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Understanding tensors can be facilitated by the examina-
tion of tensor properties in the lab. In Refs. 1 and 2 we
outlined some experiments for upper-division physics majors
on electrical and optical properties related to second-order
tensors. Here we show how to examine tensor behavior in a
thermal physics context, heat flow in a plate. The observed
isotherm boundary is compared to the requirements of the
second-order thermal resistivity tensor.

We use a much-simplified version of Senarmont’s
method® to study heat flow from a “‘point’” in a plane. A
uniform (~0.5-mm) layer of paraffin is deposited on a plate
(at least 5 mm thickness) with a small conical or cylindrical
hole (diameter less than 1 cm). Heat is transferred to the
plate from a metal cone or cylinder wedged into the hole and
whose temperature (at least 100 °C) is maintained by a heat
source. Paraffin melts and becomes transparent between 50
and 60 °C. Thus, depending on the temperature gradient that
develops in the plate, a transparent region § grows about the
hole. The boundary of § is an isotherm—circular, if the heat
flow is isotropic and noncircular if the heat flow is aniso-
tropic.

A soldering iron inserted snugly into the hole is a conve-
nient heat source. The iron is kept in the hole until the ex-
panding transparent region S has grown to centimeter dimen-
sions. This takes less than a minute. Convection drives some
of the liquid paraffin outward and there is also some leakage

Fig. 1. Elliptical boundary of melted paraffin on a pine wood plate.
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into the hole. As a result, the melted region and its boundary
remain clearly distinguishable even after the heat source is
removed.

Start with. an isotropic material—a fiberglass or aluminum
plate—for which circular isotherms are naturally expected.
Next use straight-layer wood cut with the fiber direction per-
pendicular to the plate face. Here the heat flow in the plate
face is also circularly symmetric.

To examine a thermally anisotropic system, it is conve-
nient to use straight-layer wood with the fiber direction cut
parallel to the plate face. The heat source should be in an
area where the fibers are parallel and more-or-less evenly
spaced. Heat flows much faster along the fiber direction than
perpendicular to it. The characteristic elliptical isotherm
boundary is shown in Fig. 1 for a 2-cm pine wood plate with
a conical hole. Thinner (0.5- to 1-cm) plates with cylindrical
holes are adequate. But, if the soldering iron is not kept
vertical relative to the plate face or the iron-wood contact is
not uniform, there may result some distortion from an ellip-
tical boundary centered about the heat source.

To analyze the isotherm in tensor terms, consider first the
general heat flow equations.* The rate of heat flow (energy
per unit time per unit area perpendicular to the flow) h and
the temperature 7 are related to the thermal resistivity tensor

pi; by

Table I. Radius (to the nearest half-mm) of the isotherm boundary at various
angles with respect to the fiber direction. The measured values for
r3(0°)/r*(#) are shown along with the values calculated from Eq. (11).

Measured Calculated
/] cos® @ r(8) (mm) r*(0°)/r*(8) cos® B+sin® Hr(0°)/r3(90°)

07, 180° 1 14.0 1 1
30°, 2100 0.75 11.5 1.5 1.5
45°,225°  0.50 10.0 2 2
60°, 240°  0.25 9.0 24 25
90°,270° 0 8.0 31 input 3.1
120°, 300° 0.25 9.0 24 2.5
1359, 315 950 10.0 2 2
150°, 330°  0.75 11.5 kA 1.5
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[(0°)/2(8)]

Fig. 2. The fiber-angle dependence of the isotherm boundary—
r(0°)/r*(6) vs cos? 8 according to Eq. (11) with 72(0°)/r%(90°)=3.1.
Measured values are shown as dots. '

~(3T/or)=2 pyh;, ij=123, 1)
J

where 7y, ry, r3 are the components of the position vector r
along the orthogonal unit vectors 1, 2, 3 and the heat flow
rate has components

h=h 1+ hy2+ hy3. (2)

The resistivity units are [m s °C/J].
When referred to its principal axes, the symmetrical,
second-rank tensor p;; becomes diagonal:

pfj=pi51'j" i,j=l,2,3, (3)

where the p; are the principal thermal resistivities.

For heat flow from a point source, the isothermal surfaces
are similar in shape and orientation to the thermal resistivity
ellipsoid:

piri+pari+psri=1. )

In the case of heat flow from a point through a wood plate (in
the 2-3 plane) whose fiber direction is parallel to the 3 axis,
the isotherms are given by the resistivity ellipse

pars+psri=1. (5)

The thermal resistivity p(6) in a direction making an angle
¢ with respect to the wood fiber direction is fixed by the
second-order tensor behavior under uniaxial symmetry: '

p(8)=p(0°)cos® 6+ p(90°)sin® 6, (6)
where
p(0°)=ps, p(90°)=p,=p,. )

Introducing the polar coordinates
r3=rcos 6, ry=r sin 6, (8)

the isotherm equation (5) becomes

r’[p, sin® 6+ p; cos 6]=1, (9)
so that
r*=1/p(8). (10)

Hence, Eq. (6) becomes
r2(0°)/r2(8)=(1—r*(0°)/r%(90°))cos? @
+72(0°)/r3(90°). (11)

The isotherm radii along the principal axes r(0°), r(90°)
determine the radius r(#) at any other angle 6, because the
shape of the isotherm ellipse is determined by the semi-
major and semi-minor radii.

Table I lists the measured isotherm radii for a series of
angles together with the measured and calculated values of
r2(0°)/r*(6). Figure 2 shows the observed values of
r2(0°)/r*(6) as a function of cos® 6 and the straight-line
prediction of Eq. (11) with r%(0°)/r%(90°) =3.1.
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I. INTRODUCTION

One of the challenging exercises in introductory physics
courses is the concept of constructive and destructive inter-
ference of light rays and thus production of bright and dark
fringes. These concepts are usually demonstrated in the Iabo-
ratory environment by laser beam diffraction or a Michelson'
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interferometer. The results of these experiments are two-
dimensional light intensity distributions in the plane trans-
verse to the direction of propagation of the beams. Outside
the laboratory the printed images of the fringes are usually
accompanied by intensity distribution curves which are not
sufficiently intuitive to most students.’

In this article we introduce a simple method to display

© 1999 American Association of Physics Teachers 453



