Polling, greedy and horizon serverson acircle
Harel, Arie; Stulman, Alan
Operations Research; Jan/Feb 1995; 43, 1; ABI/INFORM Global

pg. 177

POLLING, GREEDY AND HORIZON SERVERS ON A CIRCLE

ARIE HAREL
Rutgers University, Newark, New Jersey

ALAN STULMAN

St. John’s University, New York, New York
(Received December 1990; revisions received October 1991, June 1992, May 1993; accepted August 1993)

Service in a loop-based polling system consists of a single server moving around a closed tour, stopping to perform services
wherever requests are encountered. There are N stations (unit buffer queues) spaced one unit of distance apart, and the server
moves at a unit speed. All queues are identical, and the service time is deterministic. We compare the two well known cyclic
polling and greedy servers with a new control policy called the horizon server. The cyclic polling server moves in one direction,
even if no requests are waiting, and stops whenever it encounters a request. The greedy server selects the nearest request for its
next service. At any station the greedy server can reverse its direction if a new request arrives nearby, and if no requests are
waiting the greedy server does not move. The horizon server, with parameter d, ignores all requests ¥or service from a distance
farther than d. Within its horizon (< d) it acts like the greedy server. Analytical solutions for N = 2 and 3 and numerical results
for N < 6 show that the horizon server, with the optimum value of d, outperforms the polling and the greedy servers.

Pol]ing systems play a crucial role in controlling ac-
cess to communication services in telecommunica-
tion systems. Polling policies have an impact on response
time, throughput and resource allocation in transmission
and switching systems. A polling system consists of mul-
tiple stations which are served by a single server. In a
cyclic polling scheme the server attends these queues by
cyclically moving among them and stopping for service
wherever necessary. In the original polling model, the
case of queues with a single buffer was used for modeling
and analyzing the system by Mack, Murphy and Webb
(1957). The server visits N stations cyclically around a
closed tour, servicing the stations when needed.

The greedy polling server operates as follows: At any
station it selects the nearest request for its next service,
even if it has to reverse direction. If no requests are
waiting, the server remains idling where it served the last
request. Note, that in contrast, the cyclic polling server
moves in one direction even if no requests are waiting,
and stops only whenever it encounters a request.

Applications of polling schemes arise in many telecom-
munication systems. For example, in local area commu-
nication networks the server performs a switching
function by choosing which peripheral station gets access
to a central facility. In many cases, as demonstrated in
the following examples, knowledge of the location of the
service requests can be used by the polling algorithm to
enhance system performance. In that respect the model
can be used to assess the value of collecting and using
queue service request information to enhance system
performance. (See Gavish 1973 for a discussion of the
value of information in queueing systems.)

Consider the following telecommunication facility. A
central station uses a directional rotating microwave
antenna to transmit and collect information from other
stations in the area around it. The antenna is direc-
tional and thus at any given time it can transmit
effectively only to a narrow cone of (say) v degrees.
Communication with a given station is achieved by
rotating the antenna, directing it toward the desired
station, and transmitting to it (receiving from it) the data.
An obvious performance objective in such a system is
to maximize the transmission throughput. Since the
movement of the antenna is relatively slow compared
to the available bandwidth, the service algorithm, used
for determining which of the communications requests
is to be served next, can be utilized to achieve a
higher performance. A similar problem exists in the
multibeam antenna in low earth orbit satellite systems
in which a single satellite has to serve multiple cells
(20-50) on the ground. The antenna has to be switched
dynamically between the different cells, based on their
traffic intensity, signal strength, satellite trajectory, and
revenue stream.

A related application is a communication system in
which a central station communicates to peripheral sta-
tions by means of laser or infrared transmission; such
communication is fully digital and highly directional, re-
quiring a line of sight between the communicating sta-
tions, and thus leads to a directional architecture as in
the microwave antenna. For distance communication,
microwave transmission is widely used as an alternative
to cable. On a college campus or industrial complex it is

Subject classification: Queues, cyclic: dynamic scheduling of a server in a polling system.
Area of review: TELECOMMUNICATIONS (SPECIAL ISSUE ON TELECOMMUNICATION SYSTEMS: MODELING, ANALYSIS AND DESIGN).

Operations Research
Vol. 43, No. 1, January-February 1995

0030-364X/95/4301-0177 $01.25
© 1995 INFORMS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178 / HAREL AND STULMAN

inexpensive and easy to put a laser transmitter and re-
ceiver on the roof of each building (see, for example,
Tanenbaum 1988 p. 65).

The results presented in this paper could be applied to
tree-based local access networks (see Gavish 1982 and
1991) in which a central node controls access to a central
service facility which is located at the head (root) of the
tree. The user nodes are connected to the central node
by multidrop lines, with the user nodes thereby sharing
the communication links to the central service facility.
Access to the communication links is controlled by a
multidrop protocol which polis the user nodes in a cycli-
cal order and grants permission to use the shared com-
munication links based on some control policy. Several
access control policies have been suggested in the litera-
‘ture starting from a cyclical loop policy where each sta-
tion is polled in a fixed order to broadcast collision
detection and recovery policies. A horizon server polling
policy could improve the performance obtained by the
earlier policies.

Polling systems have important applications in ring-
based local area networks. They play a crucial role
in token passing protocols in very high capacity fiber and
token ring local area networks. The literature is replete
with studies involving SONET (synchronous optical net-
work) systems. One such fiber optics based system in-
volves a dual loop token passing ring. Each node of the
token ring is attached to two distinct loops, one of which
is transmitting clockwise and the other is transmitting
counterclockwise. Such a configuration is referred to as
fiber distributed data interface (FDDI). A discussion of
such a network can be found in Tanenbaum. He defines a
class A station as one which is attached to both rings and
thus acts as a bridge between them. Such networks were
also discussed by other authors. See, for example,
Sosnosky and Wu (1991) and the references therein.

