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A broad class of production-inventory systems is studied in which a number of producing machines are susceptible to
failure following which they must be repaired to make them operative again. The machines’ production can also be
stopped deliberately due to stocking capacity limitations or any other relevant considerations. The interplay between the
processes involved, namely, production, demand, and failure/repair or reliability, in conjunction with the shutdown
policy used, determine the inventory accumulation process and possible shortages. We first obtain the stationary
distribution of the inventory process for different assumptions on the random behavior of the production, demand, and
reliability processes. By employing level-crossing techniques, a mathematical analysis is carried out for a “core” model,
which then serves the role of the nucleus for the study of a wide range of models. We compute performance measures
that characterize the operation of the production-inventory system with respect to its service-level to customers, expected
inventory stocked, machines’ utilization, repairmen utilization, and so on. A numerical illustration is provided which
shows the effect of machine breakdowns on service and inventory levels.

We will consider a production system that con-
sists of a number of machines, each producing
the same type of item. The produced items are stored
in a warehouse from which they are taken by arriving
demand orders. The machines operate continuously
but production will stop when they are shut down due
to various considerations involving costs, mainte-
nance, inventory capacity limit, etc. Apart from these
deliberate shutdown periods there may also be
machine failures which must be repaired before they
become operative again.

The general purpose of this research is to study the
performance of such production systems. This is done
by employing different performance indices which
relate to the different facets of the system, namely, the
inventory accumulation process, demand fulfillment
and possible shortages, machine utilization rates, pro-
duction switch-on and switch-off rates, machine
operability rates, etc. Such performance indices char-
acterize the system’s operation and provide input for
decision making, usually in conjunction with an
appropriate cost structure on various decision param-
eters of the system.

Obtaining concrete results requires more specificity
with respect to the nature of the operation of the

system. In this context, this means formulating
assumptions regarding the three input processes of the
problem, namely, the production process, the demand
process, and the failure/repair or reliability process.
These usually random processes and the interplay
among them determine the behavior of the inventory
accumulation process, and it is the stationary distri-
bution of this process that we need to compute the
various performance measures discussed above.
Accordingly, our main task will be to derive the sta-
tionary distribution of the inventory level in terms of
the three input processes and our assumptions regard-
ing these processes.

In general, we can think of a large number of
relevant assumptions, and a practical and convenient
way to proceed is to start with a core model, described
by a set of relatively simplified assumptions—the core
assumptions. Other models are then presented in
terms of their relation to the core model through the
particular assumptions they alter, relax, or generalize.
Looking at it from the opposite perspective, an impor-
tant consideration in the construction of the core
model should be its ability to serve as a starting point
for other model building so that the relationship
between the core model and the other ones goes both
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ways. This structure seems to be useful in providing
insight into the problem as a whole and in clarifying
the interrelations within the spectrum of model vari-
ations. Moreover, results for other models can some-
times be obtained from those of the core model once
some necessary modifications have been made (for
another example of such a research-structuring
approach regarding a different inventory-related prob-
lem see Berg and Posner 1980).

Before we proceed to the description and analysis
of the core model we will elaborate on the general
scope of the study. The main thrust of this work is on
the impact of the reliability dimension on the perfor-
mance of the production-inventory system. At the
same time, the results of the analysis here will yield,
as special cases, solutions for problems concerned
solely with the production and inventory facets
(thereby tacitly assuming machine perfection). How-
ever, for brevity, we will consider in the brief literature
review that follows only papers that feature all three
facets of the problem, thereby excluding those papers
that deal only with production and inventory facets.
However, these other models can still be extracted as
special cases from the “three-facet” analysis here. For
convenience of exposition, we defer the literature
review until after the listing of the assumptions of the
core model.

1. THE CORE MODEL ASSUMPTIONS

We now list the modeling assumptions which were
chosen to represent the core model for this study.
(Remark: Throughout, the term rate implies per-unit
of time.)

Production

P1: We have N identical machines, each producing
the same type of item.

P2: Each machine can produce the items continu-
ously and uniformly over time at a fixed production
rate v.

P3: Production on all machines is halted whenever
the inventory is at level M.

P4: All operative machines are producing, simulta-
neously, whenever the inventory level is below M.

