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Abstract. It is proved that the geometry of lightlike hypersurfaces of the de Sitter spaceSn+1
1 is

directly connected with the geometry of hypersurfaces of the conformal spaceCn. This connection is
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hypersurfaces as well as for studying singularities of lightlike hypersurfaces.

Mathematics Subject Classifications (1991):53B30, 53A30, 53B50, 53A35.

Key words: lightlike hypersurface, de Sitter space, invariant normalization, screen distribution,
singularity, affine connection.

0. Introduction

The projective model of the non-Euclidean geometry (the Cayley–Klein model)
is closely connected with models of conformal geometry and the geometry of
the de Sitter space. In fact, the hyperbolic spaceHn+1 of dimensionn + 1 – the
Lobachevsky space – admits a mapping onto internal domain of ann-dimensional
oval hyperquadricQn of a projective spaceP n+1. On this hyperquadric itself the
geometry of ann-dimensional conformal spaceCn is realized, and outside of the
hyperquadricQn the geometry of the(n + 1)-dimensional de Sitter spaceSn+1

1
is realized. Moreover, the group of projective transformations of the spaceP n+1

keeping the hyperquadricQn invariant and transferring its internal domain into
itself (this group is denoted byPO(n + 2, 1) – see [7, p. 7]) is isomorphic to the
group of motions of the Lobachevsky spaceHn+1, the conformal spaceCn, and the
de Sitter spaceSn+1

1 . It is clear that there exist deep connections among these three
geometries.

The Lobachevsky geometry is the first example of geometry which differs from
the Euclidean geometry. Numerous books and papers are devoted to the Lobachevs-
ky geometry. Conformal differential geometry was also studied in detail. In particu-
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lar, it was studied in the last authors’ book [7]. In spite of the fact that the geometry
of the de Sitter space is the simplest model of spacetime of general relativity, this
geometry was not studied thoroughly. The de Sitter space sustains the Lorentzian
metric of constant positive curvature.

In the present paper we study the geometry of the de Sitter spaceSn+1
1 using

its connection with the geometry of the conformal space. We prove that the geom-
etry of lightlike hypersurfaces of the spaceSn+1

1 , which play an important role in
general relativity (see the book [10]), is directly connected with the geometry of
hypersurfaces of the conformal spaceCn. The latter was studied in detail in the
papers of the first author (see [1–5]) and also in the book [7]. This simplifies the
study of lightlike hypersurfaces of the de Sitter spaceSn+1

1 and makes possible to
apply for their consideration the apparatus constructed in the conformal theory.

In Section 1 we study the geometry of the de Sitter space and its connection with
the geometry of the conformal space. After this we study lightlike hypersurfaces
Un in the spaceSn+1

1 , investigate their structure, and prove that such a hypersurface
is tangentially degenerate of rankr 6 n−1. Its rectilinear or plane generators form
an isotropic fiber bundle onUn.

In Sections 2–5 we investigate lightlike hypersurfacesUn of maximal rank, and
for their study we use the relationship between the geometry of such hypersurfaces
and the geometry of hypersurfaces of the conformal space. For a lightlike hyper-
surface, we construct the fundamental quadratic forms and connections determined
by a normalization of a hypersurface by means of a distribution (the screen distrib-
ution) which is complementary to the isotropic distribution. The screen distribution
plays an important role in the book [10] since it defines a connection on a lightlike
hypersurfaceUn, and it appears to be important for applications. We prove that
the screen distribution on a lightlike hypersurface can be constructed invariantly
by means of quantities from a third-order differential neighborhood, that is, such a
distribution is intrinsically connected with the geometry of a hypersurface.

In Section 5 we study singular points of a lightlike hypersurface in the de Sitter
spaceSn+1

1 , classify them, and describe the structure of hypersurfaces carrying
singular points of different types. Moreover, we establish the connection of this
classification with that of canal hypersurfaces of the conformal space.

In Section 6 we consider lightlike hypersurfaces of reduced rank. Such hyper-
surfaces carry lightlike rectilinear generators along which their tangent hyperplanes
are constant. For such hypersurfaces, again in a third-order differential neighbor-
hood, we construct an invariant screen distribution and an invariant affine con-
nection. However, the method of construction is different from that for lightlike
hypersurfaces of maximal rank, since the construction used for hypersurfaces of
maximal rank fails for hypersurfaces of reduced rank. We establish a connec-
tion of lightlike hypersurfaces of reduced rank with quadratic hyperbands of a
multidimensional projective space.

The principal method of our investigation is the method of moving frames and
exterior differential forms in the form in which it is presented in the books [6]
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and [7]. All functions considered in the paper are assumed to be real and differen-
tiable, and all manifolds are assumed to be smooth with the possible exception of
some isolated singular points and singular submanifolds.

1. The de Sitter Space

1. In a projective spaceP n+1 of dimensionn+1 we consider an oval hyperquadric
Qn. Let x be a point of the spaceP n+1 with projective coordinates(x0, x1, . . . ,

xn+1). The hyperquadricQn is determined by equations

(x, x) := gξηx
ξxη = 0, ξ, η = 0, . . . , n + 1, (1)

whose left-hand side is a quadratic form(x, x) of signature(n + 1, 1). The hyper-
quadricQn divides the spaceP n+1 into two parts, external and internal. Normalize
the quadratic form(x, x) in such a way that for the points of the external part the
inequality(x, x) > 0 holds. This external domain is a model of thede Sitter space
Sn+1

1 (see [15]). We will identify the external domain ofQn with the spaceSn+1
1 .

The hyperquadricQn is theabsoluteof the spaceSn+1
1 .

On the hyperquadricQn of the spaceP n+1 the geometry of a conformal space
Cn is realized. The bijective mappingCn ↔ Qn is called theDarboux mapping,
and the hyperquadricQn itself is called theDarboux hyperquadric.

Under the Darboux mapping to hyperspheres of the spaceCn, there correspond
cross-sections of the hyperquadricQn by hyperplanesξ . But to a hyperplaneξ
there corresponds a pointx that is polar-conjugate toξ with respect toQn and lies
outside ofQn, that is, a point of the spaceSn+1

1 . Thus, to hyperspheres of the space
Cn there correspond points of the spaceSn+1

1 .
Let x be an arbitrary point of the spaceSn+1

1 . The tangent lines from the point
x to the hyperquadricQn form a second-order coneCx with vertex at the point
x. This cone is called theisotropic cone. For spacetime whose model is the space
Sn+1

1 this cone is the light cone, and its generators are lines of propagation of light
impulses whose source coincides with the pointx.

The coneCx separates all straight lines passing through the pointx into space-
like (not having common points with the hyperquadricQn), timelike (intersecting
Qn in two different points), and lightlike (tangent toQn). The lightlike straight
lines are generators of the coneCx.

To a spacelike straight linel ⊂ Sn+1
1 there corresponds an elliptic pencil of hy-

perspheres in the conformal spaceCn. All hyperspheres of this pencil pass through
a common(n − 2)-sphereSn−2 (the center of this pencil). The sphereSn−2 is the
intersection of the hyperquadricQn and the(n − 1)-dimensional subspace of the
spaceP n+1 which is polar-conjugate to the linel with respect to the hyperquadric
Qn.

To a timelike straight linel ⊂ Sn+1
1 there corresponds a hyperbolic pencil of

hyperspheres in the spaceCn. Two arbitrary hyperspheres of this pencil do not have
common points, and the pencil contains two hyperspheres of zero radius which
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correspond to the points of intersection of the straight linel and the hyperquadric
Qn.

Finally, to a lightlike straight linel ⊂ Sn+1
1 there corresponds a parabolic pencil

of hyperspheres in the spaceCn consisting of hyperspheres tangent one to another
at a point, that is, a unique hypersphere of zero radius belonging to this pencil.

Hyperplanes of the spaceSn+1
1 are also divided into three types. Spacelike

hyperplanes do not have common points with the hyperquadricQn; a timelike
hyperplane intersectsQn along a real hypersphere; and lightlike hyperplanes are
tangent toQn. Subspaces of any dimensionr, 2 6 r 6 n−1, can be also classified
in a similar manner.

Let us apply the method of moving frames to study some questions of differen-
tial geometry of the spaceSn+1

1 . With a pointx ∈ Sn+1
1 we associate a family of

projective frames{A0, A1, . . . , An+1}. However, in order to apply formulas derived
in the book [7], we will use the notations used in it. Namely, we denote byAn the
vertex of the moving frame which coincides with the pointx, An = x; we locate
the verticesA0, Ai (i = 1, . . . , n−1), andAn+1 at the hyperplaneξ which is polar-
conjugate to the pointx with respect to the hyperquadricQn, and we assume that
the pointsA0 andAn+1 lie on the hypersphereSn−1 = Qn∩ξ , and the pointsAi are
polar-conjugate to the straight lineA0An+1 with respect toSn−1. Since(x, x) > 0,
we can normalize the pointAn by the condition(An,An) = 1. The pointsA0 and
An+1 are not polar-conjugate with respect to the hyperquadricQn. Hence, we can
normalize them by the condition(A0, An+1) = −1. As a result, the matrix of scalar
products of the frame elements has the form

(Aξ ,Aη) =


0 0 0 −1
0 gij 0 0
0 0 1 0

−1 0 0 0

 , i, j = 1, . . . , n − 1, (2)

and the quadratic form(x, x) takes the form

(x, x) = gij x
ixj + (xn)2 − 2x0xn+1. (3)

The quadratic formgij x
ixj occurring in (3) is positive definite.

