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ON THE TANGENTIAL INTERPOLATION PROBLEM
FOR H, FUNCTIONS

DANIEL ALPAY, VLADIMIR BOLOTNIKOV, AND YOSSI PERETZ

ABSTRACT. The aim of this paper is to solve a matrix-valued version of the
Nevanlinna-Pick interpolation problem for H, functions. We reduce this prob-
lem to a Nevanlinna-Pick interpolation problem for Schur functions and obtain
a linear fractional transformation which describes the set of all solutions.

1. INTRODUCTION

The classical Nevanlinna-Pick interpolation problem for functions in the
Hardy space of the unit disc D consists of the following: given wy, ..., w, € D
and fi, ..., fo € C, describe the set of all functions f € H, such that (1)
Ifll2<1 and (2) f(w))=/fi, i=1,...,n. Asis well known [9], [15, p. 345],
a necessary and sufficient condition for a solution to exist is the nonnegativity
of the matrix P with ij entry P;; = ﬁ — fif} . This problem can be solved
using reproducing kernels methods as in e.Jg. the book of Meschkowski [16]. In
the matrix-valued case the situation is more involved. In this paper we solve
the Nevanlinna-Pick interpolation problem in the vector Hardy classes H} 7.
We denote by C?*? the space of all p x ¢ matrices with complex entries, and
I, stands for the identity matrix in CP*? and define H}*? to be the Hilbert
space of C?*9-valued functions with H, entries with inner product

1 2n ) )
(f, g)ngq = E-/; tr(g(e™)* f(e)) dt.

We endow HZ*? with the matrix-valued Hermitian form

[ lg g

s A=Y Rk

k=0
where f(z) = Yio, fizk, fr € CPX9,
In the scalar case (f, f)w, =[f, f], but in the matrix case two constraints
are possible on f, namely (f, f)Hszq <1 or [f, f]l £1,. These are not

equivalent in general.
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Definition 1.1. We denote by H}*?(I,) the set of all functions f € H5*? such

that

f, f1<1,.
A CP*4-valued function analytic in I is a Schur function if and only if the
operator of multiplication by this function is a contraction from HY into Hj .
If we replace Hy by C?, we will see in §2 that the operator of multiplication by
f is a contraction from C? into HY if and only if [f, f] < I,. Thus, the class

H}™9(1,) can be viewed as an analogue of Schur functions in the framework of
Hy*4
2

We introduce the following tangential interpolation problem Int(H}*?(I,)):
Given integers r; € N, given matrices a; € C'i*P, ¢; € C"*9, and given points
w; intheunitdisc D={z:|z| <1} (i=1,..., n) find necessary and sufficient
conditions for a function f € HY*(1,) to exist such that
(1.1) a; f(w;) =¢ (i=1; o o H)
and describe the set of all such functions when these conditions are met.

Note that the analogous tangential Nevanlinna-Pick problem Int(57%?) in
the Schur class .#?*9 of CP*9-valued functions analytic and contractive
(s(z)s(z)* < Ip) in D has been much studied (see e.g. [11], [10],[7]). Using
well-known facts about Int(-#?*?) we prove in §3 the two following theorems.

The first theorem generalizes to the vector case the scalar criteria mentioned
above.

Theorem 1.2. The problem Int(HY™(I,)) is solvable if and only if the block
matrix

& n
(1.2) K= ﬂ——c-c‘-‘
1 —ww} i
i,j=1

is nonnegative.
The set of all solutions is described in the next theorem:

Theorem 1.3. Let the matrix K given by (1.2) be strictly positive. Then, the set

of all solutions f of the problem Int(H5*?(1,)) is parametrized by the linear
fractional transformation

(1.3) f(2) = (v11(2)a(z) + vi2(2))(v21(2)0(z) + wa2(z)) ™!
where the C\P+9)*(+2a).yalyed function

_ (vu(z) wnl(z)
(1.4) ¥z) = (WZI(Z) sz('z))

(vi1(z) and yya(z) are CP*W*9-yalued and C9*%-valued respectively) is built
from the interpolation data; it is rational and such that