Demand
D1: Demands arrive according to a jump process:

the random point process of demand epochs is
homogeneous Poisson with rate A;

the demand sizes (the jumps) are i.i.d. random
variables having an exponential distribution with a
mean u~'.

D2: An arriving demand which does not find all
it needs in the inventory takes whatever is avail-
able there, and the remainder of its needs is lost (no
backlogging).

D3: The demand process is independent of the
inventory level.

Reliability
R1: The machines are identical with respect to their
fatlure and repair processes:

the operating time of a machine is exponential with
mean §7};

the repair time of a machine is exponentially dis-
tributed with mean ¢7'.

R2: The repair of a failed machine starts immedi-
ately after its failure; this corresponds to an “ample”
repair capacity assumption; i.e., there are enough
repairmen to avoid queueing of failed machines for
repair (in our case N or more repairmen will ensure
that).

R3: A machine can fail only during productive
operation.

R4: The operation and repair times are independent
within and between machines; they are also indepen-
dent of the inventory level and the demand process.

2. LITERATURE REVIEW

We limit our literature review to papers that also
incorporate the reliability dimension. Meyer,
Rothkopf and Smith (1979) studied a different model
in which the demand for the production output occurs
at a constant rate D, and the production facility, when
operating, produces at rate M (>D). The inventory,
with a limited capacity X, is thus filled at rate
V = M — D when the machine is operating. When the
inventory capacity is reached, the machine reduces its
production rate to D. The failure and repair processes
of the production facility are random, and while the
machine is down, undergoing repair, demand is sat-
isfied from existing inventory. When inventory is
exhausted, arriving demands are not satisfied, and are
considered lost (no backlogging). A similar model was
also considered by Parthasarathy and Shafarali (1987).
However, the failure and repair processes can be either
deterministic or probabilistic.

In Shafarali’s (1984) model, demand arrives accord-
ing to a Poisson process, and production output is also
a Poisson process while the facility is producing. The
machine’s operating time is exponentially distributed
and its repair time is distributed arbitrarily. Produc-
tion operates under an (s, S) policy.
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Hsu and Tapiero (1987) analyzed a production-
inventory model using queueing theory techniques.
An unreliable M/G/1 queueing system was consid-
ered, and a maintenance process was also introduced
in addition to the failure process of the production
facilities. For this case, the Laplace transform of the
slack capacity was derived. Note that all the above
models assume, explicitly or implicitly, that only one
machine is involved in the production process.

Finally, we mention some additional work which,
although not directly related, still bears relevance to
the study here. In a somewhat different problem
setting, Mitra (1988) considered a production-
consumption system characterized by a finite capacity
buffer that incorporated the reliability factor into the
modeling. Another application area of production
theory in which a machine’s unreliability plays an
important part is FMS (Vinod and Solberg 1984,
Vinod and Altiok 1986, Windmer and Solot 1990).
In these papers, ignoring the various sources of system
unreliability in a multimachine, multijob situation
can result in unrealistic performance measures. The
mathematical analysis for these system models can
utilize concepts and methods borrowed from queueing
network theory.

3. MATHEMATICAL MODEL

Let us now turn to the mathematical analysis of the
core model. As mentioned above, our primary task is
to find the stationary distribution of the inventory
level process. The core model is indeed an extension
of a basic model for the problem under consideration
(Posner and Berg 1989) in which only one machine is
considered. The analysis there as well as the solution
method employed—the “level-crossing” technique—
provide the basis for the more general study here.
Following the notation in that paper, define I(¢), t >
0, as the inventory level at time ¢, and set W(f) =
M - I(1). So, W(t) has the physical interpretation of
the slack inventory capacity available at time 7. We
also let F(-) be the stationary cdf of the W(-) process,
and f(-) its pdf (it is easy to verify that under the
assumptions of the core model a stationary distribu-
tion exists, which is, furthermore, a mixture of an
absolutely continuous component and point masses
at 0 and M where the process is bounded from above
and below). Clearly, at any given point in time there
is a number i(i = 0, 1, ..., N) of machines under
repair. The evolution of the process when there are i
machines under repair is described in Figure 1 which
in the terminology of the level-crossing technique
corresponds to “page” i(i = 0, ..., N). There are
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Figure 1. Sample path of page i.