The access of the channel on FDDI is controlled by a
token (in some versions multiple tokens; see, e.g.,
Hammond and O’Reilly 1986). According to this mecha-
nism a station does not transmit until it acquires a free
token. It then modifies the token and attaches its data to
it. The message is sent around the ring and passed on by
each station until the original station receives its own
transmission and removes the message from the ring. It
then creates and transmits a new free token.

A single token FDDI can be modeled as a polling sys-
tem with a single server: The free token is modeled by
the server. The time of transmitting a free token from
one station to the next is made up of two components
{propagation delay and station latency) and can be rela-
tively significant. This time of token transmission is
modeled by a switchover time in the polling system. The
dual loop nature of the system allows the token to be
transmitted in both directions (clockwise and counter-
clockwise) of the loop. In addition, SONET’s ‘“‘embed-
ded overhead channels (EOCs)” (see Davidson and
Muller 1992, p. 295) provide the ability to transmit

information about the state of the system to each station.
The combination of these two properties allows one to
adopt a dynamic policy which determines the direction of
token movement as a function of the system state. Thus,
dynamic policies like the one studied in this paper can be
utilized in such a configuration in order to reduce the
delay experienced by the messages (in comparison to
the simple static policy in which the token moves cycli-
cally in a fixed direction).

Star-based local area networks with an active hub are
another application area for the results presented in this
paper. In active hub-based star networks such as
STARLAN or LANSTAR, the\hub is the center of the
star and each user station is connected to it by a dedi-
cated line. The hub scans the lines using a polling policy
and serves each station in turn, transferring messages
between stations. In LANSTAR the active hub consists
of a high capacity (40 to 100 megabits per second) central
loop, which has a very short diameter (a few feet). User
stations are connected to the central loop by dedicated
lines, each with a capacity of 2.3 megabits per second.
Access to the loop is regulated by an appropriate polling
control policy.

A number of authors have dealt with a series of related
problems. An excellent review of the literature on the
subject of polling systems is provided by Takagi (1986,
1988 and 1990). Bundy and Mack (1973) describe the
problem of the server operating on a line. Coffman and
Hofri (1982) analyze a scanning (or polling) model on the
interval, and show how to find the performance measures
by reducing the problem to a linear system. Abdel-Malek
and Li (1990) introduce models to determine the se-
quence that minimizes the execution time of a robotic
travel scheme.

In an update of the literature on the subject of polling
models, Takagi (1990) reviewed over 400 articles on the
subject, mostly from the last few years, with most of
the applications in the area of telecommunication. Appli-
cation of polling models to computers and telecommuni-
cations is the subject of several survey articles and
chapters in books. Takagi (1991) reviewed applications of
polling models to the following communication networks:
the half-duplex transmission, polling data link control,
explicit and implicit token passing protocols, and more.
Levy and Sidi (1990), in their review, described many
important applications to communications. Their basic
model is token passing systems in local area networks.
Extensions of the basic model include the modeling of
acknowledgments and distributed algorithms in token
ring networks, fixed and random polling order. Grillo
(1990) described polling system models that have been
successfully employed in communication networks. Sev-
eral books devote a full chapter each for polling models
and their applications in communication systems (see,
for example, Hayes 1984, Hammond and O’Reilly 1986,
Takagi 1986, and Schwartz 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Most studies of scheduling rules for the server have
been done by simulations, e.g., Teorey and Pinkerton
(1972), Hofri (1980), and Geist and Daniel (1983). Geist
and Daniel propose a modified version of the greedy
server in which the reversal in direction is limited.

The Model

In this paper, we assume that N identical stations are
evenly spaced around a closed tour. Without loss of gen-
erality we take the positive switchover time (the time
needed to switch from one station to the next) to be the
unit time. We assume that after a transmission the time
until the next request from the same station is exponen-
tially distributed with parameter lambda, and the trans-
mission time is a constant. Thus, we assume a Poisson
(lambda) arrival at each station (queue), and each queue
is a pure loss system with a single buffer. An occupied
buffer is available for a new arrival only upon the com-
pletion of the occupier’s service request. The productiv-
ity of this system is measured by the throughput of the
system, the mean number of stations served per time
unit.

We examine the question of scheduling the movement
of the server by assuming that at each station the server
has full information about the state of all stations. Using
this information the server can reverse his direction or
can stop and wait. Maximizing the throughput can be
formulated as a Markov decision process where the opti-
mal solution for a small size problem can then be found.
Unfortunately, there are 2 states in this system, and the
optimal policy does not have a simple structure. Thus, an
on-line implementation of this solution requires very fast
look-up tables at any station, which is not practical in
most cases. Therefore, our objective is to examine a
suboptimal policy which is simple enough to be practical,
yet still out-performs the polling and the greedy servers.

We name our decision rule the horizon server with
parameter d (for distance). The horizon server selects
the nearest request for its next service, provided the re-
quest is within its horizon. If the location of the nearest
request for service is more than d stations apart, the
horizon server just ignores it. The motion of the horizon
server is dynamic in the sense that its destination can
change at any station if a new request arrives nearby.
The horizon server with d = 0 is a server dedicated to
one station only. Whenever d > 1 the horizon server will
serve all stations in the long run. If d = N/2 the horizon
server operates like the greedy server.