(1.5) ¥(z) (I‘H" _O;q)‘*'(z)* < (I(f (|22 ! I)Iq)

for z € D (with equality for z on the unit circle T), and where the parameter
o varies in the Schur class FP+9)%4

An explicit formula for ¥(z) in terms of the interpolation data is given in
§3. There we also consider the degenerate case detK =0.
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As was pointed out by the referee, Theorems 1.2 and 1.3 allow to solve the left
interpolation problem with the constraint (f, f) mxe < 1. It suffices to replace

f by the CP9-valued function made from the cqumns of f'. The referee also
pointed out that the interpolation problem Int(HY*9(1,)) is a particular case
of the following problem in the sense of Sarason [21]: Given f; € HZ™ and 6
a p x p inner function, describe the elements of the set f+ 0HF xd for which
[ S, f1< 1;. This problem can in turn be solved using the methods developed
in [8].

One could think of more general interpolation problems, where interpolation
conditions are also imposed form the right. The solutions of such problems
have explicit description in the class of Schur functions in terms of linear frac-
tional transformations (see [8], [7]). Explicit descriptions as (1.3) do not seem
to be available in the class HY*9(I,). The reason is as follows: a right in-
terpolation condition can be translated into a left interpolation condition for
f(z) = f(z*)*. But, as will be discussed in the next section, f need not be in
H}*"(I,) when f € H} "‘f( ¢) - This does not happen for Schur functions: if S
is a Schur function so is S.

In §4, we set the problem Int(H2*?(I,)) in the framework of a general inter-
polation problem in reproducing kernel Hilbert spaces. In §5, we explain how

the interpolation problem Int(H}*?)(I,) can be considered in a nonpositive
framework.

2. CHARACTERIZATION OF THE CLASs HY™Y(1,)

In this section we give two characterizations of the class HY*?(I,): one in
terms of a nonnegative kernel, the second one in terms of Schur 'funcnons We
first recall that a C?*P-valued function K(z, w) definedon QxQ (Q c C)
is called nonnegative if K(z,w) = K(w, z)* and if, furthermore, for every
choice of integer m and of wy, ..., w, € Q, the Hermitian block-matrix
with ij block K(w;, w;) is nonnegative. A CP*?-valued function analytic in
D is a Schur function if and only if, as already mentioned, the operator Mg
of multiplication by § is a contraction from H{ into HZ , or equivalently, if

and only if the function Hg(z, w) = 2=325W)" g nonnegative in D ; see, e.g.

1—zw*

[10] for a proof of these facts. The analogue here is:

Theorem 2.1. Let f be a CP*9-valued function analytic in D. Then f belongs
to HY™(1,) if and only if the operator of multiplication by f is a contraction
operator from C? into HY , or equivalently, if and only if the kernel

(2.1) K/(z, w) = —2— _ f(z) f(w)"

1—zw

is nonnegative.

Proof. Let f bein H}*/(I,). We define a linear transformation M, : C¢ —
HP*! by

(2.2) Mp=f(z)v  (veCq).
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Then, with x(z) =Y, %+ (a; €CP*1, 1y, €D),

i=1 I-ZVI."

Mix =Y f(vi) e
i=1

(20l = 0" (Z f?fs) v.
i=0
Since f belongs to H}™(1,),
||f(z)vl|ip><| <v*v =g
2

and so [|My| = ||M}|| < 1. Therefore, I — M M3 2 0 and a straightforward
computation shows that

m
(I~ MeMX, X = Y of (1 - f(w)f(w)‘) o
i,j=1 J

for x as above and implies the nonnegativity of K 1z, w).

To prove the converse, let us introduce a linear densely defined transforma-
tion T : HJ*! - C? by

(4]
1 — zw*

It is readily checked that T is a well-defined contraction. Hence, it has a unique
extension which is a contraction (and is still denoted by T) to all of fo‘ :
Furthermore, 'T"v = f(z)v for all v € C? and in view of (2.2), T* = M.
Since ||M/| =||T*|| < 1, the same computation as above leads to

=fw)'a (aeC?,weD).