The equations of infinitesimal displacement of the conformal frame{Aξ },
ξ = 0, 1, . . . , n + 1, we have constructed have the form

dAξ = ω
η

ξ Aη, ξ, η = 0, 1, . . . , n + 1, (4)

where by (2), the 1-formsωη

ξ satisfy the following Pfaffian equations:

ωn+1
0 = ω0

n+1 = 0, ω0
0 + ωn+1

n+1 = 0,

ωn+1
i = gijω

j

0, ω0
i = gijω

j

n+1,

ωn+1
n − ωn

0 = 0, ω0
n − ωn

n+1 = 0,

gijω
j
n + ωn

i = 0, ωn
n = 0,

dgij = gjkω
k
i + gikω

k
j .

(5)
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These formulas are precisely the formulas derived in the book [7] (see p. 32) for
the conformal spaceCn.

It follows from (4) that

dAn = ω0
nA0 + ωi

nAi + ωn+1
n An+1. (6)

The differential dAn belongs to the tangent spaceTx(S
n+1
1 ), and the 1-forms

ω0
n, ω

i
n, andωn+1

n form a coframe of this space. The total number of these forms is
n+1, and this number coincides with the dimension ofTx(S

n+1
1 ). The scalar square

of the differential dAn is the metric quadratic form̃g on the manifoldSn+1
1 . By (2),

this quadratic form̃g can be written as

g̃ = (dAn, dAn) = gijω
i
nω

j
n − 2ω0

nω
n+1
n .

Since the first term of this expression is a positive definite quadratic form, the
form g̃ is of Lorentzian signature(n, 1). The coefficients of the form̃g produce the
metric tensor of the spaceSn+1

1 whose matrix is obtained from the matrix (2) by
deleting thenth row and thenth column.

The quadratic form̃g defines onSn+1
1 a pseudo-Riemannian metric of signature

(n, 1). The isotropic cone defined in the spaceTx(S
n+1
1 ) by the equatioñg = 0

coincides with the coneCx that we defined earlier in the spaceSn+1
1 geometrically.

The 1-formsωη

ξ occurring in equations (4) satisfy the structure equations of the
spaceCn:

dω
η
ξ = ω

ζ
ξ ∧ ω

η
ζ , (7)

which are obtained by taking exterior derivatives of Equations (4) and which are
conditions of complete integrability of (4). The formsω

η

ξ are invariant forms of the
fundamental groupPO(n + 2, 1) of transformations of the spacesHn+1, Cn, and
Sn+1

1 which is locally isomorphic to the groupSO(n + 2, 1).
Let us write Equations (7) for the 1-formsω0

n, ω
i
n, andωn+1

n making up a coframe
of the spaceTx(S

n+1
1 ) in more detail:

dω0
n = ω0

n ∧ ω0
0 + ωi

n ∧ ω0
i ,

dωi
n = ω0

n ∧ ωi
0 + ω

j
n ∧ ωi

j + ωn+1
n ∧ ωi

n+1,

dωn+1
n = ωi

n ∧ ωn+1
i + ωn+1

n ∧ ωn+1
n+1.

(8)

The last equations can be written in the matrix form as follows:

dθ = −ω ∧ θ, (9)

whereθ = (ωu
n), u = 0, i, n + 1, is the column matrix with its values in the vector

spaceTx(S
n+1
1 ), andω = (ωu

v), u, v = 0, i, n + 1, is a square matrix of order
n + 1 with values in the Lie algebra of the group of admissible transformations of
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coframes of the spaceTx(S
n+1
1 ). The formω is the connection form of the space

Sn+1
1 . In detail this form can be written as

ω =
ω0

0 ω0
i 0

ωi
0 ω

j

i ωi
n+1

0 ωn+1
i ωn+1

n+1

 . (10)

By (5), in this matrix, only the forms in the left upper corner, which form ann ×
n-matrix, are linearly independent.

The connection form (10) allows us to find the differential equation of geodesics
in the spaceSn+1

1 . These lines coincide with straight lines of the ambient space
P n+1; more precisely, they coincide with the parts of these straight lines which lie
outside of the Darboux hyperquadricQn. We will look for their equation in the
form x = x(t), and we will impose the vertexAn of the moving frame with the
pointx, An = x(t). Write the decomposition of the tangent vector to a geodesic in
the form

dx

dt
= ξuAu, u = 0, i, n + 1.

For a geodesic, the second differential d2x/dt2 is collinear to its tangent vector
dx/dt . This implies that

dξu

dt
Au + ξvωu

vAu = αξuAu,

where the connection 1-formsωu
v composing the matrix (10) are calculated along

the curvex = x(t), andα is a new 1-form. Hence, the differential equation of
geodesics has the form

dξu

dt
+ ξvωu

v = αξu. (11)

The same Equation (11) is the equation of straight lines of the spaceP n+1.
Next we will find the curvature form and the curvature tensor of the spaceSn+1

1 .
To this end, we take exterior derivative of the connection formω, more precisely,
of its independent part. Applying Equations (7), we find the following components
of the curvature form:

�0
0 = dω0

0 − ωi
0 ∧ ω0

i = ωn+1
n ∧ ω0

n,

�i
0 = dωi

0 − ω0
0 ∧ ωi

0 − ω
j

0 ∧ ωi
j = ωn+1

n ∧ ωi
n,

�0
i = dω0

i − ω0
i ∧ ω0

0 − ω
j

i ∧ ω0
j = −gijω

j
n ∧ ω0

n,

�i
j = dωi

j − ω0
j ∧ ωi

0 − ωk
j ∧ ωi

k − ωn+1
j ∧ ωi

n+1 = −gjkω
k
n ∧ ωi

n.

(12)

But the general expression of the curvature form of an(n + 1)-dimensional
pseudo-Riemannian space with a coframeω0

n, ω
i
n, andωn+1

n has the form

�r
s = dωr

s − ωt
s ∧ ωr

t = 1

2
Rr

suvω
u
n ∧ ωv

n, (13)
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wherer, s, t, u, v = 0, 1, . . . , n − 1, n + 1 (see, for example, [14]). Comparing
Equations (12) and (13), we find that

�r
s = ωn

u ∧ gsvω
v
n

and

Rr
suv = δr

ugsv − δr
vgsu, (14)

where(gsv) is the matrix of coefficients of the quadratic form (2). But this means
that the spaceSn+1

1 is a pseudo-Riemannian space of constant positive curvature
K = 1. The Ricci tensor of this space has the form

Rsv = Rr
srv = ngsv. (15)

This confirms that the spaceSn+1
1 , as any pseudo-Riemannian space of constant

curvature, is the Einstein space.
Thus by means of the method of moving frame we proved the following well-

known theorem (see, for example, [14]):

THEOREM 1. The de Sitter space, whose model is the domain of a projective
spaceP n+1 lying outside of an oval hyperquadricQn, is a pseudo-Riemannian
space of Lorentzian signature(n, 1) and of constant positive curvatureK = 1.
This space is homogeneous, and its fundamental groupPO(n + 2, 1) is locally
isomorphic to the special orthogonal groupSO(n + 2, 1).

2. Lightlike Hypersurfaces in the de Sitter Space

A hypersurfaceUn in the de Sitter spaceSn+1
1 is said to belightlike if all its tangent

hyperplanes are lightlike, that is, they are tangent to the hyperquadricQn which is
the absolute of the spaceSn+1

1 .
Denote byx an arbitrary point of the hypersurfaceUn, by η the tangent hy-

perplane toUn at the pointx, η = Tx(U
n), and byy the point of tangency of

the hyperplaneη with the hyperquadricQn. Next, as in Section 1, denote byξ
the hyperplane which is polar-conjugate to the pointx with respect to the hyper-
quadricQn, and associate with a pointx a family of projective frames such that
x = An, y = A0, the pointsAi, i = 1, . . . , n − 1, belong to the intersection of the
hyperplanesξ andη, Ai ∈ ξ ∩η, and the pointAn+1, as well as the pointA0, belong
to the straight line that is polar-conjugate to the(n − 2)-dimensional subspace
spanned by the pointsAi. In addition, we normalize the frame vertices in the same
way as this was done in Section 1. Then the matrix of scalar products of the frame
elements has the form (2), and the components of infinitesimal displacements of
the moving frame satisfy the Pfaffian Equations (5).
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Since the hyperplaneη is tangent to the hypersurfaceUn at the pointx = An

and does not contain the pointAn+1, the differential of the pointx = An has the
form

dAn = ω0
nA0 + ωi

nAi, (16)

the following equation holds:

ωn+1
n = 0, (17)

and the formsω0
n andωi

n are basis forms of the hypersurfaceUn. By relations (5),
it follows from Equation (16) that

ωn
0 = 0 (18)

and

dA0 = ω0
0A0 + ωi

0Ai. (19)

Taking exterior derivative of Equation (17), we obtain

ωi
n ∧ ωn+1

i = 0.

Since the formsωi
n are linearly independent, by Cartan’s lemma, we find from the

last equation that

ωn+1
i = νijω

j
n, νij = νji . (20)

Applying an appropriate formula from (5), we find that

ωi
0 = gijωn+1

j = gikνkjω
j
n, (21)

where(gij ) is the inverse matrix of the matrix(gij ).
Now formulas (16) and (19) imply that forωi

n = 0, the pointAn of the hyper-
surfaceUn moves along the isotropic straight lineAnA0, and hence,Un is a ruled
hypersurface. In what follows, we assume that theentirestraight lineAnA0 belongs
to the hypersurfaceUn.

