponding
action-procedures which ere to be perf ormed at each moment.

D) CONCLUSION :

At the JCT, in our Industrial Programming Leboratory, our grephic
development system is running on Macintoshes connected to Eshed-Robotec
robots, for which we have built the external events and procedures libraries
( move shoulder, roll wrist, test elbow switch gtc..).The system allows to
build grephically verious robot applications using this hardwere and these
elementery actions. Computationsl procedures may be added. The system is
easily edeptable to enother type of process, in this case we have only to
write 8 new librery of actions (depending on the physical festures of this
new process herdware), all the design system will remain the same.

A .
(1) SADT ,Report Softech Inc., 460 Totien Pond Rd, Walthem MA 02154

ISDS ,Report HOS Inc., 843 Masssachusetts av.,Cambridge MA 02139
(2) C.A.PETRI “Introduction to a general Net Theory”

Lecture Notes in Computer Sc. N°84, Springer Verlag Ed.,1979,p.1-19
(3) G.W.BRAMS "Réseaux de Petri” Messon Ed. Paris, 1962
{4) J.L.PETERSON, - Petri nets ", Computing surveys, vol. 9, N°3, Sept. 1977
(5) Bruce TAYLOR, “Expressing functional requirements”, Report 1960
GTE Lab., 40 Sylvan Rd, Walthem MA 02154 :
(6) David HAREL, " stetecharts *, Dept. Applied Maths, Weizmann Inst., 1964
(?) H.G. MENDELBAUM. "GAELIC, 8 real-time global description lenguage ~
IFAC/IFIP real time progremming workshop, Eindhoven,1979
" (8) Industrial FORTRAN standerd, IS0, TC 9?/5C 5/ WG 1,revised dec 1976
(9) ADA reference menual, DOD, DARPA, 1980
(10) L.S. ORZECH " PSL/PSA: & computer aided tool for High level design’
IBM/FSD Softwere Engineering Exchange (Jan. 1980)
(11) K.L. HENINGER, Software specificetion”,IEEE trens. Soft. Eng., Jan. 1960
(12) P.E.LAUER et al. "Cosy: paths specification™ Acta Informatice 12,1979
(13) MBEAUDOIN-LAFON,C.GRESSE "CATY:Construction grephique
interactive de progreammes” Revue T.5.1.Paris, 1964
(14) M. YOELI, 2. BARZILAI,"Extended Petri Nets for switching systems”
Digitel Processes vol 3, 1977, Georgi Publ.CH-1813 St-Saphorin
(15) J. ALBUKERQUE, “Specification d'sutomatismes interconnectés”,
Doctoral Thesis 3°C, Univ. Sebatier, Toulouse, dec 1982
(16) J.C. BOSSY et 8l, " le Grafcet *, Educalivre Ed., 1979, Paris 7°
(17) B.J. COX, "Object-oriented progremming for sofiware craftsmen”
Unix Review, Febr/march 1964
(18) H.G. MENDELBAUM,"ABOS, sutomata based realtime Opersting-System”
IFAC Symposium on Control Software, Tallin, 1977

4,2,9*