Y A<

i=0
and therefore, f € H?*(I,). O

We note a number of differences between functions in .¥7*¢ and in
HZ*(I,). For S a Schur function, the kernel Hg(z, w) is nonnegative if
and only if for every z € D, the matrix Hg(z, z) is nonnegative. Further-
more, Hg is nonnegative in D if and only if HE is nonnegative in D ; see [4].
The kernels K, do not share these properties: the example f(z) = (1 —2z2)~1/2
shows that K (z, z) can be nonnegative for every z € D while the kernel
Ky(z, w) is not nonnegative in . One can also give examples of functions f
for which K is nonnegative while K 7 is not. Take forinstance p=1, g =2,
and f(z)=(1, z).

Before turning to the next characterization we recall that C?*9-valued func-
tion g is of bounded type if it can be expressed in the form g(z) = 5% where
&(z) € HEXY and d(z) € Hy . Note also that every H5*?(I;) function is of
bounded type.

The next theorem was proved in the scalar case and for |f|l; = 1 by
D. Sarason in [25, p. 500] (see also [22], [23], [24]). Sarason’s proof is based on
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the Herglotz’s representation formula for functions with real positive part in D
and does not seem to extend to the general case [f, f] < I,. The method pre-
sented here is based on the notion of positivity of kernels and allows extensions
to the nonpositive case, as illustrated in the last section.

Theorem 2.2. Let [ be a CP*9-valued function analytic in D. Then f belongs
to HY™(I,) if and only if it can be written as
(2.3) f(2) = s1(2)(I; — z52(2)) ™"
for some Schur function
24 S(z) = Sl(z)) Pp+a)xq
24) (= (31 e
Proof. Let f admit a representation (2.3) with a Schur function S defined by
(2.4). Writing
(2.5) A(z) = (I, zf(z))
and taking into account (2.1), (2.3) we have

Iyiq — S(2)S(w)"
1 —zw*

Kf(z, w) ———A(Z) A(w)*.

Since § is of the Schur class, the kernel K(z, w) is nonnegative (see e.g. [10])
and by Theorem 2.1, f € H§*(I,). Conversely, let f be in H3*?(1;). By
Theorem 2.1 the kernel K(z, w) given by (2.1) is nonnegative in D. Substi-
tuting (2.5) into (2.1) we obtain

Since 4 and f are of bounded type, by a result of R. Leech and M. Rosenblum,
it follows from (2.6) that

(2.7) f(z) = A(2)S(z)

for some S € FW+a)x4 (see [2], [19, p. 107]; the existence of S is a conse-
quence of a version of the commutant lifting theorem due to Rosenblum [18]).
Substituting (2.5) into (2.7) we obtain

(2.8) (I, 2f(2))S(2) = f(2)

or, equivalently, s,(z)+zf(z)s2(z) = f(z) which immediately implies (2.3). O

We note that a given f may have a number of different representations of
the form (2.3), as is illustrated by the example f(z) = %, which corresponds

to the two choices s;(z) = §, $(z) = -1 and s(z) = f(2), $2(2) =0.

3. INTERPOLATION PROBLEM IN H}™(I,)

Using Theorem 2.2 we reduce the initial problem Int(H5*?(1,)) (see Intro-

duction) to an interpolation problem Int(#®#+9)%¢) in the Schur class
Fle+a)xg



680 DANIEL ALPAY, VLADIMIR BOLOTNIKOV, AND YOSSI PERETZ

Lemma 3.1. Let h and S be the functions defined by (2.3), (2.4) which belong
to H}*(1,) and FP+0*4 respectively. Then, h satisfies (1.1) if and only if S
satisfies the following interpolation conditions
(3.1) {Qf w,-c,-)S(w;) =Cj (I =1 S 5 n).
Proof. Let h satisfy (1.1). Multiplying (2.8) by a; on the left and setting into
the obtained equality z = w; we get (3.1), thanks to (1.1).