To get some insight into why the horizon server should
work well, consider the case A > 1. Here the optimal
value of d is zero because the switchover time is one and
the mean waiting time of a dedicated server is less than
1. A dedicated server alternates between service and idle
state. The unit buffer assumption implies that at the end
of each service cycle there must be an idle cycle. Maxi-
mizing the throughput is equivalent to minimizing the
mean idle time, and ignoring requests which are too far

HAREL AND STULMAN / 179

apart seems to coincide with this objective. The above
argument does not hold if the stations are not identical,
or if the buffer is larger than one unit.

For N = 2 and N = 3 we obtain explicit formulas for
the throughput of the horizon and greedy servers. For
N = 4 we cannot get a closed-form solution, and to get
the throughput we solve a set of O(2") linear equations.
For small N (i.e., N < 6) we provide enough numerical
evidence to indicate that the horizon server, with the
optimal value of d, outperforms the polling and greedy
SEIVers.

For A sufficiently close to 1 we show, in Corollary 1,
that the horizon server with d = 1 outperforms the poll-
ing server for all N. We alsG" approximate the optimal
value of d for the horizon server.

Our analysis is the first to provide an exact measure
for the greedy server. For a small number of stations our
scheduling rule demonstrates that the additional location
information, when used properly, can improve the effec-
tiveness of the system.

In Sections 2 and 3, we investigate the cases N = 2
and N = 3 and in Section 4 we analyze the general case.
In Section 5, we develop an approximation for the opti-
mal value of d. In Section 6, we provide some simulation
results to validate the approximation. In Section 7, we
conclude with a few final remarks.

1. NOTATION AND PREVIOUS RESULTS

There are N identical stations. They are spaced one unit
of distance apart, on a closed tour, and the server moves
at a unit speed. Each station (queue) is a pure loss sys-
tem of a single buffer that has Poisson arrivals with pa-
rameter A. The duration of the deterministic service time
is S.

The throughput of the polling server is given by:

1

N n—1 . B
LS) T e -
n=1

P=|s+ =0 . (1)
NE; (Nn— 1) I] [e*®+i9) — 1]
n= =0

cf., Mack, Murphy and Webb; see also, Takagi (1988),
Section 2.

Let H(d) denote the throughput of the horizon server
with parameter d. As mentioned, the horizon server with
d = 0 is a server dedicated to one station only. This
station is indeed the M/G/1/1 queue with mean service
time S. Thus, from the Erlang loss formula, with one
server, it is easy to verify that for all N

H(0) = A/(1 + AS).)

We assume that at each station the server has full in-
formation about the state of the system. The state of the
system can be described by the vector

Y=(y1,Y2, - YN (3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180 / HAREL AND STULMAN

where y; is 1 if buffer i is full, or 0 if buffer i/ is empty.
The index i is the relative position of a station with re-
spect to the server. That is, we define the station where
the server is currently located to be number 1. The sta-
tions to the left (clockwise) are assigned successively
higher index numbers, such that index NV is assigned to
the station immediately to the right of the server. It may
help to think about the server as fixed at location 1 and
the stations on a rotating circle (or wheel). This notation
is very compact. Indeed, one can also translate the bi-
nary vector Y into the equivalent decimal representation.

If the horizon server is idle, then each of the K (K =
Min{2d + 1; N}) stations in his domain are empty and
thus the time to the next decision epoch (the next arrival
to the domain) has an exponential distribution with pa-
rameter KA. A decision epoch is whenever the server
can commence a movement, reverse direction, or start
the next service.

It is useful to relate the throughput of the system to the
user’s performance measures. Let B be the fraction of
requests lost, which is also the probability that a station
is occupied. Let TH be the throughput of the system
regardless of the type of server, but excluding the dedi-
cated server. Since the throughput of each station is
TH/N, we get

B =1- TH/(AN). (4)

Finally, to get the response time let W, be the mean
request response time for those requests that are not lost
upon arrival; then

W, =2 -1, (5)

2. THE CASE N = 2

From (1) it is easy to verify that for N = 2 the through-
put of the polling server is

P=e*S(e® — 1)/[1 + e*S(e? - 1)(1 + S)]. (6)

The next result gives the throughput of the horizon
server with d = 1 and also the throughput of the
greedy server for N = 2.

Proposition 1. For N = 2 and d = 1 the throughput of
the horizon server is

2e*S +e -1

H(1) = .
e"‘(%+ s) +(2eM - 1)1 +S)

(M

Proof. This model can be analyzed as a semi-Markov
process where the state space is the binary vector ¥ =
(v,, y,) or the equivalent integer between zero and
three. The transition probability matrix is given by the
matrix in Table I.

The duration of state 0 is exponentially distributed with
parameter 2A. In state 1 the server moves from one sta-
tion to the next and the duration is one unit of time. The

Table 1
Transition Probability Matrix for N = 2
(0, 0) 0, 1) (1, 0) (1, 1)
0 = (0, 0) 0 1/2 1/2 0
1=1(0, 1) 0 0 e * 1—e*
2 =(1,0) es 1-e* 0 0
3=(1,1) 0 1 0 0

duration of states 2 and 3 is S, which is the service time.
The transition probabilities follow easily from the
exponential assumption and from the definition of
the horizon server.

Let X; be the limiting probabilities for the above
Markov chain. This yields:

X =2eM(3e* =2 + 4e*5), (8)
X: =(2e* - 1)/(3e ™ - 2 + 4e*), 9)
X, =2e 2e?S/(3e ™ — 2 + 4e*5), (10)
X; = (1 - e) (2e*S — 1)/(3e~ — 2 + 4¢*5). (11)

Each visit to states 2 or 3 is a service cycle. Thus, the
expected number of requests per unit time, the through-
put, is given by

H(1) = (X, +X3)/(%Xg + X, + SX, +SX3). (12)

By substituting (8), (9), (10) and (11) in (12) and then
doing some calculations, we obtain (7).

