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A general rule for the stability of plane reflecting surface systems is derived using the features
of the reflection matrix. It is proven that only two directions can be stable: the forward
direction and the backward direction (retro-reflection). Examples for the application of this

rule in the design of stable reflecting systems for optical communication are given.



Many indoor and outdoor optical systems incorporate reflecting devices for
folding the optical axis, for scanning, or for aligning the transmitted beam in optical
communication systems toward the receiver. It is essential for such reflecting devices
to be optically stable in order to ensure that the entering beam of light exits from the
system in the desired direction. The definition of an optically stable reflector is that for
a given direction of an incoming beam of light, the reflecting device reflects the light in
a fixed direction independent of reflector rotation (as long as the beam can enter the
reflector aperture).' Such reflectors are sometimes called constant-deviation systems
[1].

The most familiar optically stable devices are corner cube reflectors, which
reflect light at an angle of 180°. These retroreflectors are comprised of three mutually
perpendicular reflecting ;urfaces - either plane mirrors or the surfaces of a tetrahedron
cut from the corner of a glass cube [2,3], and they have been recognized for over half a
century [4]. Several authors have studied the optical stability of corner cubes with
dihedral angles a little different from 90° [5-7]. Skop et al. [8] found out that a
combination of a roof prism and a right angle prism is nearly stable for reflection angles
near 180°. Beggs [9] used the reflection matrix to study the stability of a system of
mirrors under displacement.

Several questions are left open. Is it possible to obtain optically stable systems
for angles not equal to 180°? If the answer is positive, what are the configurations of
such systems? For example, is it possible to design an optically stable device for
reflecting a laser beam at an angle of 40° in order to integrate it into an optical
communication system, and what is the desired configuration? Are there correct and

incorrect ways to construct a system of plane mirrors for folding the optical axis of a



light ray? It generally seems that textbooks and publications have not dealt with these

questions.

We will use the features of the reflection matrix in order to investigate the
possible stable directions of reflection and to find the configurations of optically stable
reflecting systems. First we choose a coordinate system in space. The direction of a ray
is now expressed by a unit vector r. The reflection matrix of a plane surface transforms
the direction of an incoming ray into the direction of the outgoing ray. For a system of
mirrors, an incoming ray undergoes several reflections. Thus, we may introduce a
reflection matrix A of the system which is the product of thé reflection matrices of
each mirror from which this incoming ray was reflected in the same order as the ray
was reflected. We will call herg a ray “an incoming ray” if it undergoes the same
sequence of reflections. The matrix will transform the direction r of an incoming ray

into the direction Ar of the exit ray.

Since the reflection matrix 4 is a 3x3 orthogonal matrix with real coeﬁi.cients, at
least one of the eigenvalues of this matrix is real and equal to 1 for an even number of
reflections or -1 for an odd number of reflections [10]. This means that there is a
direction 7y for which Ary=ry so the exit ray has the same direction as the incoming
one in the above first case, or Arg=- 7, and the exit ray will have the opposite direction
in the above second case. Note that 7, may be or may not be a direction of an incoming

ray.

Consider first the case Ary =- ro In this case the following holds:



Proposition For any system of plane mirrors with an odd number of reflections there -
is always a plane P (containing the origin) such that the sum » +4r of the direction r

of any incoming ray and the direction 4r of the corresponding exit ray is always

parallel to P.

Proof

As mentioned above, for a given system there is a direction 7, for which Are=-ry.

Let r be an arbitrary incoming direction. From the orthogonality of A4 it follows that:
(rtAr) “ro = r roHdr) to=r 1y -(AD)Aro)=r ‘ry-r 1y =0,

where the dot sign denotes the scalar product. Thus, for any r the vector r+Ar must be

perpendicular to ro. If P is the plane perpendicular to o, then r+Ar is parallel to P.

Q.ED.

Note that even though the plane P of the Proposition was constructed with the
| help of the matrix 4 which is dependent on the choice of the coordinate system, this
plane depends only on the optical system and is coordinate free. Moreover, this plane
could always be determined without knowing the internal structure of an optical
system (black box). To determine P, send a ray into the optical system and check the
exit direction. Add the direction of the incoming ray to the direction of the outgoing
ray. The direction of this sum is the bisector between the two directions and is
coordinate free. This gives you one direction parallel to the plane. To obtain the
second direction parallel to the plane repeat the process with another incoming ray that
is close but not parallel to the first one. Two independent directions determine the

plane P uniquely up till translations.