In addition, formulas (16) and (19) show that at any point of a generator of the
hypersurfaceUn, its tangent hyperplane is fixed and coincides with the hyperplane
η. Thus,Un is atangentially degenerate hypersurface.

We recall that therank of a tangentially degenerate hypersurface is the number
of parameters on which the family of its tangent hyperplanes depends (see, for
example, [6, p. 113]). From relations (16) and (19) it follows that the tangent
hyperplaneη of the hypersurfaceUn along its generatorAnA0 is determined by
this generator and the pointsAi , η = An ∧A0 ∧A1 ∧· · ·∧An−1. The displacement
of this hyperplane is determined by the differentials (16), (19), and

dAi = ω0
i A0 + ω

j

i Aj + ωn
i An + ωn+1

i An+1.
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But by (5),ωn
i = −gijω

j
n, and the formsωn+1

i are expressed according to formulas
(20). From formulas (20) and (21) it follows that the rank of a tangentially degener-
ate hypersurfaceUn is determined by the rank of the matrix(νij ) in terms of which
the 1-formsωn+1

i andωi
0 are expressed. But by (19) and (21) the dimension of the

submanifoldV described by the pointA0 on the hyperquadricQn is also equal to
the rank of the matrix(νij ). Thus we have proved the following result:

THEOREM 2. A lightlike hypersurface of the de Sitter spaceSn+1
1 is a ruled

tangentially degenerate hypersurface whose rank is equal to the dimension of the
submanifoldV described by the pointA0 on the hyperquadricQn.

Denote the rank of the tensorνij and of the hypersurfaceUn by r. In this and
next sections we will assume thatr = n − 1, and the caser < n − 1 will be
considered in the last section of the paper.

For r = n − 1, the hypersurfaceUn carries an(n − 1)-parameter family of
isotropic rectilinear generatorsl = AnA0 along which the tangent hyperplane
Tx(U

n) is fixed. From the point of view of physics, the isotropic rectilinear gen-
erators of a lightlike hypersurfaceUn are trajectories of light impulses, and the
hypersurfaceUn itself represents alight flux in spacetime.

Since rank(νij ) = n − 1, the submanifoldV described by the pointA0 on
the hyperquadricQn has dimensionn − 1, that is,V is a hypersurface. We denote
it by V n−1. The tangent subspaceTA0(V

n−1) to V n−1 is determined by the points
A0, A1, . . . , An−1. Since

(An,Ai) = 0,

this tangent subspace is polar-conjugate to the rectilinear generatorA0An of the
lightlike hypersurfaceUn.

The submanifoldV n−1 of the hyperquadricQn is the image of a hypersurface
of the conformal spaceCn under the Darboux mapping. We will denote this hy-
persurface also byV n−1. In the spaceCn, the hypersurfaceV n−1 is defined by
Equation (18) which by (5) is equivalent to Equation (17) defining a lightlike hyper-
surfaceUn in the spaceSn+1

1 . To the rectilinear generatorAnA0 of the hypersurface
Un there corresponds a parabolic pencil of hyperspheresAn + sA0 tangent to the
hypersurfaceV n−1 (see [7, p. 40]). Thus, the following theorem is valid:

THEOREM 3. There exists a one-to-one correspondence between the set of hy-
persurfaces of the conformal spaceCn and the set of lightlike hypersurfaces of the
maximal rankr = n − 1 of the de Sitter spaceSn+1

1 . To pencils of tangent hyper-
spheres of the hypersurfaceV n−1 there correspond isotropic rectilinear generators
of the lightlike hypersurfaceUn.

Note that for lightlike hypersurfaces of the four-dimensional Minkowski space
M4 the result similar to the result of Theorem 2 was obtained in [12].
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3. The Fundamental Forms and Connections on a Lightlike Hypersurface of
the de Sitter Space

The first fundamental form of a lightlike hypersurfaceUn of the spaceSn+1
1 is a

metric quadratic form. It is defined by the scalar square of the differential dx of a
point of this hypersurface. Since we havex = An, by (16) and (2) this scalar square
has the form

(dAn, dAn) = gijω
i
nω

j
n = g (22)

and is a positive semidefinite differential quadratic form of signature(n − 1, 0).
It follows that the system of equationsωi

n = 0 defines on the hypersurfaceUn

a fibration of isotropic lines which, as we showed in Section 2, coincide with
rectilinear generators of this hypersurface.

The second fundamental form of a lightlike hypersurfaceUn determines its
deviation from the tangent hyperplaneη. To find this quadratic form, we compute
the part of the second differential of the pointAn which does not belong to the
tangent hyperplaneη = A0 ∧ A1 ∧ · · · ∧ An:

d2An ≡ ωi
nω

n+1
i An+1 (mod η).

This implies that the second fundamental form can be written as

b = ωi
nω

n+1
i = νijω

i
nω

j
n, (23)

where we used expression (20) for the formωn+1
i . Since we assumed that rank

(νij ) = n − 1, the rank of the quadratic form (23) as well as the rank of the form
g is equal ton − 1. The nullspace of this quadratic form (see [13, p. 53]) is again
determined by the system of equationsωi

n = 0 and coincides with the isotropic
direction on the hypersurfaceUn. The reduction of the rank of the quadratic form
b is connected with the tangential degeneracy of the hypersurfaceUn. The latter
was noted in Theorem 2.

On a hypersurfaceV n−1 of the conformal spaceCn that corresponds to a light-
like hypersurfaceUn ⊂ Sn+1

1 , the quadratic forms (22) and (23) define the net of
curvature lines, that is, an orthogonal and conjugate net.

To find the connection forms of the hypersurfaceUn, we find exterior deriva-
tives of its basis formsω0

n andωi
n:{

dω0
n = ω0

n ∧ ω0
0 + ωi

n ∧ ω0
i ,

dωi
n = ω0

n ∧ ωi
0 + ω

j
n ∧ ωi

j .
(24)

This implies that the matrix 1-form

ω =
(

ω0
0 ω0

i

ωi
0 ωi

j

)
(25)

defines a torsion-free connection on the hypersurfaceUn. To clarify the proper-
ties of this connection, we find its curvature forms. To this end, we substitute the
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null valueωn+1
n = 0 of the formωn+1

n , which by (17) definesUn along with the
frame subbundle associated withUn in the spaceSn+1

1 , into expression (12) for the
curvature forms of the de Sitter spaceSn+1

1 . As a result, we obtain
�0

0 = dω0
0 − ωi

0 ∧ ω0
i = 0,

�i
0 = dωi

0 − ω0
0 ∧ ωi

0 − ω
j

0 ∧ ωi
j = 0,

�0
i = dω0

i − ω0
i ∧ ω0

0 − ω
j

i ∧ ω0
j = −gijω

j
n ∧ ω0

n,

�i
j = dωi

j − ω0
j ∧ ωi

0 − ωk
j ∧ ωi

k − ωn+1
j ∧ ωi

n+1 = −gjkω
k
n ∧ ωi

n.

(26)

In these formulas the formsωn+1
j andωi

0 are expressed in terms of the basis forms

ωi
n, and the formsωj

0, ω
i
j , andω0

i are fiber forms. If the principal parameters are
fixed, then these fiber forms are invariant forms of the groupG of admissible
transformations of frames associated with a pointx = An of the hypersurface
Un, and the connection defined by the form (25) is aG-connection.

To assign an affine connection on the hypersurfaceUn, it is necessary to make a
reduction of the family of frames in such a way that the formsω0

i become principal.
Denote byδ the symbol of differentiation with respect to the fiber parameters, that
is, for a fixed pointx = An of the hypersurfaceUn, and byπξ

η the values of the
1-formsωξ

η for a fixed pointx = An, that is,πξ
η = ωξ

η(δ). Then we obtain

π0
n = 0, πi

n = 0, πn
i = 0, πn+1

i = 0.

It follows that

δAi = π0
i A0 + π

j

i Aj . (27)

The pointsA0 andAi determine the tangent subspace to the submanifoldV n−1

described by the pointA0 on the hyperquadricQn. If we fix an(n−2)-dimensional
subspaceζ not containing the pointA0 in this tangent subspace and place the points
Ai into ζ , then we obtainπ0

i . This means that the formsω0
i become principal, that

is,

ω0
i = µijω

j
n + µiω

0
n, (28)

and as a result, an affine connection arises on the hypersurfaceUn.
We will call the subspaceζ ⊂ TA0(V

n−1) the normalizing subspaceof the
lightlike hypersurfaceUn. We have proved the following result:

THEOREM 4. If in every tangent subspaceTA0(V
n−1) of the submanifoldV n−1

associated with a lightlike hypersurfaceUn, V n−1 ⊂ Qn, a normalizing(n − 2)-
dimensional subspaceζ not containing the pointA0 is assigned, then there arises
a torsion-free affine connection onUn.

The last statement of Theorem 4 follows from the first two equations of (26).
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By (28), the last equation of (26) can be written in the form

�̃i
j = dωi

j − ωk
j ∧ ωi

k

= gim(−gjkgml + µjkνml + νjkµml)ω
k
n ∧ ωl

n +
+ gim(µjνml − µmνjl)ω

0
n ∧ ωl

n.