From (2) and (7) it is easy to verify that for A < (>) 1,
H(1) > (<) H(0), and for A = 1, H(1) = H(0).

The next proposition shows that the horizon server
outperforms the polling server.

Proposition 2. H(1) > P forall § = 0 and A > 0.
Proof. We show that H(1) — P > 0.

[1+e*S(e* - 1)1+ 8)]

: [e"\(%+ s) +(2eM - 1)(1 + S)][H(l) - P
= zeAS +e—A -1+ (eZ/\ _ 1)(1 _ %)e)t(s—l)
= e”[z —e M1 —e M) + (e - 1)(1 - %)e'*]

> e*S[Z —(l-e M)+ (e* - 1)(1_— %—)e"‘]

oS
== [+ et —et +e7?]

>0,

because the derivative of the last expression is positive
for all A > 0, and equal to zero for A = 0.

When A > 1 we obviously have H(0) > H(1) > P.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. THE CASE N =3

From (1), one can verify that for N = 3 the throughput
of the polling server is

a%?+ (b° - a®)(2a% — a’ + bH)]"!

P T S aheb -+ 69 (1)
where

a = e A1*S) (14)
and

b=e*5, (15)

The next result gives the throughput of the horizon
server with d = 1 and also the throughput of the greedy
server for N = 3. '

Proposition 3. For N = 3 and d = 1 the throughput of
the horizon server is

a’+h

H(1) = 1 > (16)
(X+S)a3+(S+ 1h

where

h=a(3—b2)+a2(l—b)2+(1-a)2(3—b2). (17)

Proof. This model can be analyzed as a semi-Markov
process where the state space is the binary vector Y =
(¥1, ¥2, ¥3) or the equivalent integer between zero and
seven. The transition probability matrix is given in Table
1.

The duration of state 0 in the table is exponentially
distributed with parameter 3A. In states 1, 2 and 3 the
server moves and the duration is one unit of time. The
duration of states 4, 5, 6 and 7 is S, which is the service
time. The transition probabilities follow from the expo-

HAREL AND STULMAN / 181

We find the limiting probabilities for the above Markov
chain. This yields:

Xo =3a%2[3 - b2 —3a +4a’+2a° +ab? +2a’] (18)

X, =Xo[3-b%—2a +ab)/3a (19)
X, =Xo[3 - b%*—3a +2a%+ab? - a’h)/3a’ (20)
X3 = X,[3 - b%— 6a + 4a’ + 2ab> — 2a?b]/3a> (21)
X4 =Xy/b? (22)
X5 = Xo(b — a)(3 — b?)/3ab? (23)
X¢ = Xo[3b — b® = 3ab + 4a’ + ab® — a?b?
-3a%3a? < (24)

X, =Xo(b — a)[3b —b>—3ab + 4a’b + ab® — a’b?

- 3a?)3a’p?. (25)

Each visit to states 4, 5, 6, or 7 is a repair cycle. Thus,
the expected number of repairs per unit time, the
throughput, is given by

X4 + X5 + + X
H(1) = 4 5 + Xs 7

7 . (26)
ﬁ‘*‘Xl + X, + X, + S(X4 + X5 + Xs +X7)

Finally, substituting (18), (19), (20), (21), (22), (23), (24)
and (25) in (26) and then doing some calculations, we
obtain (16).

The next proposition shows that, for 1 > A > 0, the
horizon server, H(1), outperforms the polling server.

Proposition 4. H(1) > PforallS =2 0and 1> A > 0.

Proof. Suppose that H(1) = P. Using (13) and (16) we
get

a®h?+ (b° - a’)(2a®h —a’*+b*) p+a’A

3 _ 33 — a3 + b2 3 2
nential assumption and the definition of the horizon (b°—a’)a’h —a”+b%) h+a
server. and this is equivalent to
Table 11
Transition Probability Matrix for N = 3
(0, 0, 0) (0,0, 1) ©, 1, 0) 0,1, 1) (1, 0, 0) 1,0, 1) 1,1, 0) 1,1, 1)
0 1 2 3 4 5 6 7
0, 0, 0) 0 1/3 1/3 0 1/3 0 0 0
0
(0,0, 1) a2 a_(ay: a_(a\ AV
1 0 0 0 0 (%) i-Gr () (-3
©, 1, 0) a\z a_fay a_(ay _ay
2 0 0 0 0 (%) -3 -G (-3
0, L1 a _a
3 0 0 0 0 0 0 b 1 b
(1, 0, 0) b? b(1 - b) b(1 — b) (1 — b)? 0 0 0 0
4
@,0,1) 0 b 0 1-b 0 0 0 0
1,1, 0) 0 0 b 1-b 0 0 0 0
6
a,1,1) 0 0 0 1 0 0 0 0
7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182 / HAREL AND STULMAN

a¥(1-b) (B2 =a®)(~1+ 1)) -bXh +a?)
b3 b3 -ad(-1+1Ar)-b¥h +a?)’

(27)

For all 0 < A < 1 the right-hand side of (27) is greater
than 1, and the left-hand side is less than 1, contradicting
H(1) = P. Thus, it suffices to confirm H(1) > P for one
arbitrary point to complete the proof. For S = 0 and A =
~In(1/2) we get H(1) = 0.967 > P = 0.875.

For A > 1, we clearly have H(0) > H(1) and also
H(0) > P.

