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0. Introduction

The projective model of the non-Euclidean geometry (the Cayley—Klein model)
is closely connected with models of conformal geometry and the geometry of
the de Sitter space. In fact, the hyperbolic spate? of dimensionn + 1 — the
Lobachevsky space — admits a mapping onto internal domain efdimensional
oval hyperquadriaQ” of a projective spac®”+1. On this hyperquadric itself the
geometry of am-dimensional conformal spaag” is realized, and outside of the
hyperquadricQ” the geometry of thén + 1)-dimensional de Sitter spac.‘ii.f+l
is realized. Moreover, the group of projective transformations of the spate
keeping the hyperquadri@” invariant and transferring its internal domain into
itself (this group is denoted byO(n + 2, 1) — see [7, p. 7]) is isomorphic to the
group of motions of the Lobachevsky spdgé*:, the conformal spac€”, and the
de Sitter spacéf*l. Itis clear that there exist deep connections among these three
geometries.

The Lobachevsky geometry is the first example of geometry which differs from
the Euclidean geometry. Numerous books and papers are devoted to the Lobachevs-
ky geometry. Conformal differential geometry was also studied in detail. In particu-
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lar, it was studied in the last authors’ book [7]. In spite of the fact that the geometry
of the de Sitter space is the simplest model of spacetime of general relativity, this
geometry was not studied thoroughly. The de Sitter space sustains the Lorentzian
metric of constant positive curvature.

In the present paper we study the geometry of the de Sitter sﬁjéféajsing
its connection with the geometry of the conformal space. We prove that the geom-
etry of lightlike hypersurfaces of the spaﬂié*l, which play an important role in
general relativity (see the book [10]), is directly connected with the geometry of
hypersurfaces of the conformal spacé. The latter was studied in detail in the
papers of the first author (see [1-5]) and also in the book [7]. This simplifies the
study of lightlike hypersurfaces of the de Sitter spé{:él and makes possible to
apply for their consideration the apparatus constructed in the conformal theory.

In Section 1 we study the geometry of the de Sitter space and its connection with
the geometry of the conformal space. After this we study lightlike hypersurfaces
U" inthe spacesf“, investigate their structure, and prove that such a hypersurface
is tangentially degenerate of rank< n — 1. Its rectilinear or plane generators form
an isotropic fiber bundle oti™.

In Sections 2-5 we investigate lightlike hypersurfatésof maximal rank, and
for their study we use the relationship between the geometry of such hypersurfaces
and the geometry of hypersurfaces of the conformal space. For a lightlike hyper-
surface, we construct the fundamental quadratic forms and connections determined
by a normalization of a hypersurface by means of a distribution (the screen distrib-
ution) which is complementary to the isotropic distribution. The screen distribution
plays an important role in the book [10] since it defines a connection on a lightlike
hypersurfacel/”, and it appears to be important for applications. We prove that
the screen distribution on a lightlike hypersurface can be constructed invariantly
by means of quantities from a third-order differential neighborhood, that is, such a
distribution is intrinsically connected with the geometry of a hypersurface.

In Section 5 we study singular points of a lightlike hypersurface in the de Sitter
spaces; ™, classify them, and describe the structure of hypersurfaces carrying
singular points of different types. Moreover, we establish the connection of this
classification with that of canal hypersurfaces of the conformal space.

In Section 6 we consider lightlike hypersurfaces of reduced rank. Such hyper-
surfaces carry lightlike rectilinear generators along which their tangent hyperplanes
are constant. For such hypersurfaces, again in a third-order differential neighbor-
hood, we construct an invariant screen distribution and an invariant affine con-
nection. However, the method of construction is different from that for lightlike
hypersurfaces of maximal rank, since the construction used for hypersurfaces of
maximal rank fails for hypersurfaces of reduced rank. We establish a connec-
tion of lightlike hypersurfaces of reduced rank with quadratic hyperbands of a
multidimensional projective space.

The principal method of our investigation is the method of moving frames and
exterior differential forms in the form in which it is presented in the books [6]
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and [7]. All functions considered in the paper are assumed to be real and differen-
tiable, and all manifolds are assumed to be smooth with the possible exception of
some isolated singular points and singular submanifolds.