(29)

From the first three equations of (26) and Equation (29) we can find the torsion
tensor of the affine connection indicated in Theorem 4:

R0
0uv = 0, Ri

0uv = 0, R0
ij0 = −R0

i0j = −1

2
gij ,

Ri
jkl = 1

2
gim(gjlgmk − gjkgml + µjkνml − µjlνmk +

+ νjkµml − νjlµmk),

Ri
j0l = −Ri

jl0 = 1

2
gim(µjνml − µmνjl). (30)

The constructed above fibration of normalizing subspacesζ defines a distribu-
tion 1 of (n − 1)-dimensional elements on a lightlike hypersurfaceUn. In fact, the
pointx = An of the hypersurfaceUn along with the subspace

ζ = A1 ∧ · · · ∧ An−1

define the(n − 1)-dimensional subspace which is complementary to the straight
line AnA0 and lies in the tangent subspaceη of the hypersurfaceUn. Following
the book [10], we will call this subspace thescreen, and the distribution1 the
screen distribution. Since at the pointx the screen is determined by the subspace
An ∧ A1 ∧ · · · ∧ An−1, the differential equations of the screen distribution has the
form

ω0
n = 0. (31)

But by (28)

dω0
n = ωi

n ∧ (
µijω

j
n + µiω

0
n

)
.

Hence, the screen distribution is integrable if and only if the tensorµij is symmet-
ric. Thus we arrived at the following result:

THEOREM 5. The fibration of normalizing subspacesζ defines a screen distri-
bution 1 of (n − 1)-dimensional elements on a lightlike hypersurfaceUn. This
distribution is integrable if and only if the tensorµij defined by Equation(28) is
symmetric.

Note that the configurations similar to that described in Theorem 5 occurred in
the works of the Moscow geometers published in the 1950s. They were called the
one-side stratifiable pairs of ruled surfaces(see [11, §30] or [6, p. 187]).
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4. An Invariant Normalization of Lightlike Hypersurfaces of the de Sitter
Space

In [1] (see also [7, Ch. 2]) an invariant normalization of a hypersurfacesV n−1 of
the conformal spaceCn was constructed. By Theorem 3, this normalization can be
interpreted in terms of the geometry of the de Sitter spaceSn+1

1 .
Taking exterior derivative of Equations (18) defining the hypersurfaceV n−1 in

the conformal spaceCn, we obtain

ωn
i ∧ ωi

0 = 0,

from which by linear independence of the 1-formsωi
0 onV n−1 and Cartan’s lemma

we find that

ωn
i = λijω

j

0, λij = λji. (32)

Here, and in what follows, we retain the notations used in the study of the geometry
of hypersurfaces of the conformal spaceCn in the book [7].

It is not difficult to find relations between the coefficientsνij in formulas (20)
andλij in formulas (32). Substituting the values of the formsωn

i andω
j

0 from (5)
into (32), we find that

−gijω
j
n = λijg

jkωn+1
k .

Solving these equations forωn+1
k , we obtain

ωn+1
i = −gikλ̃

klgljω
j
n,

where(̃λkl) is the inverse matrix of the matrix(λij ). Comparing these equations
with Equations (20), we obtain

νij = −gikλ̃
klglj . (33)

Of course, in this computation we assumed that the matrix(λij ) is nondegenerate.
Let us clarify the geometric meaning of the vanishing of det(λij ). To this end,

we make an admissible transformation of the moving frame associated with a point
of a lightlike hypersurfaceUn by setting

Ân = An + sA0. (34)

The pointÂn as the pointAn lies on the rectilinear generatorAnA0. Differentiating
this point and applying formulas (16) and (19), we obtain

dÂn = (
ds + sω0

0 + ω0
n

)
A0 + (

ωi
n + sωi

0

)
Ai. (35)

It follows that in the new frame the formωi
n becomes

ω̂i
n = ωi

n + sωi
0.
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By (5) and (32), it follows that

ω̂i
n = −gik(λkj − sgkj )ω

j

0.

This implies that in the new frame the quantitiesλij become

λ̂ij = λij − sgij . (36)

Consider also the matrix(̂λi
j ) = (gikλ̂kj ). Sincegij is a nondegenerate tensor, the

matrices(̂λi
j ) and(̂λij ) have the same rankρ 6 n − 1.

From Equation (35) it follows that

dÂn = (
ds + sω0

0 + ω0
n

)
A0 − λ̂i

jAiω
j

0.

Hence, the tangent subspace to the hypersurfaceUn at the pointÂn is determined
by the pointsÂn,A0, and λ̂i

jAi. At the points, at which the rankρ of the ma-
trix (̂λi

j ) is equal ton − 1, ρ = n − 1, the tangent subspace to the hypersurface
Un has dimensionn, and such points areregular pointsof the hypersurface. The
points, at which the rankρ of the matrix(̂λi

j ) is reduced, aresingular pointsof the
hypersurfaceUn. The coordinates of singular points are defined by the condition
det(̂λi

j ) = 0 which by (36) is equivalent to the equation

det(λij − sgij ) = 0, (37)

the characteristic equationof the matrix(λij ) with respect to the tensorgij . The
degree of this equation is equal ton − 1.

In particular, ifAn is a regular point of the hypersurfaceUn, then the matrix
(λij ) is nondegenerate, and Equation (33) holds. On the other hand, ifAn is a
singular point ofUn, then Equation (33) is meaningless.

Since the matrix(λij ) is symmetric and the matrix(gij ) defines a positive defi-
nite form of rankn−1, Equation (37) hasn−1 real roots if each root is counted as
many times as its multiplicity. Thus on a rectilinear generatorAnA0 of a lightlike
hypersurfaceUn there aren − 1 real singular points.

By Vieta’s theorem, the sum of the roots of Equation (37) is equal to the coeffi-
cient insn−2, and this coefficient isλijg

ij . Consider the quantity

λ = 1

n − 1
λijg

ij , (38)

which is the arithmetic mean of the roots of Equation (37). This quantityλ allows
us to construct new quantities

aij = λij − λgij . (39)

It is easy to check that the quantitiesaij do not depend on the location of the
point An on the straight lineAnA0, that is,aij is invariant with respect to the
transformation of the moving frame defined by Equation (34). Thus, the quantities
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aij form a tensor on the hypersurfaceUn defined in its second-order neighborhood.
This tensor satisfies the condition

aij g
ij = 0, (40)

that is, it is apolar to the tensorgij .
On the straight lineAnA0 we consider a point

C = An + λA0. (41)

It is not difficult to check that this point remains also fixed when the pointAn

moves along the straight lineAnA0. Sinceλ is the arithmetic mean of the roots
of Equation (37) defining singular points on the straight lineAnA0, the pointC is
the harmonic pole(see [9]) of the pointA0 with respect to these singular points.
In particular, forn = 3, the pointC is the fourth harmonic point to the pointA0

with respect to two singular points of the rectilinear generatorA3A0 of the lightlike
hypersurfaceU3 of the de Sitter spaceS4

1.
In the conformal theory of hypersurfaces, to the pointC there corresponds a

hypersphere which is tangent to the hypersurface at the pointA0. This hypersphere
is called thecentral tangent hypersphere(see [7, pp. 40–41]). Since

(d2A0, C) = aijω
i
0ω

j

0, (42)

the cone

aijω
i
0ω

j

0 = 0

with vertex at the pointA0 belonging to the tangent subspaceTA0(V
n−1) contains

the directions along which the central hypersphere has a second-order tangency
with the hypersurfaceV n−1 at the pointA0. From the apolarity condition (39) it
follows that it is possible to inscribe an orthogonal(n − 1)-hedron with vertex at
A0 into the cone defined by Equation (42) (see [6, pp. 214–216]).

Now we can construct an invariant normalization of a lightlike hypersurfaceUn

of the de Sitter spaceSn+1
1 . To this end, first we repeat some computations from

Ch. 2 of [7].
Taking exterior derivatives of Equations (32) and applying Cartan’s lemma, we

obtain the equations

∇λij + λijω
0
0 + gijω

0
n = λijkω

k
0, (43)

where

∇λij = dλij − λikω
k
j − λkjω

k
i ,

and the quantitiesλijk are symmetric with respect to all three indices. Equa-
tions (43) confirm one more time that the quantitiesλij do not form a tensor and
depend on a location of the pointAn on the straight lineAnA0. This dependence
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is described by a closed form relation (36). From formulas (43) it follows that the
quantityλ defined by Equations (38) satisfy the differential equation

dλ + λω0
0 + ω0

n = λkω
k
0, (44)

where

λk = 1

n − 1
gijλijk

(see formulas (2.1.35) and (2.1.36) in the book [7]).
The pointC lying on the rectilinear generatorAnA0 of the hypersurfaceUn

describes a submanifoldW ⊂ Un when AnA0 moves. Let us find the tangent
subspace toUn at the pointC. Differentiating Equation (40) and applying formulas
(16) and (19), we obtain

dC = (
dλ + λω0

0 + ω0
n

)
A0 + (

ωi
n + λωi

0

)
Ai.

By (5), (32), (39), and (44), it follows that

dC = (
λiA0 − gjkakiAj

)
ωi

0. (45)

Define the affinor

ai
j = gikakj , (46)

whose rank coincides with the rank of the tensoraij . Then Equation (45) takes the
form

dC = (
λiA0 − a

j

i Aj

)
ωi

0.