departures to other pages as well as entrances from
other pages. In this sense, ¥ can be viewed as being
partitioned into components W;, which denotes the
slack capacity while / machines are down. In steady
state, the cdf and pdf of the slack capacity W; on that
page are denoted by Fi(-) and f{(-), respectively, with
the interpretation of F,(w) as the probability of the
intersection of the events that the number of machines
under repair is i and the inventory level does not
exceed w. Note that there are probability masses at
slack capacity level 0 (the inventory is full) on pages
i=0,1,..., N—1, and at slack capacity level M on
page N (the inventory is empty and all machines are
down).

Following the level-crossing techniques of Brill and
Posner (1977, 1981) and Cohen (1977), we now estab-
lish the “balance equations™, i.e., we equate rates of
crossing of the W process into and out of appropriately
chosen sets of states. The crossings are both within
and between pages and the equalities are due to the
existence of a stationary distribution for the process.
Choosing the state interval [0, w) in different pages,
we have the balance equations (fori =0, 1,..., N)

(N = iyyfiw) + (i + 1 aFra(W)
+ (N =i+ DO Fii(w) = f21]
= icF{(w) + (N = D)[F{(w) 7]

+A j;w e dF(a),0sw< M, (1)
(N = DYMU0*) + (i + Dafte = (o + MY, (2)
Nof¥f =\ J; e+ M=) JEF (o), 3)

where f9 is the probability mass at W = 0 on page i
and f¥ is the probability mass at W = M on page N.
(Note that by virtue of the assumptions of the core
model we must have f% =0.) Conventionally,
F_(\)= Fnu.(:)=0.

For the general equation (1), the system point theory
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for level crossings when multiple pages are involved
gives that (N — i)yf{w) is the downcrossing rate
into the interval [0, w) from above on page i;
(i + 1)aF . \(w) is the rate of entry into that interval
on page i due to the repair of a failed machine from
page i + 1; and (N — i + DB[F—(w) — f,] is the
rate of entry into the interval on page i due to
the failure of one more operating machine on page
i — 1. On the right-hand side of (1), icF(w) is the rate
of departure of the system point from the interval
[0, w) on page i due to the repair of a failed machine;
(N = DO[F{w) — f?] is the rate of departure from
that interval on page i due to the failure of one more
operating machine; and the integral term represents
the effect of demands arising while W, = a(0 <
a < w) with the resulting exponential jump taking the
system point above w. Equation (2) is obtained by
balancing rates into and out of w = 0 on page i, and
(3), by balancing rates into and out of w = M on page
N. Finally, we also have the normalizing equation

N
% F(M) = 1. 4)
The solution procedure for this set of equations
involves the use of differential operators to transform
the integral equations into differential-difference
equations. The resulting set of equations are solved in
the Appendix with the solution expressed in the mixed
exponential form,

2N

fiwy=Y cue’,i=0,1,..., N. (5)
Jj=1

Refer to the Appendix for definitions of all the con-

stants and parameters involved in the solution.

4. PERFORMANCE MEASURES

To characterize the performance of the production
system we use performance measures which relate to
all aspects of its operation. Of primary importance is
the service level to customers—those that generate the
demand—and possible delivery losses due to short-
ages. Then there is the inventory control for which
information about the inventory level is needed. Infor-
mation about the machines’ utilization, in terms of
both deliberate shutdowns and downtimes due to
failures, and their switch-on and switch-off rates is
useful for production control. Reliability-related mea-
sures are useful when assessing the machines’ opera-
bility characteristics. Again, we find it helpful to
categorize measures according to the system facet they
relate to, although there may be some degree of arbi-
trariness in this because a certain measure can depend

on more than one facet. We will now present some
measures of the above-described types of potential
importance, and compute them using the results
derived.

First, let N,, be the stationary number of operating
(i.e., nonfailed and producing) machines. Since F,(M)
is the probability of the process being in page i (i.e.,
i failed machines), it follows that Fi(M) — f7 is the
probability of N — i operating machines. Hence, the
expected number of machines operating is given by

E(Vn) = 3 (N = DIF(M) - £2)
N-1 2N B _

=Y W= e, L 6)
i=0 j=1 Bj

pl: The effective (total) production rate (taking into
account all nonproduction periods due to shutdown
and downtimes).

