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I. INTRODUCTION

Exposure to-tensors in physics on an undergraduate level
is primarily in the context of mechanics—a theoretical (ie.,
no labs) treatment of the inertia tensor. Tensor properties of
anisotropic materials are usually considered an advanced
topic—both theoretically and experimentally. In presenting
material properties, the focus is on isotropic properties, and
.only in passing is mention made that, for anisotropic mate-
rials, the electrical and thermal properties—permittivities,
‘susceptibilities, conductivities, resistivities—are second rank
symmetric tensors under a rotation of the coordinate axes.

Our aim here is to show that tensor properties can in fact

be examined on an introductory. level in the lab. The usual
difficulties in working with anisotropic  crystals—
accessibility, cutting, polishing, cost—are overcome by us-
ing dry, straight-layer wood' (pine or cedar), a low-cost, ac-
cessible, easy-to-use anisotropic dielectric material. A further
advantage of wood is its uniaxial symmetry. This consider-
ably simplifies the technical analysis yet manifests the essen-
tial tensorial features of anisotropic crystal physics.

Dielectric permittivities and electrical resistivities of wood
can be readily measured and analyzed in tensor terms. Our
experiments make possible a “‘hands-on’’ approach that fa-
cilitates understanding tensor behavior. It should be empha-
sized that our primary purpose is not a detailed examination
and analysis of the dielectric properties of wood but rather a
broad outline of a new approach toward learning about ten-
sor-properties. Hence we expect that the experimental tech-
niques and analysis given here can be refined and expanded.

IIl. QUALITATIVE DEMONSTRATION

A calcite crystal suspended in a homogeneous electric
field turns to align its optic axis with the field direction. The
trouble with this demonstration is that it is not convincing
that the anisotropic crystal structure is behind the effect. An
isotropic glass rod suspended in a homogeneous electric field
also rotates to-align the 168 axis with the field direction.

What is needed is a spherically shaped anisotropic mate-
rial with the appropriate dielectric properties. Dry, straight-
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layer wood suits this purpose well. Wood behave
cally like a uniaxial crystal with infinite Symimetry
optic axis (the wood fiber axis). The crystal sym
is: /m-m. S
Suspend a wood ball (diameter 7.5 cm: fiber
dicular to the line of suspension) between two pat
plates charged to a high relative potential by
machine or other electrostatic generator. The ball
align the fiber axis with the electric field directio
the polarization properties of the anisotropic die
crucial. One can expect that, for wood, the diel
tivity or equivalently, the dielectric susceptibility
scalar constant but depends on the direction in

HI. DIELECTRIC PERMITTIVITY

We now examine how the dielectric permittivit
depends on the relative orientation of the wood f
and the direction of an applied electric field, :

Make a condenser from two semi-cylinder metal
cutting in two (along a diameter) a metal cylinder {{
cm, diameter 8 cm). The cylindrical ‘cavity can be
filled with an isotropic dielectric such as a paraf
or with an anisotropic dielectric such as a W0k
whose axis is perpendicular to the fiber direction. "

The dielectric permittivity of air is well-appro;
the vacuum permittivity

€0=8.85%X10"12 F/m. |
The relative permittivity (or dielectric coefficient) §
is known to be .
EP flfﬁ =2.26.

The permittivity of wood can be found from a
pacitance measurements. The overall measured ¢z
C with a general dielectric of permittivity € in

is given by

C=(§f€U)C’+CO,

where C' is the unknown condenser capacitancs &
the unknown background capacitance. :
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é A wood cylinder between semi-cylinder condenser plates. The angle
;c:hes the wood fiber orientation.

fith just air in the condenser,
C(ain)~C'" +Cq. (4)

the paraffin cylinder, the capacitance is
§C(paraffin) = (¢,/€,)C’ +Cy- 6)]

§nce the value of (€,/€p) is known, measuring C(air)
;C(parafﬁn) allows the determination of Cy and C'.
y for a wood cylinder whose fibers are oriented at an

¢ with respect fo the plane bisecting the semi-
iders——as shown in Fig. 1, the capacitance is

C(wood) = (e(¢)/€))C’ + Cy. (6)

hat measuring the capacitance C(wood) for a given
¢ ¢ yields the relative permittivity (&(¢)/e,).

is strategy is simple but implementing it requires mea-
g capacitances to a resolution of tenths of picofarads.
ineed for this scale of measurement can be seen from the
Bcitance of a dielectric cube of permittivity e

': X cube face area/cube edge length. )

j’:_a cube with 3-cm edges, this capacitance becomes
155) (¢/ <)) pF. :

ere are costly, off-the-shelf, capacitance meters with pi-
_d resolution. But a straightforward and cost-effective