4. SOME RESULTS FOR N = 2

The polling, greedy or horizon server alternates between
service and nonservice cycles. The duration of the ser-
© vice cycle is the deterministic service time S, and the
nonservice cycle is the random time between two con-
secutive service cycles. The nonservice cycle may in-
clude waiting and/or moving periods. To compare
between two different control policies, it is sufficient to
compare the expected nonservice cycle times because
the service cycle is the same for all policies. For the
polling server the expectation of the nonservice cycle is
greater than 1 and therefore

HO)>P, A2=21. (28)
In the next proposition we relate H(1) to H(0).

Proposition 5. For all N 2 2
H(1)>H(0), 0<A<]1. (29)

Proof. For H(0) the expected nonservice cycle is 1/A.
For N = 2, (29) follows from (2) and (7). For the horizon
server withd = 1 and N = 3 let Q be the probability
that the nonservice cycle is 1. This is the case when at
the completion of the service cycle a new request for
service is already waiting. Let NS be the duration of the
nonservice cycle. If no request is waiting, the waiting
time for a new request is exponential with mean 1/3A.
Therefore, the expectation of NS for the horizon server
with d = 1 is given by (30).

E(NS)=Q+(1-Q)Ys(1/3A) + (1 + 1/31)] (30)

- o2+ L
=0+ (1 Q)(3+3/\)<1,
O0<A<1l,0<P<1. ,

The result follows, because for the horizon server with
d=0,ENS)=1A>1forall0< A< 1.
Corollary 1. For all N there is some A{(N) < 1 where,
H(1)>P forall A\;\(N)<aA <1. (31)
This follows because for A = 1, H(0) = H(1) = 1/
(1+S)>P.

For N > 4 we cannot get a closed-form solution for
the throughput of the horizon server with parameter

d = 1. However, for a given N, d, A and S, the through-
put of the horizon server, H(d), can be found by solving
a set of 2" linear equations. Similar to Table II one can
find the transition probability matrix for a larger N.

Tables III-IX provide numerical results for the
throughput of the horizon and the polling servers when
N = 4 and N = 6 for different values of S, A, and d. We
have used the True BASIC structured language system
with a precision of sixteen digits. These tables provide
enough numerical evidence to indicate that for N < 6 the
horizon server, with the optimal value of d, outperforms
the polling server. The greedy server is a special case of
the horizon server when d = N/2 if N is even or d =
(N — 1)/2 if N is odd. Thus, by definition, the horizon
server outperforms the greedy server. In some cases the
difference in the performance is significant. In Table III
when A = 0.4 we have H(2) = 0.861, H(1) = 0.872,
and P = 0.798. When A = 0.5 we get H(2) = 0.917,
H(1) = 0.935, and P = 0.865. Indeed, it is possible to
show that the throughput of the horizon server can be
arbitrarily large compared with the greedy or the polling
server. The nonservice cycle for the horizon server with
d = 0 is 1/A. For the polling server this cycle is at least 1,
and for the greedy server this cycle is at least 2/3 (see
30). Thus, for S = 0,

lim H(0)/P = (32)
and
lim H(0)/H(d) =@, d>1. (33)

5. APPROXIMATION FOR THE OPTIMAL VALUE
OF D

To use our control policy, the horizon server, one needs
to find the optimal value of 4. This value depends on A,
S, and N and finding it may be computationally prohibi-
tive even for small N. To overcome this obstacle, this
section develops an approximation for the optimal value
of d. We start with Proposition 6.

Let EW(k) be the expected duration of the moving
cycle for the horizon server, given a request from a dis-
tance k initiated this cycle. This is the total time that the

Table I11
The Throughputs for N = 4 When § = 0
A H(2) H(1) P
0.1 0.354160 0.331164 0.329680
0.2 0.605842 0.585127 0.550671
0.3 0.765551 0.761313 0.698806
0.32466 0.793972 0.793972 0.727097
0.4 0.861072 0.871707 0.798103
0.5 0.917261 0.935034 0.864665
0.6 0.950424 0.968945 0.909282
0.7 0.970159 0.986166 0.939190
0.8 0.981985 0.994517 0.959238
0.9 0.989106 0.998363 0.972676
1.0 0.993404 1.000000 0.981684

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HAREL AND STULMAN / 183

Table IV Table VI
The Throughputs for N = 4 When § = 0.1 The Throughputs for N = 4 When § = 5
A H(2) H(1) P A H(2) H(1) P
0.1 0.349491 0.326684 0.325441 0.1 0.161546892 0.158027410 0.158366775
0.2 0.587106 0.567503 0.535321 0.2 0.166445004 0.166330237 0.165933732
0.3 0.728629 0.725081 0.669521 0.3 0.166650704 0.166649909 0.166569848
0.323 0.751187 0.751190 0.692755 0.3136 0.166655381 0.166655381 0.166592416
0.4 0.807800 0.816850 0.755197 0.4 0.166665393 0.166665713 0.166652621
0.5 0.851646 0.865476 0.809987 0.5 0.166666563 0.166666610 0.166664582
0.6 0.876197 0.889548 0.845123 0.6 0.166666658 0.166666663 0.166666356
0.7 0.890131 0.900894 0.867723 0.7 0.1666666660 0.1666666665 0.1666666201
0.8 0.898118 0.906020 0.882298 0.8 0.1666666666094 0.1666666666560 0.1666666597094
0.9 0.902724 0.908221 0.891717 0.9 0.1666666666620 0.1666666666662 0.1666666656261
1.0 0.905392 0.909091 0.897815 1.0 0.1666666666663 0.1666666666667 0.1666666665110
T~
server is in a continuous movement between stations.
- The next proposition gives EW(k). P(x = k) = e MDY, (37)