1. The de Sitter Space

1.1n a projective spac®”"*! of dimensior: + 1 we consider an oval hyperquadric
Q". Letx be a point of the spacg”*! with projective coordinategx?, x*, ...,
x"t1). The hyperquadri@” is determined by equations

(x, x) :=g§,,xsx’7=0, &n=0,....,n+1, (1)

whose left-hand side is a quadratic fofm x) of signature(n + 1, 1). The hyper-
quadricQ” divides the spac®”*! into two parts, external and internal. Normalize
the quadratic forn(x, x) in such a way that for the points of the external part the
inequality (x, x) > 0 holds. This external domain is a model of teSitter space
si+ (see [15]). We will identify the external domain @i with the spaces; .
The hyperquadri@” is theabsoluteof the spaces; ™.

On the hyperquadriQ” of the spaceP"*! the geometry of a conformal space
C" is realized. The bijective mapping" < Q" is called theDarboux mapping
and the hyperquadri@” itself is called theDarboux hyperquadric

Under the Darboux mapping to hyperspheres of the spacéhere correspond
cross-sections of the hyperquaddZ’ by hyperplanes. But to a hyperplan&
there corresponds a pointthat is polar-conjugate % with respect toQ” and lies
outside ofQ", that is, a point of the spac¥™ ! Thus, to hyperspheres of the space
C" there correspond points of the spatée™.

Let x be an arbitrary point of the spaé@“. The tangent lines from the point
x to the hyperquadri@@™ form a second-order cong€, with vertex at the point
x. This cone is called thisotropic cone For spacetime whose model is the space
Sf“ this cone is the light cone, and its generators are lines of propagation of light
impulses whose source coincides with the paint

The coneC, separates all straight lines passing through the pointo space-
like (not having common points with the hyperquad@¢), timelike (intersecting
0" in two different points), and lightlike (tangent t9"). The lightlike straight
lines are generators of the co@eg.

To a spacelike straight lineC S{‘” there corresponds an elliptic pencil of hy-
perspheres in the conformal space All hyperspheres of this pencil pass through
a common(n — 2)-sphereS"—2 (the center of this pencil). The sphes&2 is the
intersection of the hyperquadri@” and the(n — 1)-dimensional subspace of the
spaceP”** which is polar-conjugate to the linewith respect to the hyperquadric
Q"

To a timelike straight lind C Sf*l there corresponds a hyperbolic pencil of
hyperspheres in the spa€é. Two arbitrary hyperspheres of this pencil do not have
common points, and the pencil contains two hyperspheres of zero radius which
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correspond to the points of intersection of the straight liaed the hyperquadric
o".

Finally, to a lightlike straight liné C S;‘“ there corresponds a parabolic pencil
of hyperspheres in the spa€é consisting of hyperspheres tangent one to another
at a point, that is, a unique hypersphere of zero radius belonging to this pencil.

Hyperplanes of the spacﬁﬁf“ are also divided into three types. Spacelike
hyperplanes do not have common points with the hyperquagdfica timelike
hyperplane intersect®” along a real hypersphere; and lightlike hyperplanes are
tangent toQ". Subspaces of any dimensiof2 < r < n— 1, can be also classified
in a similar manner.

Let us apply the method of moving frames to study some questions of differen-
tial geometry of the spac@!f“. With a pointx € Sf*l we associate a family of
projective frame$Ag, A1, ..., A,41}. However, in order to apply formulas derived
in the book [7], we will use the notations used in it. Namely, we denotd bthe
vertex of the moving frame which coincides with the pointd, = x; we locate
the verticesAg, A; (i = 1, ...,n—1),andA,,, atthe hyperplané which is polar-
conjugate to the point with respect to the hyperquadri@”, and we assume that
the pointsAg andA, ;1 lie on the hyperspher§’~! = 9" N¢&, and the points\; are
polar-conjugate to the straight lingyA,,, 1 with respect tas” 1. Since(x, x) > 0,
we can normalize the poimt,, by the condition(A,, A,) = 1. The points4dy and
A, 41 are not polar-conjugate with respect to the hyperquagficHence, we can
normalize them by the conditiofo, A,+1) = —1. As aresult, the matrix of scalar
products of the frame elements has the form