The points

Ci = λiA0 − a
j

i Aj (47)

together with the pointC define the tangent subspace to the submanifoldW de-
scribed by the pointC on the hypersurfaceUn.

If the pointC is a regular point of the rectilinear generatorAnA0 of the hypersur-
faceUn, then the rank of the tensoraij defined by Equations (39) as well as the rank
of the affinorai

j is equal ton−1. As a result, the pointsCi are linearly independent
and together with the pointC define the(n − 1)-dimensional tangent subspace
TC(W), and the submanifoldW itself has dimensionn − 1, dimW = n − 1.

The pointsCi also belong to the tangent subspaceTA0(V
n−1) and define the

(n − 2)-dimensional subspaceζ = TA0(V
n−1) ∩ TC(W) in it. This subspace is a

normalizing subspace. Since such a normalizing subspace is defined in each tan-
gent subspaceTA0(V

n−1) of the hypersurfaceV n−1 ⊂ Qn, there arises the fibration
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of these subspaces which by Theorem 4 defines an invariant affine connection on
the lightlike hypersurfaceUn. Thus we have proved the following result:

THEOREM 6. If the tensoraij defined by formula(39) on a lightlike hypersur-
faceUn ⊂ Sn+1

1 is nondegenerate, then it is possible to construct the invariant
normalization ofUn by means of the(n − 2)-dimensional subspaces

ζ = C1 ∧ C2 ∧ · · · ∧ Cn−1.

This normalization induces onUn an invariant screen distribution and an invariant
affine connection intrinsically connected with the geometry of this hypersurface.

Theorem 5 implies that the invariant normalization we have constructed defines
onUn an invariant screen distribution1 which is also intrinsically connected with
the geometry of the hypersurfaceUn; here1x = x ∧ ξ, x ∈ AnA0.

Note that for the hypersurfaceV n−1 of the conformal spaceCn a similar in-
variant normalization was constructed as far back as 1952 (see [1] and also [7,
Ch. 2]). In the present paper we gave a new geometric meaning of this invariant
normalization.

5. Singular Points of Lightlike Hypersurfaces of the de Sitter Space

As we indicated in Section 4, the points

z = An + sA0 (48)

of the rectilinear generatorAnA0 of the lightlike hypersurfaceUn are singular if
their nonhomogeneous coordinates satisfies the equation

det(λij − sgij ) = 0. (49)

We will investigate in more detail the structure of a lightlike hypersurfaceUn in a
neighborhood of its singular point.

Equation (49) is the characteristic equation of the matrix(λij ) with respect to
the tensor(gij ). The degree of this equation isn − 1, and since the matrix(λij )

is symmetric and the matrix(gij ) is also symmetric and positive definite, then
according to the well-known result of linear algebra, all roots of this equation are
real, and the matrices(λij ) and(gij ) can be simultaneously reduced to a diagonal
form.

Denote the roots of the characteristic equation bysh, h = 1, 2, . . . , n − 1, and
denote the corresponding singular points of the rectilinear generatorAnA0 by

Bh = An + shA0. (50)

These singular points are calledfoci of the rectilinear generatorAnA0 of a lightlike
hypersurfaceUn.

ACAP1306.tex; 28/09/1998; 9:52; p.17



314 MAKS A. AKIVIS AND VLADISLAV V. GOLDBERG

It is clear from (50) that the pointA0 is not a focus of the rectilinear generator
AnA0. This is explained by the fact that by our assumption rank(νij ) = n − 1, and
by (21), on the hyperquadricQn the pointA0 describes a hypersurfaceV n−1 which
is transversal to the straight linesA0An.

In the conformal theory of hypersurfaces, to the singular pointsBh there corre-
spond the tangent hyperspheres defining the principal directions at a pointA0 of
the hypersurfaceV n−1 of the conformal spaceCn (see [7, p. 55]).

We will construct a classification of singular points of a lightlike hypersur-
faceUn of the spaceSn+1

1 . We will use some computations that we made while
constructing a classification of canal hypersurfaces in [8].

Suppose first thatB1 = An + s1A0 be a singular point defined by a simple root
s1 of characteristic Equation (49),s1 6= sh, h = 2, . . . , n−1. For this singular point
we have

dB1 = (
ds1 + s1ω

0
0 + ω0

n

)
A0 − λ̂i

jω
j

0Ai, (51)

where

λ̂i
j = gik(λkj − s1gkj ) (52)

is a degenerate symmetric affinor having a single null eigenvalue. The matrix of
this affinor can be reduced to a quasidiagonal form

(̂λi
j ) =

(
0 0
0 λ̂

p
q

)
, (53)

wherep, q = 2, . . . , n − 1, and(̂λ
p
q ) is a nondegenerate symmetric affinor. The

matrices(gij ) and(λij − s1gij ) are reduced to the forms(
1 0
0 gpq

)
and

(
0 0
0 λ̂pq

)
,

where(̂λpq) = (λpq − s1gpq) is a nondegenerate symmetric matrix.
Since the pointB1 is defined invariantly on the generatorAnA0, then it will be

fixed if ωi
0 = 0. Thus it follows from (51) that

ds1 + s1ω
0
0 + ω0

n = s1iω
i; (54)

here and in what followsωi = ωi
0. By (53) and (54) relation (51) takes the form

dB1 = s11ω
1A0 + (

s1pA0 − λ̂q
pAq

)
ωp. (55)

Here the pointsCp = s1pA0 − λ
q
pAq are linearly independent and belong to the

tangent subspaceTA0(V
n−1).

Consider the submanifoldF 1 described by the singular pointB1 in the space
Sn+1

1 . This submanifold is called thefocal manifoldof the hypersurfaceUn. Rela-
tion (55) shows that two cases are possible:
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(1) s11 6= 0. In this case the submanifoldF1 is of dimensionn−1, and its tangent
subspace at the pointB1 is determined by the pointsB1, A0, andCp. This subspace
contains the straight lineAnA0, intersects the hyperquadricQn, and thus it, as well
as the submanifoldF1 itself, is timelike. Forωp = 0, the pointB1 describes a curve
γ on the submanifoldF1 which is tangent to the straight lineB1A0 coinciding with
the generatorAnA0 of the hypersurfaceUn. The curveγ is an isotropic curve of
the de Sitter spaceSn+1

1 . Thus, onF1 there arises a fiber bundle of focal lines. The
hypersurfaceUn is foliated into an(n − 2)-parameter family of torses for which
these lines are edges of regressions. The pointsB1 are singular points of a kind
which is called afold.

If the characteristic Equation (49) has distinct roots, then an isotropic rectilinear
generatorl of a lightlike hypersurfaceUn carriesn − 1 distinct foci Bh, h =
1, . . . , n − 1. If for each of these foci the condition of types11 6= 0 holds, then
each of them describes a focal submanifoldFh, carrying a conjugate net. Curves of
one family of this net are tangent to the straight linesl, and this family is isotropic.
On the hypersurfaceV n−1 of the spaceCn = Qn described by the pointA0, to
these conjugate nets there corresponds the net of curvature lines.

(2) s11 = 0. In this case relation (55) takes the form

dB1 = (
s1pA0 − λ̂q

pAq

)
ωp, (56)

and the focal submanifoldF1 is of dimensionn−2. Its tangent subspace at the point
B1 is determined by the pointsB1 andCp. An arbitrary pointz of this subspace can
be written in the form

z = znB1 + zpCp = zn(An + s1A0) + zp
(
s1pA0 − λ̂q

pAq

)
.

Substituting the coordinates of this point into relation (3), we find that

(z, z) = grsλ̂
r
pλ̂s

qz
pzq + (zn)2 > 0.

It follows that the tangent subspaceTB1(F1) does not have common points with
the hyperquadricQn, that is, it is spacelike. Since this takes place for any point
B1 ∈ F1, the focal submanifoldF1 is spacelike.

For ωp = 0, the pointB1 is fixed. The subspaceTB1(F1) will be fixed too. On
the hyperquadricQn, the pointA0 describes a curveq which is polar-conjugate
to TB1(F1). Since dimTB1(F1) = n − 2, the curveq is a conic, along which the
two-dimensional plane polar-conjugate to the subspaceTB1(F1) with respect to the
hyperquadricQn, intersectsQn. Thus, forωp = 0, the rectilinear generatorAnA0

of the hypersurfaceUn describes a two-dimensional second-order cone with vertex
at the pointB1 and the directrixq. Hence, in the case under consideration a lightlike
hypersurfaceUn is foliated into an(n−2)-parameter family of second-order cones
whose vertices describe the(n − 2)-dimensional focal submanifoldF1, and the
pointsB1 areconicsingular points of the hypersurfaceUn.

The hypersurfaceV n−1 of the conformal spaceCn corresponding to such a
lightlike hypersurfaceUn is a canal hypersurface which envelops an(n − 2)-
parameter family of hyperspheres. Such a hypersurface carries a family of cyclic
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generators which depends on the same number of parameters. Such hypersurfaces
were investigated in detail in [8].

Further letB1 be a singular point of multiplicitym, wherem > 2, of a rectilinear
generatorAnA0 of a lightlike hypersurfaceUn of the spaceSn+1

1 defined by an
m-multiple root of characteristic Equation (49). We will assume that

s1 = s2 = · · · = sm := s0, s0 6= sp, (57)

and also assume thata, b, c = 1, . . . ,m andp, q, r = m + 1, . . . , n − 1. Then the
matrices(gij ) and(λij ) can be simultaneously reduced to quasidiagonal forms(

gab 0
0 gpq

)
and

(
s0gab 0

0 λpq

)
.