Conversely, let S satisfy (3.1). Substituting the decomposition (2.4) into
(3.1) we obtain

a;s1(w;) + wicisy(w;) = ¢;
or, equivalently,
aisi(w)(Iy —wis(w)) = (i=1,...,n)
which in view of (2.3), coincides with (1.1). D

As is well known [10], there exists S € .#P+9)*4 satisfying the interpolation
conditions (3.1) if and only if the matrix

n
K = (a,— W;icCi) (a_,' ’UJJ'CJ‘)* . C;‘C}'
N 1 - ww;

i,j=1
is nonnegative. This matrix can be rewritten in the form (1.2). Now Theorem
1.1 is an immediate consequence of Lemma 3.1.

When K > 0, the set of all functions S satisfying (3.1) is parametrized by
the linear fractional transformation

(3.2) S(z) = (611(2)a(z) + 612(2))(021(2)a(2) + 032(2)) ™"
where the resolvent matrix © = ();; is given by

(3.3)  ©(2) = Ipyag + (z = )M*(I - zW*)" 'K~V (I - W)"'MJ,
with

(3.4) W= disgwil,)Ly,  J = (Iﬂoﬂ : ) ,
“a
a. wia
(35) M= ( : ot )
Qn WnCn Cn

and the parameter o(z) varying in S#@+9%¢ (see [12], [10]).
Using the identity

(3.6) K—-WKW*=MIM*
we easily obtain that
(3.7)  8(z)J8(2)* —J = (|z> - )YM*(I — zW*)"'K~\(I - 2* W)~ M
and hence, ©(z) is J-innerin D, i.e.,
B(z)J8(z)*<J (zeD), 6(z2)JO(z)*=J (ze€T).
It follows from (2.4) that
(3.8) 51(2) = (Ip Opxq)S(2), 52(2) = (Ogxp 14)S(2).
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Substituting (3.2) into (3.8) and (3.8) into (2.3) we obtain
(3.9)

h(z) = (Ip Opxq)(611(2)0(2) + 012(2))
X ((621(2) — z(oqxp Iq)gll(z})a(z) o l‘922(2) = Z(qup Iq)BIZ(Z))‘!
= (¥11(2)a(2) + y12(2)) (W21(2)a(z) + Y (2)) !,
where
z Z
(310)  ¥(z)= (g;gzg wa;;EzD . ("OP _qu 12) 8(z).
Substituting (3.3) into (3.10) we obtain

W(z)z(% 0 0)

-zl I,
(3.11) a; a;
+(z—1)(1-zw; l—zw;)K‘[(IwW)_‘MJ
& Cr

which in view of (3.9) is an explicit formula for the resolvent matrix appearing
in Theorem 1.3. It follows from (3.10), (3.11) that w5 and w;, are rational
functions and 3, yy, are linear ones. Substituting (3.10) into (3.7) we get
(1.5) which ends the proof of Theorem 1.3.

We now suppose that K is degenerate (rankK = r < Y B =0). Let
€, ..., ¢, be vectors from the canonical basis of C! such that

(3.12) Lin{e;;, j=1,..., r}nkerK = {0}

where Lin stands for linear span and kerK = {c € C'*/: cK = 0}. Let Q be
the element of C"*! defined by

(3.13) Q=

In view of (3.12), (3.13), rank QK Q* = rankK =r, QKQ* > 0, and therefore,
the pseudoinverse matrix

(3.14) K1 = Q*(QKQ*)"'Q e ¢!¥!

is well defined. Moreover (see [1]), the set of all functions § e .P(P+a)xq
satisfying (3.1) is parametrized by the linear fractional transformation (3.2)
with the resolvent matrix

(3.15) 6(z) = Ipiag + (z = )M* (I — zW*) " K0T — W)~ (g
with W, J, M, and KI=!! defined by (3.4), (3.5), (3.14), and parameter a(z)
of the form '

(L 0
(3.16) o(z)—U(O &(z))V
with fixed unitary matrices U € C?+9)x(7+9) | ¥ ¢ C9¢ depending only on the
interpolation data and

(3.17) g = rank P g (I — W)~' M
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(Perx Stands for the orthogonal projection onto the subspace kerK), and 6(z)
varying in the Schur class FWP+a-1x(@-#)
Remark 3.2. Tt follows from the identity (3.6) that
(I-w\EUM M (1 - w*)!