Proposition 6

k .
EWk) =Y e 2D, (34)
i=1

Proof. Index the original position of the server as 0.
At time 0 all the queues at locations 0, = 1, £ 2,
..., = k — 1 are empty and a new request arrives at
queue k and initiates the moving cycle. Suppose that
when- ever there is a tie, the server goes to the +. For
exam- ple, if at time 1, when the server is at location 1,
queues —1 and +3 are occupied, the server selects +3
for its next service. We show the result by induction. For
k = 1, clearly, EW(1) = 1. Now suppose that (34) holds
for ¥ — 1; then we only have to show that

EW(k) — EW(k — 1) = e ~}&- D7, (35)

Let x be the duration of the moving cycle, which is a
nonnegative and integer valued random variable.
Therefore,

EW(k) = 2 P(x 2 i). (36)
Using (36) we get EW(k) — EW(k — 1) = P(x 2 k).

But P(x > k) = P(x = k) because x < k. Thus, we
only need to show that

Table V
The Throughputs for N = 4 When § = 1
A H(2) H(1) P
0.1 0.307084 0.287299 0.287612
0.2 0.437202 0.427412 0.411910
0.3 0.478773 0.478070 0.461807
0.317 0.482197 0.482196 0.466696
0.4 0.492236 0.493603 0.482633
0.5 0.497016 0.498140 0.491830
0.6 0.498824 0.499463 0.496073
0.7 0.499530 0.499850 0.498087
0.8 0.499811 0.499620 0.499061
0.9 0.499924 0.499993 0.499537
1.0 0.499969 0.500000 0.499771

Now, x = k if, and only if, the server moves directly to
location &. For this event to take place, queue k must
remain the nearest request to the server throughout its
moving cycle. Thus, queues —k + 1 — 2i and queues
-k +2+2,i=1,2,..., k = 2, should remain
empty during the intervals (0,], i = 1,2, ... , k — 2,
and queue k — 1 must remain empty during (0, k£ — 1].
The result follows because

k=2
k-—1)2=k-1+2 2 i. (38)
=1
Let ENS(d) be the expected duration of the nonser-
vice cycle for the horizon server with parameter d, given
that no request is waiting when this cycle starts. The
next proposition gives ENS(d).

Proposition 7

1

ENS@) =104+ 1

2 ¢ oy, —A(i-1)?
+2d+1l;1(d+1 ie .
(39)
Proof. Each of the 2d + 1 queues has the same proba-

bility to become occupied first. Conditioning on the
queue that become occupied first and using (34) we get

Table VII
The Throughputs for N = 6 When § = 0
A H(3) H(2) H(1) P
0.1 0.485452 0.479288 0.403894 0.451188
0.1718 0.687741 0.687743 0.643279
0.2 0.742508 0.744017 0.681533 0.698806
0.3 0.868470 0.870742 0.846896 0.834701
0.4 0.932622 0.933737 0.932615 0.909282
0.4087 0.937485 0.937482 0.913896
0.5 0.965803 0.966224 0.972389 0.950213
0.6 0.982847 0.982990 0.989385 0.972676
0.7 0.991487 0.991528 0.996205 0.985004
0.8 0.995799 0.995814 0.998792 0.991770
0.9 0.997937 0.997941 0.999710 0.995483
1.0 0.998989 0.998990 1.000000 0.997521

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184 / HAREL AND STULMAN

= X@2d+l) | 2d+ “

We can now derive our approximation for 4. It is
based on minimizing the time until the next service cy-
cle. The horizon server with parameter d ignores all re-
quests from outside its domain, even if no requests are
waiting inside the domain, provided that EW(d + 1) =
ENS(d). Equating EW(d + 1) to ENS(d) and simplify-
ing the equation yields

d+1 -
A X (2- e =1, (40)

The numerical solutions A*(d), for all d < 51, are
given in Table X. With this table one can design the
horizon server for all systems with N < 103, and for all
systems (regardless of N) with A = 0.00134187. If, for a
given N, d 2 N/2 for N evenord =2 (N — 1)/2 for N
odd, then d should be N/2 or (N — 1)/2, respectively.
The values A*(d) appear to be lower bounds on the exact
values and they are asymptotes to the exact values,
when S is large.

Table IX
The Throughputs for N = 6 When § = 1
A H(3) H(2) H(1) P
0.1 0.391426 0.388144 0.336616 0.370265
0.1695 0.462945 0.462946 0.449519
0.2 0.476009 0.476160 0.461746 0.465934
0.3 0.493877 0.493917 0.492470 0.489918
0.3644 0.497433 0.497433 0.495220
0.4 0.498401 0.498405 0.498585 0.496813
0.5 0.499580 0.499580 0.499733 0.498962
0.6 0.499889 0.499889 0.499950 0.499658
0.7 0.499970 0.499970 0.499991 0.499887
0.8 0.499992 0.499992 0.499998 0.499962
0.9 0.499998 0.499998 0.500000 0.499987
1.0 0.499999 0.499999 0.500000 0.499996

Table VIII Table X
The Throughputs for N = 6 When S = 0.1 The Approximate Values of d
A H(3) H(2) H(1) P d A*(d) d A*(d) d A*(d)