We also construct the matrix(̂λij ) = (λij − s0gij ). Then

(̂λij ) =
(

0 0
0 λ̂pq

)
, (58)

wherêλpq = λpq − s0gpq is a nondegenerate matrix of ordern − m − 1.
By relations (58) and formulas (5) and (32) we have

ωn
a − s0ω

n+1
a = 0, (59)

ωn
p − s0ω

n+1
p = λ̂pqω

q. (60)

Taking exterior derivative of Equation (59) and applying relation (60), we find that

λ̂pqω
p
a ∧ ωq + gabω

b ∧ (
ds0 + s0ω

0
0 + ω0

n

) = 0. (61)

It follows that the 1-form ds0 + s0ω
0
0 + ω0

n can be expressed in terms of the basis
forms. We write these expressions in the form

ds0 + s0ω
0
0 + ω0

n = s0cω
c + s0qω

q. (62)

Substituting this decomposition into Equation (61), we find that(̂
λpqω

p
a + gabs0qω

b
) ∧ ωq + gabs0cω

b ∧ ωc = 0. (63)

The terms in the left hand side of (63) do not have similar terms. Hence, both terms
are equal to 0. Equating to 0 the coefficients of the summands of the second term,
we find that

gabs0c = gacs0b. (64)

Contracting this equation with the matrix(gab) which is the inverse matrix of the
matrix (gab), we obtain

ms0c = s0c.
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Sincem > 2, it follows that

s0c = 0,

and relation (62) takes the form

ds0 + s0ω
0
0 + ω0

n = s0pωp. (65)

For the singular point of multiplicitym of the generatorAnA0 in question
Equation (51) can be written in the form

dB1 = (
ds0 + s0ω

0
0 + ω0

n

)
A0 − λ̂p

q ω
q

0Ap.

Substituting decomposition (65) in the last equation, we find that

dB1 = (
s0pA0 − λ̂q

pAq

)
ω

p

0 . (66)

This relation is similar to Equation (56) with the only difference that in (56) we had
p, q = 2, . . . , n−1, and in (66) we havep, q = m+1, . . . , n−1. Thus, the pointB1

describes now a spacelike focal manifoldF1 of dimensionn − m − 1. Forωp

0 = 0,
the pointB1 is fixed, and the pointA0 describes anm-dimensional submanifold on
the hyperquadricQn which is a cross-section ofQn by an (m + 1)-dimensional
subspace that is polar-conjugate to the(n − m − 1)-dimensional subspace tangent
to the submanifoldF1.

The point B1 is a conic singular point of multiplicitym of a lightlike hy-
persurfaceUn, and this hypersurface is foliated into an(n − m − 1)-parameter
family of (m+ 1)-dimensional second-order cones circumscribed about the hyper-
quadricQn. The hypersurfaceV n−1 of the conformal spaceCn that corresponds
to such a hypersurfaceUn is an m-canal hypersurface (i.e., the envelope of an
(n − m − 1)-parameter family of hyperspheres), and it carries anm-dimensional
spherical generators.

Note also an extreme case when the rectilinear generatorAnA0 of a lightlike
hypersurfaceUn carries a single singular point of multiplicityn − 1. As follows
from our consideration of the casesm > 2, this singular point is fixed, and the
hypersurfaceUn becomes a second-order hypercone with vertex at this singular
point which is circumscribed about the hyperquadricQn. This hypercone is the
isotropic cone of the spaceSn+1

1 . The hypersurfaceV n−1 of the conformal space
Cn that corresponds to such a hypersurfaceUn is a hypersphere of the spaceCn.

The following theorem combines the results of this section:

THEOREM 7. A lightlike hypersurfaceUn of maximal rankr = n − 1 of the de
Sitter spaceSn+1

1 possessesn − 1 real singular points on each of its rectilinear
generators if each of these singular points is counted as many times as its multi-
plicity. The simple singular points can be of two kinds: a fold and conic. In the first
case the hypersurfaceUn is foliated into an(n − 2)-parameter family of torses,
and in the second case it is foliated into an(n − 2)-parameter family of second-
order cones. The vertices of these cones describe the(n−2)-dimensional spacelike
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submanifolds in the spaceSn+1
1 . All multiple singular points of a hypersurfaceUn

are conic. If a rectilinear generator of a hypersurfaceUn carries a singular point
of multiplicity m, 2 6 m 6 n − 1, then the hypersurfaceUn is foliated into an
(n − m − 1)-parameter family of(m + 1)-dimensional second-order cones. The
vertices of these cones describe the(n−m−1)-dimensional spacelike submanifold
in the spaceSn+1

1 . The hypersurfaceV n−1 of the conformal spaceCn correspond-
ing to a lightlike hypersurfaceUn with singular points of multiplicitym is a canal
hypersurface which envelops an(n−m−1)-parameter family of hyperspheres and
hasm-dimensional spherical generators.

Since lightlike hypersurfacesUn of the de Sitter spaceSn+1
1 represent a light flux

(see Section 2), its focal submanifolds have the following physical meaning. If one
of them is a lighting submanifold, then others will be manifolds of concentration of
a light flux. Intensity of concentration depends on multiplicity of a focus describing
this submanifold.

In the extreme case when an isotropic rectilinear generatorl = AnA0 of a hy-
persurfaceUn carries one(n−1)-multiple focus, the hypersurfaceUn degenerates
into the light cone generated by a point source of light. This cone represents a
radiating light flux.

If each isotropic generatorl ⊂ Un carries two fociB1 andB2 of multiplicities
m1 andm2, m1 +m2 = n−1, m1 > 1, m2 > 1, then these foci describe spacelike
submanifoldsF1 andF2 of dimensionn − m1 − 1 andn − m2 − 1, respectively. If
one of these submanifolds is a lighting submanifold, then on the second one a light
flux is concentrated.

6. Lightlike Hypersurfaces of Reduced Rank

As we proved in Section 2, lightlike hypersurfaces of the de Sitter spaceSn+1
1

are ruled tangentially degenerate hypersurfaces. However in all preceding sections
starting from Section 3 we assumed that the rank of these hypersurfaces is maximal,
that is, it is equal ton − 1. In this section we consider lightlike hypersurfaces of
reduced rankr < n − 1.

We proved in Section 2 that the rank of a lightlike hypersurfaceUn coincides
with the rank of the matrix(νij ) defined by Equation (20) as well as with the dimen-
sion of the submanifoldV described by the pointA0 on the Darboux hyperquadric
Qn. As a result, to a lightlike hypersurfaceUn of rank r there corresponds an
r-dimensional submanifoldV = V r in the conformal spaceCn.

The symmetric matrices(gij ) and (νij ) first of which is nondegenerate and
positive definite and second is of rankr, can be simultaneously reduced to qua-
sidiagonal forms

(gij ) =
(

gab 0
0 gpq

)
and (νij ) =

(
0 0
0 νpq

)
, (67)
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wherea, b = 1, . . . ,m; p, q, s = m + 1, . . . , n − 1, νpq = νqp, and det(νpq) 6= 0.
This implies that formulas (21) take the form

ωa
0 = 0, ω

p

0 = gpsνsqω
q
n. (68)

The last equation in (68) show that the 1-formsω
p

0 are linearly independent:
they are basis forms on the submanifoldV = V r described by the pointA0 on the
hyperquadricQn, on the lightlike hypersurfaceUn of rank r, and also on a frame
bundle associated with this hypersurface. The 1-forms occurring in Equations (4)
as linear combinations of the basis formsω

p

0 are called principal forms, and the
1-forms that are not expressed in terms of the basis forms are fiber forms on the
above mentioned frame bundle.

By (5) the second group of Equations (68) is equivalent to the system of equa-
tions

ωn
p = λn

pqω
q

0, (69)

whereλn
pq = −gps ν̃

stgts, (̃νst ) is the inverse matrix of the matrix(νpq), λn
pq = λn

qp,
and det(λn

pq) 6= 0. Note that we can also obtain Equations (69) by differentiation
of Equation (18) which holds on the hypersurfaceUn.

Taking exterior derivatives of the first group of Equations (68), we find that

ω
p

0 ∧ ωa
p = 0.

Applying Cartan’s lemma to this system, we find that

ωa
p = λa

pqω
q

0, λa
pq = λa

qp. (70)

Note also that Equations (5) and (67) imply that

gpqω
q
a + gabω

b
p = 0.

By (70), it follows from the last equation that

ωp
a = −gabg

pqλb
qsω

s
0. (71)

Note also that the quantitiesλa
pq andλn

pq are determined in a second-order neigh-
borhood of a rectilinear generatorl = A0An of the hypersurfaceUn.

Let us prove that in our frame an(m + 1)-dimensional spanL of the points
A0, Aa, andAn is a plane generator of the lightlike hypersurfaceUn. In fact, it
follows from Equations (4) that in the case in question we have

dA0 = ω0
0A0 +ω

p

0Ap,

dAa = ω0
aA0 + ωb

aAb +ω
p
a Ap + ωn

aAn,

dAn = ω0
nA0 + ωa

nAa +ω
p
nAp.