=(I-W)'KI-W)'—((I-W)'=DK(I-W*)"1-1)

=(I-W)'K+K(I-w*)"1-K
which implies

Pecr k(I = W) 'MIM*(I = W)*) 1 Perx = 0.
Therefore the subspace & = Ran(Pyerx(I — W)~ 'M) is J-neutral in C!*(?+29)
and so (see [6]) (3.17) implies
dim& =rank B, x(I - W) 'M=u<gq.

Substituting (3.15) into (3.10) we obtain the following analogue of Theorem
1.5

Theorem 3.3. Let the matrix K defined by (1.2) be nonnegative, rankK =
r; and let Q be the matrix defined by (3.12), (3.13). Then the set of all the
solutions of the problem Int(HY*?(1,)) is parametrized by the linear fractional
transformation (1.3) with the resolvent matrix

I 0 0
= (Op -zl Iq)

+(z-1) ( [—zuw; - zw; ) KN —w)-'MJ
c'l“ C;

(with M, J, W, and KI=1 given by (3.4), (3.5), (3.14)) and the parameter
o(z) of the form (3.16).

4. A GENERAL INTERPOLATION PROBLEM

The referee suggested an alternative way to solve the interpolation problem
Int(H™“(1,)) , using extensions of operators. This leads us to a problem de-
scribed here. We first recall the following result: if K(z, w) is a C?*P-valued
nonnegative function on a set Q, there exists a (uniquely defined) Hilbert space
H(K) with reproducing kernel K, i.e., such that:

1. For every w € Q and ¢ € C?, the function z — K(z, w)c belongs to
H(K).

2. For every w and c¢ as above and x € H(X),

(x, K(' 5 'w)c)y(g) = c*x(w).

We refer to [5], [20] and [26] for further information on these spaces.

The left-sided interpolation problems (with conditions (1.1)) in Schur classes
and in the classes HS *?(I,) are particular cases of the following problem: Given
two functions K,(z,w) and K,(z,w), nonnegative for z, w in a set Q and
respectively CP*P- and C9*9-valued, find all functions f: Q — CP*9 such that
(1) the interpolation conditions (1.1) hold, and (2) the operator of multiplication
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by f is a contraction from H(K;) into H(K;). We will call this problem
I(K,, K5).

The Schur case correspondsto Q=D and K (z, w) = 1—_";10— and K3(z, w)
= T_—I’zw— while the case considered in this paper corresponds to Q = D and
Ki(z, w) = =2— and K,(z, w) = I,. Following the proof of Theorem 2.1
it is not difficult to prove that the multiplication by f is a contraction from
H(K,) into H(K;) if and only if the function

Ki(z, w) - f(2)Ka(z, w) f(w)*

is nonnegative in Q. Hence a necessary condition for the interpolation problem
I(K;, K3) to have a solution is that the block matrix

K = (a;K1(w;, wj)aj — c;Kr(w;, wj)cj)}
is nonnegative.

This condition is in general not sufficient. Indeed there may be no nonzero
functions f for which multiplication by f sends H(K;) into H(K;). For
instance, take p = ¢ = 1 and Kj(z,w) = 1 and K»(z,w) = =L—. On
the other hand, in this case, the choice 2 =1,c=1,and w =0 leads to a
nonnegative (1 x 1) matrix K.

Let us suppose that the matrix K is nonnegative, and let us consider the
span S of the columns of the functions z — K;(z, w;)a! . Define an operator
T by

T(Ky(-, wi)aje) = K(-, w;)cie
where e spans C"'. From the positivity of the matrix K follows that 7 is a
well-defined contraction.