0.1 0.476331 0.470441 0.396909 0.443181 1 1.000000 18 0.00819870 35 0.00259630
0.1713 0.661132 0.661134 0.620781 2 0313142 19 0.00747294 36 0.00247172
0.2 0.709962 0.711237 0.655583 0.671348 3 0.162242 20 0.00684297 37 0.00235621
0.3 0.814743 0.816325 0.797730 0.787270 4 0.101543 21 0.00629232 38 0.00224890
0.4 0.864115 0.864771 0.864522 0.846327 S 0.0704297 22 0.00580797 39 0.00214901
0.4026 0.865615 0.865615 0.847396 6 0.0521360 23 0.00537950 40 0.00205586
0.5 0.887825 0.888037 0.892456 0.876607 7 0.0403749 24 0.00499846 41 0.00196884
0.6 . 0.899140 0.899202 0.903235 0.892225 8 0.0323213 25 0.00465797 42 0.00188743
0.7 0.904473 0.904450 0.907162 0.900316 9 0.0265407 26 0.00435239 43 0.00181114
0.8 0.906958 0.906963 0.908522 0.904519 10 0.0222374 27 0.00407699 44 0.00173954
0.9 0.908108 0.908109 0.908964 0.906707 11 0.0189391 28 0.00382787 45 0.00167225
1.0 0.908638 0.908638 0.909091 0.907847 12 0.0163501 29 0.00360171 46 0.00160893
13 0.0142771 30 0.00339574 47 0.00154926

14 0.0125890 31 0.00320757 48 0.00149296

. 1 1 1 . 15 0.0111945 32 0.00303517 49 0.00143977
ENSW@) =2557 {A(Zd PR [m +E WV)J} 16 0.0100279 33 0.00287680 50 0.00138948
17 0.00904126 34 0.00273095 51 0.00134187

_ 1 1 g & —/\(1]
T 2d+1 {A(2d+1) A(2d+1) Z Z‘
. J 2 6. SIMULATION RESULTS
o —A(i—
R To validate the approximations developed in Section 5,

we will present some simulation results. We can get
some validation from the numerical results in Section 4.
For example, the approximation in Table X gives A*(3) =
0.162242. From Tables VII, VIII, and IX, we see that
H(2) = H(3) when A = 0.1718, A = 0.1713, A = 0.1695
for § =0, S = 0.1, § = 1, which shows that the
approximation is accurate.

Tables XI-XIII provide simulation results for the
throughput of the horizon server, and exact results for
the polling server, when N = 9, for different values of S,
A, and 4. They show that the first five values of the
approximation are quite accurate. For example, Table X
illustrates that for 0.0704 < A < 0.1015 we get d =
which is in agreement with the simulation results.

Each simulation result is based on 10,000,000 (ten mil-
lion) service completions. An attempt to get meaningful
simulation results for a larger value of N was not suc-
cessful. The problem is that A = (H(d + 1) — H(d)) is
decreasing in N and, for larger values of N, this A is less
than the simulation error.

7. FINAL. REMARKS

The key factor that affects the performance advantage
of the horizon server is the congestion in the system.

Table XI
Simulation Results for N = 9 When S = 0
A H(4) H(3) H@2) H(l) P-Exact
0.05 0.38319 0.37597 0.34803 0.26500 0.36237
0.1 0.62175 0.62002 0.59732 0.47920 0.59343
0.2 0.85044 0.85072 0.84801 0.76827 0.83470
0.3 0.94068 0.94077 0.94088 0.91334 0.93279
0.4 0.97726 0.97731 0.97739 0.97251 0.97268
0.5 0.99161 0.99158 0.99161 0.99219 0.98889

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the system is congested, the horizon server
is likely to move as the polling server, and to serve
most of the stations in every cycle. Under such heavy
traffic conditions, the throughput of the system ap-
proaches 1/(1 + S) and the performance advantage
diminishes. It is interesting that, even under such
conditions, for N < 6, the horizon server is marginally
better.

In the continuous polling system, as in Coffman and
Gilbert (1986, 1987), requests for service arrive at
random positions on the route of the server. This
model cannot benefit from the horizon server, because
only at the stations can the horizon (or the greedy)
reverse directions. At each station, the server has full
information about the state of each station. The server
. can update the state of the system only at the stations.
Thus, a decision to move to the next station implies
“black out” of new information for one umit of
time. When the server does not move, this ‘““black out”
period does not occur: Information becomes available
instantaneously. If, for example, the next request arrives
at the station where the server is waiting, the server
starts to serve immediately. This is why it pays (some-
times) to wait. The continuous model considers the
limit as N — o, while the switchover time (or distance)
— 0, in contrast to our model. In this way, the total
switchover time (the circumference) remains a constant.
In the continuous model, there are no ‘‘black out”
periods, and it does not pay to wait.

Coffman and Gilbert (1987) have shown that, for the
continuous model with a constant service time, the poll-
ing and greedy servers are roughly, equally effective,
except for certain extreme values of the parameters. Our
numerical results also show that, in many cases, the per-
formance difference is not significant and may not justify
preferring the horizon server over the polling system,
because the polling server does not require the additional
information about the status of the stations.

The greedy server is a special case of the horizon
when d = N/2. Therefore, the horizon server always
outperforms the greedy, regardless of N, the service
time distribution, or the distribution of the time that
the queue is empty. The greedy server also requires
at least as much information about the state of the
system. Thus, all applications that are currently using
the greedy server can benefit by switching to the

Table XII
Simulation Results for N = 9 When S = 0.1

A H(4) H(3) H(2) H(1) P-Exact
0.05 037895 0.37189 0.34436 0.26228 0.358443
0.1 0.60332 0.60194 0.58132 0.46875 0.577456
0.2 0.80070 0.80093 0.79905 0.73256 0.788356
0.3 0.87050 0.87050 0.87055 0.85134 0.864610
0.4 0.89583 0.89583 0.89584 0.89337 0.892556
0.5 0.90468 0.90467 0.90469 0.90519 0.902941