Let r and P be as above in the Proposition. If r+4r is a non-zero vector, then there
is a rotation R such that after performing this rotation on the optical system, the
direction r will still be an incoming direction and the vector r+Ar will not be parallel to
the rotated plane RP. For an unstable system the exit direction is changed in such a -
way that its sum with the incoming direction is parallel to RP. But if the system is
stable, the direction A4r is still the exit direction for 7 and by the Proposition the vector
r+Ar must be parallel to RP. This contradiction shows that the assumption that r+4r is
not zero was wrong anﬁ implies that Ar=-r. Thus, a stable system with an odd number

of reflections is retroreflecting any incoming direction.

For a system with an even number of reflections, Ary=r,, the proof is the same but
r+Ar has to be replaced by r-4r. In this case the stable system will preserve all the
incoming directions. Hence a system cannot be stable under rotation and

simultaneously have incoming and exiting rays non-parallel.

Note that the Proposition can also be used to check whether the number of reflections
in an optical system is odd or even. To do this determine first two planes P; and P, as
described above, which are parallel to the sum or to the difference of the incoming and
exit rays correspondingly. Now send a new incoming ray and check whether the sum
of the incoming and the exit directions is parallel to P;. If yes, the number of reflections
is odd. If not, check if the difference of the incoming and the exit directions is parallel
to P, If yes, the number of reflections is even. If not, it means that the ray sent does
not hit the mirrors in the required order and is not an incoming ray according to our
definition.

The above results show that there exist only two types of optically stable plane
mirror systems - direction preserving or retroreflecting. Aside from the theoretical
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significance, these conclusions hold an important practical impact, as shown in the
following. Any combination of plane mirrors which deviate light rays at an angle not -
equal to 180° or 0° can not be optically stable. Thus, such systems should be avoided
if possible in optical communication systems. A laser beam sent from earth to g
satellite (or to the moon) carrying retroreflecting devices will be retroreflected toward
the transmitter with great precision, even after the retroreflector has suffered small
mechanical defonngtions; but if the beam is to be reflected tow;strd another point on
earth, such deformation will destroy the communication System. There is no optical
solution here only a mechanical one: the mechanical support of the reflector must be
designed very carefully.

In optical devices designed to reflect light near the optimal angles - close to 0° or
180° - partial stability can be obtained [8]. By partial stability we mean that the
incoming ray suffers a relatively small angular deviation (much smaller than 2a) when
the optical device is rotated by an angle a. Recall that Plane reflecting surface
deviates an incident light ray by an angle of 2o when it is rotated by an angle o around
an axis which is perpendicular to the plane of incidence. This can be useful especially
at short distances and for large aperture receivers.

While retroreflecting devices are widely known and used, dlrectlon—presemng
reflectors have not been explicitly reported until now. Such reflectors are comprised
of two parallel plane reflecting surfaces and are stabje for an even number of
reflections. In analog to the retroreflectors which can be embodied by three
perpendicular mirrors or by a glass corner cube, the direction preserving reflectors can
be embodied either by two parallel plane mirrors or by a pair of parallel surfaces of a

rectangular glass prism.



The parallel-plane-mirror based periscope is commonly used and preferred over the
perpendicular-plane mirror based periscope, because it produces an erect image, but no
One seems to emphasize the optical stability feature of this configuration [1]. The
following experiment can be easily carried out. Let a laser beam enter the aperture of a
simple parallel-mirror periscope. Now rotate the whole system around any axis,
looking at the Projection of the exit beam on a distant screen, The point of light on the

screen will remain fixed (within experimental errors)!  This means that in order to

Lets discuss a frequent example. Fig. 1 is a scheme of an optical bypass
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perpendicular mirrors 2 and 3 into a common mechanical support. We already know
that an optically stable reflecting system either retroreflects or preserves the direction
of an incoming ray. However, if we construct a common support for the parallel pair’
of mirrors 1 and 2 and another common support for the other parallel pair of mirrors 3
and 4, the four mirror system will be optically stable. Rotating and tilting the first pair
will not change the direction of the beam, as long as it hits each of the two mirrors.
The beam will (ideally) always hit mirror 3 at the same point. Similar considerations
are true for the other pair of mirrors - 3 and 4. Thus the whole mirror system is
optically stable for any angle between mirrors 2 and 3 and in spite of the fact that we
designed separate optically stable direction preserving systems. This has much
significance, especially when the distance between mirrors 2 and 3 is large. We see
that by correctly using the rule, other optically stable multiple-mirror reflecting systems
can be constructed, even where the components of the optical systems are separate and

at a large distance from each other.
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