Clearly, pl = yE(N,,).
p2: Machines’ utilization rate

_ E[Nn]
p2 - N >
by definition.
dl: The fraction of demand satisfied.
pl
dl = — 7
N 0]

because the demand arrival rate times the mean
demand size represents the total demand rate A/u,
and pl is the actual total consumption rate (or satisfied
demand). The finite inventory capacity, within the
assumption set of the model, guarantees that al/ pro-
duced items are consumed.

d2: The loss rate of demands (due to shortages):

a’2=5—p1 =5(1 —dl).
7 B
d3: The rate of not-fully-satisfied customers:

M
d3 = )\j; Pr(demand > M — w|W = w)

-dPr(W < w)
N 2N M _ —uM
=A [2 CUij d 2
=0 j=1 u+ B

re Y fh +f¢¢], ®)
i=0

because a demand is not fully satisfied if the available
inventory upon its arrival is below its size.
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il: The mean inventory size: Since I(t) = M — W(1)
forallz =0,

il =M~ E(W), 9)

where

E(W)=J; wf(w) dw + Mf¥

i=0 j=1 J

AP 1] .y
B)e +6 + Mf¥.

J
rl: Machines’ failure rate: r1 = 0E(N,,), since, by
assumption R3, only an operating machine can fail.

r2: Mean number of failed machines:

N

Y iF{M)

i=1

r2

g M — 1
Oy e
= ] i ﬂj

p3: Switch-on rate of machines:

]
W M z

N-1

p%AZW—MHaDWW)m

N-1

= 2 [AN + (¢ = Nilf? + Nof ¥

i=0

2,
b0 3 3 iop St
JYij
i=1 j=1 6j ’

because following the completion of a repair (the rate
of repair is ¢ times the number of failed machines), a
machine is switched on provided that the inventory is
not at full capacity at that moment. Also, by assump-
tion P4, all nonfailed machines are switched on—
terminating a deliberate shutdown period—when a
demand arrives to a full inventory.

As an illustration of the above procedure we have
carried out some numerical evaluations for the special
case of a 2-machine system, i.e., N = 2. Specifically,
we have calculated d1 and i1 for various parameter
values, setting arbitrarily y = 1, A = 0.3, x = 0.5, and

= 10. In line with the main thrust of this work, we
approached this from the reliability angle, namely, we
investigated how the failure and repair factors affect
these focal performance measures. The results are
depicted in Figures 2 and 3, and they clearly illuminate
the meaningful impact of the machines’ imperfection
on the performance of production-inventory systems.

5. OTHER MODELS

As discussed earlier, the core model serves as a starting
point for modeling a variety of production-inventory
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Figure 2. The effects of machine breakdowns on the
service level.
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Figure 3. The effects of machine breakdowns on the
average inventory level.

systems. To demonstrate that we now look into some
model variations.

5.1. Queueing for Repair

It may not be feasible or cost-wise to employ enough
repairmen to guarantee that no queueing for repair
will occur. We thus relax, or change, assumption R2.
Suppose that we now only have K (<N) repairmen.
The repair capacity of the system is expressed as

o _ Jio, ifi<K
“”‘L@,ﬁxsism

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116 / BERG, POSNER AND ZHAO

where i/ is the number of simultaneously failed
machines. The balance equations of the core model
are still valid once modifications accounting for the
change in the system’s repair capacity are introduced.
The new set of equations equivalent to (1) and (2) is
(fori=0,1,...,N)

(N = i)vf(w) + £(i + 1)Fin(w)
+ (N =i+ DO[Fi(w) = 1]
= £()F(w) + (N — D)8[F{w) — f7]

+ )\f e dF{a),
)

(N = iyfA0*) + £G + 1)f % = [£(G) + NS,
with all else unchanged.