P

mative is to build your own device based on keeping '

stant the frequency in an LC resonant circuit which in-
fés the unknown capacitance and a calibrated variable
jcitor. The construction of a low=cost (under $100),
PF resolution, capacitance meter is detailed in Ref. 2. We
pied this design to build a meter with an operating fre-
ey of 10 kHz and with a scale from 0.1 to 10 pF.

fhe dielectric coefficient (e/¢€y) of our wood cylinder for
pral values of the angle o are listed in Table 1. The wood

; . The relative permittivity of a wood cyhndcr fur several values.of
;_!" e @ of Fig. 1.

i (@) €
F 0o 180° T 275
f 30°, 150° 2.67
E60°, 120° 2.40

90° : 2:18
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" Fig. 2. A wood cube between parallel condenser platei surrounded by metal

shielding.

permittivity is clearly direction dependent. But the electric
field between the semi-cylinder plates is not homogeneous.
This complicates analyzing these results in tensor terms.

To overcome this problem, the preceding experiment is
easily modified so that the condenser is a set of parallel metal
plates: (6 cm by 6 cm). Between the plates are put a series of
wood cubes (4 cm on edge) whose fiber axis makes an angle
6=0°, 30°, 60°, 90° with respect to one of the cube faces.
The cubes should be cut close together from the same block
of wood since the dielectric properties are sample dependent
due to the natural inhomogeneity of wood. The entire system
is shielded by metal, as shown in Fig. 2.

Using a capacitance meter with a tenth of a picofarad reso*
lution, we determined the wood permittivity &(6) for various
values of the angle @ between the applied homogeneous elec-
tric field E (perpendicular to the condenser plates) and the
wood fiber axis f. See Fig. 3. The data are shown in Table IL

Now we relate (6) to the d1elecu-1c permittivity tensor

€;,a second-rank symmetric tensor® associated with the pair
of linearly related vectors—the applied electric field intensity
E, and the electric displacement D. Specify the coordinate
axes by orthogonal unit vectors 1, 2, 3. Vectors can be de-
composed into components along these coordinate axes:

. E=E\1+E;2+E3=(Ey E, Ey), ®

Fig, 3. The wood fiber direction f (parallel to the 3 axis) makes an angle 6
with respect to the: homogeneous electric field mmnsny E between pa.tallel
.condenser plates.
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angle § with the applied, homogeneous electric field.

(2} €(6)/ g
0°, 180° 2.96
30°, 150° 2.75
60°, 120° 252
90° 2.25

D=D;1+D;2+D33=(D,D,,Ds).

For isotropic materials the
fixed by

D=¢E;

permittivity ‘€ is a scalar quantity

©)
but for anisotropic materials D and E are not necessarily
parallel and are related via the permittivity tensor e;; :

D=3 e,E;, ij=123,

where the summation runs from 1 to 3.

Under an orthogonal transformation of the coordinate axes
(say, 1, 2, 3, rotates to 1/, 2/, 3',) the “‘new"’ position coor-
dinates (i.e., in the rotated system) r1s r3, r4 are related to

the *‘old™ position coordinates (i.e., in the unrotated system)
T1s T35 T3 by

(10)

rl’=2ja--r-

JE T
ifTjs Ay=Lc),

i5j=1,2,3, (11)
where the a,; are the direction cosines of the new axes rela-
tive to the old axes. This transformation applies to the first-
rank tensor quantities E and D.

The permittivity tensor in the new coordinate system e{j is

'~ related to the permittivity tensor in the old coordinate system
E,‘j by

Ei}zzkzraskﬂﬂfus L,j.k,0=123. (12)

This transformation defines the permittivity as a second-rank
tensor, : ;
There can be found a particular set of coordinate axes—
the principal axes—where a symmetric second-rank tensor
has only diagonal components. In the principal system, the
permittivity tensor becomes.

Gijzeiﬁ f.,j=1,2,3,

ijs (1 3)
where a principal permittivity €; is measured in the direction
of the principal axis i along which the electric field has been
applied. The permittivity tensor for other choices of coordi-
nate axes is then fixed by the transformation (12). In other
words, given the principal permittivities, the permittivity for
an arbitrary direction in the substance can be calculated,
Consider an arbitrary unit vector :

n=cos 6;1+cos 6,2+cos 6,3, (14)
where the cos 6=i-n are the direction cosines of n. Apply-
ing E in the direction n,

E=En, E=|E|. _ (15)

The magnitude of the permittivity in the n direction, €n], is
just the component of D¥YE along n:

E[DJZD'IL{E:EjEjEijj COos GI.J'E

=32 €, cos ; cos 6;.