Theorem 4.1. Let us assume that for every point of interpolation w;, the matrix
K> (w;, w;) is strictly positive. Let f be a solution of the interpolation problem
I(Ky, K3). Then, M} is a contractive extension of T . Conversely, let T, be an
extension of T and suppose that T, is of the form T, = M; for some function
f. Then, f is a solution to I(K,, K;).

Proof. It is readily checked that, for ¢ € C?,
M}Kl (' 3 w)C = KZ(': w)f(w}*c

Hence M 7 is an extension of 7', contractive since M, is assumed contractive.
Conversely, let 7T, be an extension of T of the assumed form. Then, since

T.=M;,
(TeK (-, wi)ajc, Ky(-, w)d)pky) = (Ki(+, wiajc, f(-)Ka(-, w)d)ux,)
=d*Ks(w, w;) f(w;)*afc,
where w € Q, ce€ C", d € C?. On the other hand, since 7, extends T,
(TeKi (-, wi)aic, Ka(-, w)d)ay) = (Ka(+, wi)cie, Ka(-, w)d)ux,)
=d"Ky(w, w;)cjc.

Comparing these two expressions and taking into account that Kj(w;, w;) >0,
we obtain that f satisfies the interpolation conditions (1.1). O
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The set of all contractive extensions of 7' can be parametrized (see [17]).
In general, it seems difficult to decide whether there are extensions of the form
M} to the operator T . For the special case considered in the previous sections,
as remarked by the referee, all extensions of 7 are of the form M; . For a
related problem we refer to [13].

5. THE NONPOSITIVE CASE

The approach presented in this paper suggests extensions to the nonposi-
tive framework. To be more precise, let us first recall that a CP*P-valued
function K(z, w) defined on Q x Q has k negative squares if and only if
K(z,w)* = K(w, z)* and if furthermore, for every choice of integer m, of
points wy, ..., W, € Q and vectors &, ..., &, € CP, the m x m Hermitian
matrix with ij entry &K (w;, w;)¢; has at most x strictly negative eigenval-
ues and exactly x such eigenvalues for some choice of m, wy, ..., Wn, &,
.+, &m 3 see [14]. The Schur classes #7*¢ have been extended by M. G. Krein
and H. Langer to classes .%7*? by the requirements that S is meromorphic in
D and that the kernel 2=2@5W) hag k¢ pegative squares for z, w in the do-
main of holomorphy of S. An element in .%”>*? can be writtenas S = SgB~!,
where Sy € .#7%¢ and where B is a g x g Blaschke product of degree . In
particular, elements of these extended Schur classes are of bounded type in D.

Definition 5.1. The (p x ¢)-valued function f meromorphic in D is said to be
in HJ’J if it is of bounded type and the kernel (2.1) has k negative squares
in the domain of analyticity of f in D.

The hypothesis that f is of bounded type cannot be dispensed with; the fact
that the kernel (2.1) has a finite number of negative squares does not imply that
S is of bounded type, as is seen by taking p = ¢ = 1 and any function f
analytic in D. but not of bounded type. The kernel (2.1) has then one negative
square (if it was positive, f would be in H;). The representation theorem,
Theorem 2.2, extends to the classes Hj’. In the representation (2.3), S has
now x negative squares, and in the proof, one needs the analogue of the result
of Leech and Rosenblum when the kernel (2.6) has now a finite number of
negative squares: such an analogue was proved in [3, Theorem 4.6]. Thus:

Theorem 5.2. Let f be a CP*9-valued function of bounded type in D. Then the
kernel K; has x negative squares if and only if f(z) = s,(z)(I, — zsy(z))~"

where
S(Z) - (Sl(Z)) Ex(p'l'q}xf?l-

52(z)
Thus,
f(2) = 510(2)(B(2) — z530(2)) ™"

where S = SoB~!, with Sy = (;;:) € FWwt0xa gnd B is a C?>9-valued
Blaschke product of degree « .

One can then study the tangential interpolation problem considered in §3 in
the classes Hffxq, by reducing the problem to an interpolation problem in the
class AP*9*9 and resorting to the results of Ball and Helton [8].
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