5.2. Demands Backlogging

Suppose that unsatisfied demand is backlogged rather
than lost; the assumption altered is then D2. In this
case, the I process is no longer bounded from above,
and subsequently, the W process is unbounded from
below, taking values in the [0, «] range (the physical
interpretation of W as the slack capacity is now only
partially relevant, but this has no effect on the math-
ematics). To ensure the existence of a stationary dis-
tribution for the W process, and likewise for the 7/
process, we need to impose the requirement that the
total demand rate should be less than the effective
production rate of the system, i.e., p = (A\/p)/pl < |,
where pl is as in the core model but with M replaced
by ». As for the balance equations, they still hold
except that the range of values of w is now the entire
R*, and (3) becomes redundant (the probability mass
at W = M in the Nth page vanishes as the sample-
space point W = M when all machines are down is
no longer of special character). Remark: A model that
combines the modifications of both models in subsec-
tions 6.1 and 6.2 is clearly solvable by simply super-
imposing the modifications of the individual models.
This indicates the generality and effectiveness of the
solution technique employed.

5.3. More General Distributions

In- the core model the distributions of the basic ran-
dom variables involved are all exponential. The solu-
tion procedure, however, is valid even for the far more
general family of phase-type distributions (e.g., Neuts
1981), only the number of balance equations (within
the set of equations (1)—(3)) will increase, and with it,
the computational complexity. To demonstrate this,
suppose that the interarrival times of demands follow

an Erlang distribution with shape parameter & (i.e., a
“k-phase” Erlang distribution). Then, for the whole
system, Wis divided into N + 1 pages, with each page
associated with a different number of machines work-
ing. Correspondingly, the distributions of inventory
level, f(-) and F(-), are partitioned into fi(-), fi(-),
<oy S-)and Fo(-), Fi(-), . . ., Fa(-), respectively. In
an Erlang arrival system, we must keep track of how
many phases have passed since the last arrival. There-
fore, to fully define the state of the system, it is
insufficient to know only on which pages the system
is operating; rather, it is also essential to know the
phase of the arriving customer. Hence, f{-) and Fy(-)
should be further partitioned into f;,(-), fix(-), ...,
Sa(-), and Fi\(-), Fio(-), . . ., Fy{-), respectively. Now,
for all states s = (i, j) corresponding to i failed
machines and the arrival process being in phase j, we
can construct balance equations in the same spirit as
before and the solution procedure is then applied.

Furthermore, we may even go beyond the phase-
type family of distributions and keep the basic set of
balance equations valid (once some appropriate mod-
ifications are made). In the core model, if we let the
demand-size distribution be arbitrary, say G(-), then
the set of equations (1)—(3) still holds, but with e~
replaced by 1 — G(y). The existence of the equations
implies that an exact solution, using numerical
methods, is still possible (subject to computational
limitations), but obtaining an analytic solution is a
different technical challenge. This could be part of
further studies into the various extensions of the core
model.

6. CONCLUSIONS

A general framework has been developed in this paper
for studying production-inventory systems. The main
thrust of the work is the incorporation of machines’
imperfection into the analysis, but the approach is
general enough to contain various production-
inventory models as special cases. The derivation of
the stationary distribution of the inventory level is the
focus of the mathematical analysis. Using the level-
crossing technique, or indeed a multidimensional ver-
sion of it, we obtained a set of equations whose
solution yields the desired distribution. Once the dis-
tribution of the inventory level is obtained we are able
to compute various performance measures which
characterize the different facets of the system’s oper-
ation relating to inventory, production, demand, and
reliability. The results also can be used as input for
decision making on various model parameters, usually
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within the framework of a larger model which includes
the different cost factors involved.

APPENDIX

To solve the system of equations represented by
(1)-(4), we first introduce the differential operator
(D) = d/dw and apply (D + u) to (1) twice to obtain

(a,»,DZ + a,—zD + a,;) ﬁ(W) + (b,‘]D + b,‘z) ﬁ+1(W)
+ (C,'lD+C,'2)ﬁ_1(W)=O, l=0, 1,...,N, (A.l)

where

ay=(N =10y, ap=pay —ic —(N—10)§ — A,

a3 = — ipc — (N — )ub

b =(i + Do, bp=pbiy, cn = (N — i+ 1),
ca=puc, i=0,1,..., N

An additional useful relation is found by summing all

equations in (1) and applying (D + u) once to give

N-1
Mw) = X (D + u)(N — i)y — Nfi(w). (A2)
i=0
Since (A.1) is of the order two we can introduce
subsidiary variables g;(w) and write

dfi(w)

g(w) = v i=0,1,..., N=-2. (A.3)