(72)
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If we fix the principal parameters in Equations (72) (i.e., if we assume thatω
p

0 = 0),
we obtain

δA0 = π0
0A0,

δAa = π0
aA0 + πb

a Ab + πn
a An,

δAn = π0
nA0 + πa

nAa.

(73)

In the last equationsδ is the symbol of differentiation with respect to the fiber
parameters (i.e., forωp

0 = 0), andπξ
η = ωξ

η(δ).
Equations (73) show that forωp

0 = 0, the pointAn of the hypersurfaceUn

moves in an(m + 1)-dimensional domain belonging to the subspaceL = A0 ∧
A1 ∧ · · · ∧ Am ∧ An of the same dimension. Let us assume that the entire subspace
L belongs to the hypersurfaceUn, and that the pointAn ∈ L moves freely inL.
The subspaceL is tangent to the hyperquadricQn at the pointA0 ∈ V r , and thusL
is lightlike. Since the pointA0 describes anr-dimensional submanifold, the family
of subspacesL depends onr parameters. Hence,Un = f (Mr × L), wheref is a
differentiable mapf : Mr × L → P n+1.

Equations (72) and (73) show that the basis 1-forms of a lightlike hypersurface
Un are divided into two classes:ω

p
n andωa

n. The formsωp
n are connected with the

displacement of the lightlike(m + 1)-planeL in the spaceSn+1
1 , and the forms

ωa
n are connected with the displacement of the straight lineAnA0 in this (m + 1)-

plane. Since (73) implies that forωp
n = 0 the pointA0 remains fixed, the rectilinear

generatorAnA0 describes anm-dimensional bundle of straight lines with its center
at the pointA0, and this bundle belongs to the fixed(m+ 1)-dimensional subspace
L passing through this point.

Further consider an arbitrary point

z = z0A0 + zaAa + znAn (74)

of the generatorL of the lightlike hypersurfaceUn. From formulas (72) it follows
that the differential of any such point belongs to one and the samen-dimensional
subspaceA0∧· · ·∧An tangent to the hypersurfaceUn at the original pointAn. The
latter means that the tangent subspace to the hypersurfaceUn is not changed when
the pointz moves along the lightlike generatorL of the hypersurfaceUn. Thus,
hypersurfaceUn is a tangentially degenerate hypersurface of rankr.

As a result, we arrive at the following theorem making Theorem 2 more precise:

THEOREM 8. If the rank of the tensorνij defined by relation(20) is equal tor,
r < n − 1, then a lightlike hypersurfaceUn of the de Sitter spaceSn+1

1 is a ruled
tangentially degenerate hypersurface of rankr with (m + 1)-dimensional lightlike
generators,m = n−r−1, along which the tangent hyperplanes ofUn are constant.
The points of tangency of lightlike generators with the hyperquadricQn form an
r-dimensional submanifoldV r onQn.

The last fact mentioned in Theorem 8 can be also treated in terms of quadratic
hyperbands (see [6, p. 256]). By Theorem 8, the hypersurfaceUn is the envelope
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of an r-parameter family of hyperplanesη tangent to the hyperquadricQn at the
points of anr-dimensional smooth submanifoldV r belonging to this hyperquadric.
But this coincides precisely with the definition of the quadratic hyperband. Thus,
Theorem 8 can be complemented as follows:

THEOREM 9. A lightlike hypersurfaceUn of rankr in the de Sitter spaceSn+1
1 is

anr-dimensional quadratic hyperband with the support submanifoldV r belonging
to the Darboux hyperquadricQn.

Note also an extreme case when the rank of a lightlike hypersurfaceUn is equal
to 0. Then we have

νij = 0, ωi
0 = 0.

The pointA0 is fixed on the hyperquadricQn, and the pointAn moves freely in
the hyperplaneη tangent to the hyperquadricQn at the pointA0. The lightlike
hypersurfaceUn degenerates into the hyperplaneη tangent to the hyperquadricQn

at the pointA0, and the quadratic hyperband associated withUn is reduced to a
0-pair consisting of the pointA0 and the hyperplaneη.

Let us also find singular points on a rectilinear generatorL of a lightlike hy-
persurfaceUn of rank r of the de Sitter spaceSn+1

1 . To this end, we write the
differential of a pointz ∈ L defined by Equation (74). We will be interested only
in that part of this differential which does not belong to the generatorL. By (72),
we obtain

dz ≡ (
z0ω

p

0 + zaωp
a + znωp

n

)
Ap (mod L).

By (69), (70) and (71), we find from the last relation that

dz ≡ Np
q (z)ω

q

0Ap (mod L),

where

Np
q (z) = δp

q z0 − gabg
psλb

sqz
a − gpsλn

sqz
n. (75)

At singular points of a generatorL the dimension of the tangent subspace
Tx(U

n) to the hypersurfaceUn is reduced. By (75), this is equivalent to the re-
duction of the rank of the matrixNp

q (z). Thus, singular points of generatorL can
be found from the condition

detNp
q (z) = 0, (76)

which defines an algebraic focal submanifoldF of dimensionm and orderr in
the (m + 1)-dimensional plane generatorL. The left-hand side of Equation (76)
is the Jacobian of the mapf : Mr × L → P n+1 indicated above, and the focal
submanifoldF is the locus of singular points of this map that are located in the
plane generatorL of the hypersurfaceUn.
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If the rank of a lightlike hypersurfaceUn is maximal, that is, it is equal tor =
n − 1, then its determinant manifoldF is a set of singular points of its rectilinear
generatorAnA0 determined by Equation (50). On the other hand, ifr < n − 1,
then singular points of the straight linesAnA0 lying in the generatorL are also
determined by Equation (50), and they are the intersection points of these straight
lines and the manifoldF .

In a plane generatorL of the lightlike hypersurfaceUn, let us find an equation of
the harmonic polar of the pointA0 with respect to the algebraic focal submanifold
F . Let us assume that the coordinatesza andzn in Equation (74) are fixed, and
the coordinatez0 is variable. Then the pointz describes a straight linel = A0 ∧
(zaAa + znAn). The intersection point of this linel with the focal submanifold
F is determined by Equation (76) in which the quantitiesza and zn are fixed,
andz0 is variable. Equation (76) is of degreer with respect toz0 and definesr
focal (singular) points on the straight linel if each of these points is counted as
many times as its multiplicity. By the Vieta theorem, the coefficient in(z0)r−1 in
Equation (76) is equal to the sum of roots of this equation. Thus,

1

r

n−1∑
p=m+1

z0
p = zagabλ

b + znλn,

wherez0
p are roots of Equation (76), and the quantitiesλb andλn are defined by the

formulas

λa = 1

r
gpqλa

pq, λn = 1

r
gpqλn

pq. (77)

Thus, the harmonic pole of the pointA0 with respect to the foci of the straight line
l has the form

C = (
gabλ

azb + λnzn
)
A0 + zaAa + znAn.

The locus of these poles on a plane generatorL of the hypersurfaceUn is defined
by the equation

z0 − gabλ
azb − λnzn = 0, (78)

whose left-hand side is the trace of the matrixN
p
q (z). Equation (78) defines a

subspace of dimensionm on the(m + 1)-dimensional generatorl of the hyper-
surfaceUn. This subspace is the harmonic polar of the pointA0 with respect to the
algebraic focal submanifoldF .

For construction of screen distribution on a lightlike hypersurfaceUn of rank
r < n − 1 we will need differential prolongations of Pfaffian equations (69)
and (70). Taking exterior derivatives of these equations, we find that(∇λa

pq + λa
pqω

0
0 + λn

pqω
0
n + gpqω

a
n+1

) ∧ ω
q

0 = 0, (79)(∇λn
pq + λn

pqω
0
0 + λa

pqω
n
a + gpqω

n
n+1

) ∧ ω
q

0 = 0, (80)
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where

∇λa
pq = dλa

pq − λa
sqω

s
p − λa

psω
s
q + λb

pqω
a
b,

∇λn
pq = dλn

pq − λn
sqω

s
p − λn

psω
s
q.

Applying Cartan’s lemma to Equations (79) and (80) and fixing the principal para-
meters (i.e., settingωp

0 = 0), we find that{
∇δλ

a
pq + λa

pqπ
0
0 + λa

pqπ
0
n + gpqπ

a
n+1 = 0,

∇δλ
n
pq + λn

pqπ
0
0 + λa

pqπ
n
a + gpqπ

n
n+1 = 0.

(81)

Note also that by the last equation of Equations (5), the tensorgpq defined by the
first group of relations (67) satisfies the equations

∇δgpq = 0. (82)

Equations (81) and (82) prove that neither quantitiesλa
pq nor quantitiesλn

pq form
a geometric object, but jointly, the quantitiesλa

pq, λ
n
pq , and the tensorgpq form a

linear geometric object.
By Equations (81) and (82), the quantitiesλa andλn defined by formulas (77)

satisfy the equations{
∇δλ

a + λaπ0
0 + λnπa

n + πa
n+1 = 0,

∇δλ
n + λnπ0

0 + λaπn
a + πn

n+1 = 0.
(83)

It follows that jointly, the quantitiesλa andλn form a geometric object which is
associated with a second-order differential neighborhood of a plane generatorL of
the hypersurfaceUn.

Next we construct the quantities

aa
pq = λa

pq − λagpq, an
pq = λn

pq − λngpq. (84)

By (80), (81), and (82), they satisfy the equations{
∇δa

a
pq + aa

pqπ
0
0 + an

pqπ
0
n = 0,

∇δa
n
pq + an

pqπ
0
0 + aa

pqπ
n
a = 0.