(16)
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Table II. The relative permittivity of wood cubes whose fiber axis makes an

e{G)/eo

i i

0 0.5 e |

cosz(e)

Fig. 4. Wood relative permittivity as a function of cos? S.tug}:{ﬂ
“least-squares™” linear fit. Experimental values are shown as dots?

This result also follows directly from the tensor
- tion law (12). Suppose the new coordinate axes are:

that 3’ is along n. Then for the electric field alog :
permittivity along 3’ is

E[n]-__fI;E:EizjaBiaijfj
22,}:}@1)@:,!)63;
=E,2j COs Ef COs GJ.E

as in Eq. (16). :
For the principal system, the permittivity in the
simplifies to
E[ﬂ] == E;‘(COS 9;:.)265 ;

A further simplification follows for a uniaxial sy$i
Symmetry axis is a principal axis (say it is the 3
W0 remaining principal axes 1, 2 can be chosen.
orthogonal unit vectors in the plane perpendici
Since, for wood, there is c-fold symmetry about.
vious that the permittivity perpendicular to' the
axis is the same in any direction. Thus :

€&=€(6=0°), €;=€=¢(6=90).
When the electric field E is directed along a principal
the wood, the displacement field D is parallel to R
permittivity along the fiber direction is different
perpendicular to the fibers. :
For the configuration of Fig. 3, the electric field

E=(0,E cos(90°— 0),E cos 8),
so that by Egs. (18) and (19)

€(0)= €, cos?(90° — 6)+ €, cos® @,

€(6)=¢€(90°)sin? 6+ €(0°)cos? .
This simple result can also be ““guessed directly.’”
mittivity transforms as a second-rank symmetri
&(6) is expected to be a second-order polynomial
formation direction cosines. Because of the un

try, the polynomial can be built only from cos 8
—0). The physical requirement that &(6) must-be
gives the result of Eq. (21). _ : :
Figure 4 shows the measured wood dielectric coel
€(0)/ €, as a function of cos” 6 together with 4 lead
linear fit consistent with Eq. (21).

i
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g'l"{'he wood permittivity ellipse of Eq. (23) where the semi-major axis
femi-minor axis are fixed by the linear fit of Fig. 4. The radial length at
ole fis 1/ €( 8)/€o}*. Experimental values are shown as dots.

-:‘jgeometrical representation® for second-rank tensor
ferties can be applied to the wood permittivity by intro-
jng into Eq. (21) the variables

b=cos 0/ e(6)/ 5], n=sin 0/[e(B)/ €] (22)
_'s_ult is an ellipse equation—the permittivity ellipse—

7102+ Y Ib =1 (23)

b semi-major axis, a= 1/[€(90°)/€y]"%, and semi-minor

ih=1/[(0°)/ €,]". The radius distance d(6) from the
e center to a point on the ellipse making an angle 6 with
et to the 7 axis is just

()= (v*+ 7)) ?=1(6)/ ] ™. (24)

Jie relative permittivity at an angle 6 with respect to the
Eaxis is related to the inverse square of the radius of the
piltivity ellipse at an angle 6 with respect to the y axis.
e 5 converts the €(6)/ €, curve of Fig. 4 to the permit-
Iy ellipse of Eq. (23).

¢ Appendix discusses an entirely different way of find-
fihe principal dielectric permittivities of wood based on
s natural birefringence at microwave frequencies.

Fig. 6. Thin wood block between parallel metal plates.
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Table III. The electrical resistivity of wood cubes whose fiber axis makes an
angle # with the applied, homogeneous electric field.

6 ' p(8) (10°  m)
0°, 180° ' 1.0
30°, 150° \ 1.3
60°, 120° = 32
90° 35

IV. ELECTRICAL CONDUCTIVITY/RESISTIVITY

For isotropic materials obeying Ohm’s law,
j=0oE, (25)

where E=(E,,E,,E;) is the applied electric field vector, j
=(j,ja,j3) is the resulting current density vector (the cur-
rent [ per unit cross section A perpendicular to the current),
and o is the electrical conductivity. This may be inverted to

E=pj, (26)
where p is the electrical resistivity.
For anisotropic crystals, the electrical conductivity is a

second-rank symmetric tensor o;; associated with vectors E
and j:

p=1llo,

jfzzkﬂmEk, fz1,2,3. (27)
Alternatively,
Ei=3pirik (28)

where p;, is the electrical resistivity tensor.