These will have the effect of converting the first
N — 2 equations of (A.1) into first-order relations. For
i = N — 1 we can use (A.2) directly as the first-order
relation

v (W) | _._5],
e +i§)[u(N i) =~ [fow)

N=2

+ Y (N—-i)g{w)=0. (A.4)

i=0
Furthermore, for i = N in (A.1), we can use (A.4) to
obtain

dhiw)_om 5

dw ay, =

Cn2 Cn1 A
+ [ZN: | <# - ;;)]fn-n(w)

+ [% +an A:lf,\,(w)

an2 awn2 Y

[u(zv— i) - %]f.-(w)

N=2
-G ;0 (N = i)g(w) = 0. (A.5)

anz
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Finally, substituting (A.3) into (A.1) and rearranging
yields
dgi(w) | ¢ a;3 b

dv F o FrO0) + 220 + 22 f(w)

il

Ci a;
+ 2= gii(w) + 2 g(w) (A.6)
i1 a;

b; :
+a_lgi+1(W)=0, i=0,1,...,N=2,
i1

Thus, (A.3)-(A.6) constitute a system of first-order
differential equations which can be solved readily
using methods of matrix differential equations
(Spiegel 1981). Overall, these 2N differential equa-
tions include the N — 1 unknown functions g{w),
i=0,1,..., N— 2, and the N + 1 functions,
fiw), i=0,1, ..., N. Expressed in matrix form, the
2N equations can be written as

du
I + Au = 0, (A.7)

where u = [fo(w), fi(w), ..., fl(w), &(W), ...,
gn-2(w)]7, and the form of 4 is given by

0 R

4= |:R2 R;]'
Here, 0 is an (N — 1) X (N + 1) null matrix, R, =
—In_y, an (N — 1) X (N — 1) identity matrix, R, is
an (N + 1) X (N + 1) matrix, and R; is an (N + 1) X
(N = 1) matrix. The latter two matrices are basically
tridiagonal, with their elements corresponding to the
various coefficients in (A.4)-(A.6).

Now, the homogeneous matrix differential equation
(A.7) has an overall general solution

2N

u=7y cpe’,
j=

where —8;, —f,, ..., —fv are the eigenvalues of
A, vj = [vg;, vy, - . ., Van-1)]7 is the eigenvector cor-
responding to —8;, and the ¢; are arbitrary constants.
In terms of our explicit concern, we can extract the
solutions required:
2N
fiw) =Y cue®™, i=0,1,...,N. (A.8)
j=1
Thus, we now have the desired functional forms, but
these include 3N + 1 unknown constants; namely the
2N ¢s, f2(i=0,1,...,N—1), and f¥. A suffi-
cient set of linearly independent relations to find these
can be found as follows.
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First, substitute (A.8) into original equations (1) and
compare coefficients of common exponential terms.
A comparison of coefficients of e " in each equation
gives the N + 1 relations

2N

0_y P _g =01 N. (A.9)
fl jgl ﬁj + ﬂ b b 3’ ’
A comparison of the constant terms also provides
N — 1 linearly independent relations

2N
(i + 1).f[f9+, -3 M]
Jariy

2N

~(N=—i+ 1)y Luu
j=1 BJ

2N
= iof = (i + (N = ) T ¥,
j=1 Mj

i=01,..., N-2. (A.10)

The remaining N + 1 relations are obtained by con-
sidering the probability mass flow rates between adja-
cent pages. The rate from page i into page i + 1 is the
rate of failure of one more machine when i are already
down, and the rate from page i + 1 into page i is the
overall repair rate while i + 1 machines are down.
Equating these two rates yields the N — 1 independent
relations

(N — DO[FAM) — f2 = (i + 1)aFi. (M),
i=1,...,N=-1 (A.ll)

The final two relations are simply obtained by putting
the general solutions (A.8) into (3) and (4).
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