HAREL AND STULMAN / 185

Table XIII
Simulation Results for N = 9 When § = 1

A H(4) H(3) H(Q2) H(l) P-Exact
0.05 0.33550 033088 0.30927 0.23823 0.319749
0.1 0.44664 0.44646 0.44004 038115 0.438328
0.2 0.49260 0.49260 0.49255 0.48434 0.490952
0.3 0.49805 0.49895 0.49895 0.49853 0.498444
0.4 049985 0.49985 0.49985 0.49986 0.499720
0.5 0.49998 0.49998 0.49998 0.49999 0.499950

horizon server. In some cases, the difference in
the performance is signiﬁcag\t and can enhance the
throughput by more than 5%. The example at the end
of Section 3 shows an increase in the throughput
of 10%. Note that all computations required for the
horizon server are performed before the system is put
in place. The real-time implementation does not
involve calculation. Finally, we neither claim nor conjec-
ture that the horizon server outperforms the polling
server in general when N 2 7.

ACKNOWLEDGMENT

This research was supported in part by a grant from the
Council of Business Studies, Rutgers University. The
work of the first author was also supported by the
Research Resources Committee of the Graduate School
of Management, Rutgers University, by the Graduate
School Research Award, and by the Research Council of
Rutgers University. We wish to thank Dr. H. Takagi and
Dr. H. Levy for their comments on an earlier version of
this paper. Many thanks are also due to Dr. B. Gavish
for his comments which improved the presentation of
this paper.

REFERENCES

ABDEL-MALEK, L., anp Z. Li. 1990. The Application of In-
verse Kinematics in the Optimum Sequencing of Robot
Tasks. Int. J. Prod. Res. 28, 75-90.

Bunpay, B. D., anp C. Mack. 1973. Efficiency of Bi-
directionally Traversed Machines. J. Royal Statist.
Soc. (Series C), Applied Statistics 23, 74-81.

CorrMaN, E. G., aNp E. N. GILBERT. 1986. A Continuous
Polling System With Constant Service Times. IEEE
Trans. Infor. Theory IT-32(4), 584-591.

CorrMaN, E. G., anp E. N. GiLert. 1987. Polling and
Greedy Servers on a Line. Queue. Syst. 2(2), 115-145.

CorrMaN, E. G., aNxp M. Horri. 1982. On the Expected
Performance of Scanning Disks. SIAM J. Comput.
11(1), 60-70.

Davipson, R. P., aND N. J. MULLER. 1992. Internetworking
LANSs, Operation, Design and Management. Artech
House Inc., Boston.

GavisH, B. 1982. Topological Design of Centralized
Computer Networks—Formulations and Algorithms.
Nerworks 12, 355-377.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186 / HAREL AND STULMAN

Gavisz, B. 1991. Topological Design of Telecommunication
Networks—Local Access Network Design Methods.
Anns. Opns. Res. 33(1), 17-71.

GavisH, B., AND P. ScuwEITZER. 1973. Queue Regulation
Policies Using Full Information. Technical Report 004,
IBM Israel Scientific Center, Haifa, Israel.

GEisT, R., AND S. DANIEL. 1983. V-SCAN: An Adaptive
Disk Scheduling Algorithm. Proc. IEEE Inf. Symp. on
Comp. Sys. Org., New Orleans.

GriLLo, D. 1990. Polling Mechanism Models in Communica-
tion Systems—Some Application Examples. In
Stochastic Analysis of Computer and Communication
Systems, H. Takagi (ed.). Elsevier Science Publishers,
Amsterdam, 659-698.

HammoND, J. L., anp P. J. P. O’REILLY. 1986. Performance
Analysis of Local Computer Networks. Addison-
Wesley, Reading, Mass. :

Haves, J. F. 1984. Modeling and Analysis of Computer
Communications Networks. Plenum Press, New York.

Horri, M. 1980. Disk Scheduling FCFS vs. SSTF Revisited.
Commun. ACM 23(11), 645-653.

Levy, H., aNp M. Smp1. 1990. Polling Systems: Applications,
Modeling, and Optimization. IEEE Trans. Commun.
38(10), 1750-1760.

Mack, C., T. MureHY AnD N. L. WEBB. 1957. The
Efficiency of N Machines Uni-Directionally Patrolled

by One Operative When Walking Times and Repair
Times Are Constants. J. Royal Statist. Soc. (Series B)
19, 166-172.

ScuwARTzZ, M. 1987. Telecommunication Networks: Proto-
cols, Modeling and Analysis. Addison-Wesley,
Reading, Mass.

SosNosky, J., anp T. H. Wu. 1991. SONET Ring Applica-
tions for Survivable Fiber Loop Networks. IEEE
Commun. Mag. 29(6), 51-58.

Takacl, H. 1986. Analysis of Polling Systems. MIT Press,
Cambridge, Mass. '

Takaci, H. 1988. Queueing Analysis of a Polling Model.
ACM Surveys 20, 5-28.

Takagl, H. 1990. Queueing Analysjs of Polling Models: An
Update. In Stochastic Analysis of Computer and Com-
munication Systems, H. Takagi (ed.). Elsevier Science
Publishers, Amsterdam, 267-318.

Takaci, H. 1991. Application of Polling Models to Com-
puter Networks. Computer Network and ISDN
Systems 22(3), 193-211.

TANENBAUM, A. S, 1988. Computer Networks. Prentice-
Hall, Englewood Cliffs, New Jersey.

TeOREY, T. J., AND T. B. PINKERTON. 1972. A Comparative
Analysis of Disk Scheduling Policies. Commun. ACM
15(3), 177-184.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