The experimental examination of the conductivity tensor
is not common, as W. A. Wooster’ has pointed out: **Electric
conductivity is likewise a second-order tensor but consider-
ation of it is omitted from this book because of the difficulty
of obtaining suitable crystals in which the electric.conductiv-
ity can be measured.”” But there is no such difficulty in the
case of wood.

Our samples are thin wood blocks with smooth faces (4.5
cm by 4.5 cm and thickness r= 6 mm). The fiber axis orien-
tation makes an angle #=0°, 30°, 60°, 90° with respect to
the direction perpendicular to the square faces. Each block is
sandwiched between two thin metal plates (4.5 cm by 4.5
cm) as shown in Fig. 6. The wood-metal contact can be
made uniform by coating the wood with graphite. A stable dc

p(e) [ o° ohm-meter]

Fig. 7. Wood resistivity as a function of cos® # together with a “least
squares’’ linear fit.
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¥ [107* (ohm-meter) "]

0.2 0 0.2 0.4

n [10* (ohm-meter) 2]

Fig. 8. The wood resistivity ellipse of Eq. (33). The semi-major and semi-
minor axes are fixed by the linear fit of Fig. 7. The radial length at an angle
6 with respect to the  axis is [ 1/p(§) ]2, Experimental values are shown as
dots. ¥

voltage V is applied and the resulting current () through
the wood block is measured. For V=20V, the current was
on the scale of 107 A but higher voltages raise the current.

The resistance R(8) of a block whose fiber axis makes an

angle @ with the homogeneous electric field E between the
plates is

VII(8)=R(6)=p(0)t/A. (29)

So the resistivity p(6) can be found as a function of 6. Data
for V=400V, is shown in Table III .
The relation of p(6) to the resistivity tensor, Pix 1s analo-
gous to that of the permittivity (6) to the permittivity tensor.
In the principal system, resistivities for our uniaxial system
are
Pi= 5fkpi' ’ isk: 1‘2:3, (30)

so that if the fiber direction is along 3, the principal wood
resistivities are

p3=p(0°),

P1=Pp2=p(90°). (31)

As in Eq. (21), the angular dependence of the resistivity is
fixed by second-rank tensor behavior under uniaxial sym-

metry:
p(6)=p(90°)sin* 6+ p(0°)cos? . (32)

Figure 7 shows the wood resistivity data as a function of
cos” @ together with a *‘least-squares’* linear fit. The corre-
sponding resistivity ellipse,

p(90°) 7*+ p(0°) y*=1, (33)
is shown in Fig. 8.
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APPENDIX

There is another method that can be used to deter i
principal permittivities of wood, but its theoretical b 1S
on an advariced application of electromagnetic theo;
be shown® that Maxwell’s equations for anisotrop
(i.e., where the permittivity is a second-rank tensor}.
direction-dependent electromagnetic wave speed in
dium. Hence, the refractive index in the medium
anisotropic. For any direction in a naturally bire
dium, the refractive index can be summarized
indicatrix—the ellipsoid:

xzfn%+y21ng+zzf"n§= 1,

where x, y, z are directed along the principal ‘ax
electric permittivity and the principal refractive indic
ny, nj are related to the principal permittivities €
by

\v1/2
Hf:(fillfo)”-.

Although the refractive index is not a tensor, it
dependence is set by the permittivity which is a
Measurement of the principal refractive indi
yields, by (A2), the principal permittivities.
For the case of uniaxial symmetry in the ; direct
indicatrix is an ellipsoid of revolution about. the
axis and

ny=n;=n,=ordinary refractive index,

n3=n,=extraordinary refractive index.

In Ref. 1, we outlined a Young’s apparatus meths
microwaves for measuring the refractive index o
various directions relative to the fiber axis. This
can be used to find 7, and n, for wood and hence
indicatrix. The extraordinary index of refraction or
angles with respect to the symmetry axis can then.
lated from the indicatrix and compared with the:
value. ke

The principal dielectric permittivities for w
found from n, and n.. But since permittivity is.
dependent, the permittivities at 10-GHz microwa¥
cies are not identical to those found by the capa
surements at 10 kHz. -
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"The anisotropy of wood was used to examine natural birefrin,
S. Perkalskis and J. R. Freeman, *‘Demonstrating crystal opti
crowaves on wood targets,” Am. J. Phys. 63 (8), 762~764/(t
’E. Viadkov, *‘C-meter Resolves to 0.1 pE,”" Electronics
August 1996), pp. 552-556.

*An excellent introduction to tensors for crystal physics is;

cal Properties of Crystals (Oxford U.P., Oxford, 1976), Chap
“Reference 3, p. 26.

W. A. Wooster, Experimental Crystal Physics (Clarendon, Oxd
p- 48. :
SReference 3, Appendix H.
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