(85)

These equations prove that jointly the quantitiesaa
pq andan

pq form a tensor with
respect to the admissible transformations in a frame bundle associated with the hy-
persurfaceUn. Let us assume that the indicesα andβ takem+1 values 1, . . . ,m, n.
Then the equations, which the tensoraα

pq = {aa
pq, a

n
pq} satisfies, can be written in

the form

∇δa
α
pq + aα

pqπ
0
0 = 0, (86)
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where∇δa
α
pq = δaα

pq − aα
sqπ

s
p − aα

psπ
s
q + a

β
pqπ

α
β . It follows from Equations (84)

that this tensor satisfies the apolarity condition

aα
pqg

pq = 0. (87)

Consider the straight linesA0Aα connecting the pointA0 with the pointsAα,
α = 1, . . . ,m, n. Their parametric equations can be written in the form

Ãα = Aα + xαA0.

Let us find the points of intersection of these straight lines with the harmonic polar
K of the pointA0 with respect to the focal submanifoldF . Substituting coordinates
of these points into Equation (78), we find that

xα = λα, α = 1, . . . ,m, n,

whereλa = gabλ
b andλn = λn.

The pointsCα = Aα+λαA0 lying in the subspaceK can be taken as the vertices
of a reduced frame associated with the hypersurfaceUn and defined in a second-
order differential neighborhood of the plane generatorL of this hypersurface. If we
consider our hypersurface with respect to this reduced frame, then we have

λα = 0, λα
pq = aα

pq . (88)

It follows from Equation (83) that the 1-formsωα
n+1 become principal forms:

ωα
n+1 = bα

pωp. (89)

With respect to the new frame, Equations (69) and (70) take the form

ωα
p = aα

pqω
q, aα

pq = aα
qp. (90)

Consider the rectangular matrixA = (aα
pq) in which α is the row number, and

the pair(p, q) = (q, p) is the column number. The matrixA hasm + 1 rows and
1
2r(r+1) columns. But by (87), not more than12r(r+1)−1 columns of the matrixA
are linearly independent. Suppose that rankA = ρ, ρ 6 min{m+1, 1

2r(r +1)−1}.
Construct the following tensors:

aαβ = gpqgstaα
psa

β
qt and aα

β = gβγ aγα. (91)

It is not difficult to prove that the rank of each of these tensors is equal to the rank
of the matrixA, rank(aαβ) = rank(aα

β ) = ρ.
Construct the quantity

a = a
α1[α1

aα2
α2

. . . a
αρ

αρ ],

which is equal to the sum of the diagonal minors of orderρ of the matrix(aα
β ).

Since the rank of this matrix is equal toρ, then ifρ > 1, the quantitya is different
from 0,a 6= 0.
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From Equations (86) it follows that the tensoraα
β satisfies the equations

∇δa
α
β + 2aα

βπ0
0 = 0.

Applying the formula for differentiation of determinants, we find from the last
equation that the quantitya satisfies the equation

δa + 2ρaπ0
0 = 0, (92)

i.e.,a is a relative invariant of weight−2ρ.
Equation (92) is written for fixed principal parameters, i.e., under the condition

ω
p

0 = 0. If these parameters are variable, then it follows from Equation (92) that

da

2ρa
+ ω0

0 = µpω
p

0 . (93)

Taking the exterior derivative of the last equation, we find that(
dµp − µqω

q
p + ωpω0

0 + ω0
p

) ∧ ω
p

0 = 0. (94)

This implies that the quantitiesµp form a geometric object. Forωp

0 = 0, this object
satisfies the equations

∇δµp + µpπ0
0 + π0

p = 0. (95)

It follows from Equation (93) that the geometric objectµp is defined in a third-
order differential neighborhood of the plane generatorL of the hypersurfaceUn.

Consider the subspaceTA0(V
r) = A0∧Am+1∧· · ·∧An−1 tangent to the subman-

ifold V r described by the pointA0 on the hyperquadricQn. This subspace belongs
to the tangent hyperplaneη to the lightlike hypersurfaceUn and is orthogonal to
its plane generatorL = A0 ∧A1 ∧ · · · ∧Am ∧An. The geometric objectµp allows
us to construct a normalizing subspaceζ of dimensionr − 1 in TA0(V

r). To this
end, consider the points

Ãp = Ap + xpA0.

Differentiating these points, applying Equations (5), (69), and (70), and assuming
that the principal parameters are fixed, i.e.,ω

p

0 = 0, we find that

δÃp = (∇δxp + xpπ0
0 + π0

p

)
A0 + πq

pÃq .

This implies that the subspace spanned by the pointsÃp is invariant if and only if
the quantitiesxp satisfy the differential equations

∇δxp + xpπ0
0 + π0

p = 0.

Comparing these equations with Equations (95), we see that they are satisfied if we
takexp = µp. Thus, the points

Cp = Ap + µpA0
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determine an invariant normalizing subspaceζ = Cm+1 ∧ · · · ∧ Cn−1.
Suppose thatx is an arbitrary point of the generatorL of the hypersurfaceUn.

This point and the subspaceζ define anr-plane1x = x ∧ ζ . Suchr-planes are
defined for all pointsx ∈ Un and form anr-dimensionalscreen distribution1 on
Un which is complementary to the generatorsL of Un. Since the geometric object
µp is defined in a third-order neighborhood, then the screen distribution is defined
in the same neighborhood. Thus the following theorem holds.

THEOREM 10. If the rank of the matrixA = (aα
pq) is different from0, then in a

third-order neighborhood of a plane generatorL of a lightlike hypersurfaceUn of
rank r < n − 1, there is defined an invariantr-dimensional screen distribution1.

If we place the verticesAp of our frame into the pointsCp, then we obtain
µp = 0. This and Equation (94) imply that

ω0
p = cpqω

q

0, cpq = cqp. (96)

The pointsCp and the normalizing subspaceζ = Cm+1 ∧ · · · ∧ Cn−1 are defined
in a third-order neighborhood of a plane generatorL, and the quantitiescpq are
defined in a fourth-order neighborhood.

Let us prove that the fibration of normalizing subspaces we have constructed
determines an affine connection on a hypersurfaceUn which can be considered as
anr-parameter fibration of its(m+1)-dimensional plane generatorsL. In fact, the
basic forms of this fibration are the 1-formsω

p

0 . Taking exterior derivatives of these
forms, we find that

dω
p

0 = ω
q

0 ∧ θp
q , (97)

whereθ
p
q = ω

p
q − δ

p
q ω0

0. Taking exterior derivatives of the formsθp
q and taking into

account that by (96) dω0
0 = 0, we obtain

dθp
q − θs

q ∧ θp
s = R

p
qstω

s
0 ∧ ωt

0, (98)

where

R
p
qst = −gαβgpuaα

q[sa
β

t ]u + cq[sδ
p

t ] + gq[sgpuct ]u, (99)

and

gαβ =
(

gab 0
0 1

)
.

Thus the following theorem is valid.

THEOREM 11. An invariant screen distribution induces a torsion-free affine con-
nection on the fibration of plane generators of a hypersurfaceUn. The curvature
tensor of this connection is determined by Equation(99), and its tensor Ricci is
symmetric.
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The last statement of Theorem 11 can be proved by a direct calculation. In fact,
contracting Equation (99) with respect to the indicesp andt , we find that

Rpq = Rs
pqs = 1

2

(
gαβgstaα

psa
β
qt + (r − 2)cpq + gpqg

stcst

)
,

It is easy to see that this tensor is symmetric,Rpq = Rqp.
We did not consider yet only the case when the rank of the matrixA = (aα

pq)

is equal to 0,ρ = 0. In this case the matrixA is the null-matrix, and the construc-
tion of an invariant screen distribution is impossible. Let us clarify the geometric
structure of the hypersurfaceUn in this case.

If this is the case, formulas (84) imply that

λa
pq = λagpq, λn

pq = λngpq. (100)

Thus, the Jacobi matrix (75) of the mappingf : Mr × L → P n+1 takes the form

Np
q (z) = δp

q

(
z0 − gabλ

b − λn
)
,

and the equation of the focal submanifoldF becomes

detNp
q (z) = (

z0 − gabλ
bza − zn

)r = 0.

Thus, the focal submanifoldF is anr-fold linear subspace

z0 − gabλ
bza − zn = 0 (101)

of dimensionm belonging to the(m + 1)-dimensional plane generatorL of the
hypersurfaceUn. It is possible to prove that ifr > 2, then this subspace is fixed,
and the hypersurfaceUn is ann-dimensional cone with an(m + 1)-dimensional
plane generators and anm-dimensional vertex defined by Equation (101).

In this case the submanifoldV r , along which the hypersurfaceUn is tangent to
the hyperquadricQn, is anr-dimensional sphereSr .

If r = 1, then the hypersurfaceUn is an envelope of a one-parameter family
of isotropic hyperplanes that are tangent to the hyperquadricQn at the points of
an arbitrary curveγ . Finally if r = 0, then the hypersurfaceUn is an isotropic
hyperplane.

Note that the invariant normalization of a lightlike hypersurfaceUn which we
have constructed in Section 6 is a new geometric interpretation of a conformally
invariant normalization of a submanifoldV r of a conformal spaceCn which was
constructed in [2] (see also [7, Ch. 3]).
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