0O 0 0 -1
_ O gij O O .. _
(Ag, Ay) = o o0 1 ol i,j=1...,n—1, 2
-1 0 0 O
and the quadratic forrx, x) takes the form
(x,x) = gix'x) + (x")? — 2%, (3)

The quadratic forng;;x'x/ occurring in (3) is positive definite.
The equations of infinitesimal displacement of the conformal frerg},

£§=0,1...,n+ 1, we have constructed have the form
dA5=a)gA,7, £,n=01...,n+1, 4)

where by (2), the 1-form®g satisfy the following Pfaffian equations:

Gt =0fy =0 of+ofii=0

ot = gijp, 0 = 8ijwy 1,

o'l — wl =0, wl—owl =0, (5)

gijw,{+w? =0, " =0,

dgij = gjkwf‘ + gika)];'-
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These formulas are precisely the formulas derived in the book [7] (see p. 32) for
the conformal spac€™.
It follows from (4) that

dA, = w2Ag+ 0 A; + oA, L. (6)

The differential di, belongs to the tangent spage(S; ™" 1), and the 1-forms
w?, »', andw™* form a coframe of this space. The total number of these forms is
n+1, and this number coincides with the dimensioer(fo“). The scalar square
of the differential &, is the metric quadratic forra on the manifoldS{‘*l. By (2),
this quadratic forng can be written as

g =(dA,,dA,) = g0 wl — 200!
Since the first term of this expression is a positive definite quadratic form, the
form g'is of Lorentzian signaturéz, 1). The coefficients of the forr produce the
metric tensor of the spacﬁ_1+l whose matrix is obtained from the matrix (2) by
deleting thenth row and the:th column.

The quadratic forn¥ defines onSf+l a pseudo-Riemannian metric of signature
(n, 1). The isotropic cone defined in the spa@e{S{‘“) by the equatiorg’ = 0
coincides with the con€, that we defined earlier in the spag&™ geometrically.

The 1-formsw; occurring in equations (4) satisfy the structure equations of the
spaceC”:

da)g = a)g N a)g (7)

which are obtained by taking exterior derivatives of Equations (4) and which are
conditions of complete integrability of (4). The form§ are invariant forms of the
fundamental groufO(n + 2, 1) of transformations of the spacés'**, C", and
Sf“ which is locally isomorphic to the groupO(n + 2, 1).

Let us write Equations (7) for the 1-formsg), o/, andw** making up a coframe

n?

of the spacd (S;1) in more detail:
do? = ? A+l A?,
do), =) Awh+wr Ao + ot Aok, (8)
do/ 1 = ' A a);“rl + A w;‘ﬁ

The last equations can be written in the matrix form as follows:
dd = —-w N0, 9)

whered = (o), u =0, i, n + 1, is the column matrix with its values in the vector
spaceT,(S;), andw = (0"),u,v = 0,i,n + 1, is a square matrix of order
n + 1 with values in the Lie algebra of the group of admissible transformations of
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coframes of the spackg (7" 1. The formw is the connection form of the space
S7+1. In detail this form can be written as

0 0
wy ;) 0
_ i j i
w=|w, o ) a)nJri . (20)
n+ n+
0 C')i C')n+1

By (5), in this matrix, only the forms in the left upper corner, which formmar
n-matrix, are linearly independent.

The connection form (10) allows us to find the differential equation of geodesics
in the spacesi‘”. These lines coincide with straight lines of the ambient space
P"*+1: more precisely, they coincide with the parts of these straight lines which lie
outside of the Darboux hyperquadr@”. We will look for their equation in the
form x = x(¢), and we will impose the verteA, of the moving frame with the
pointx, A, = x(¢). Write the decomposition of the tangent vector to a geodesic in
the form

dx

dr
For a geodesic, the second differentidk ¢ds? is collinear to its tangent vector
dx/dr. This implies that

dg*

—— A, +EW'A, = aE"A,,
dr sy §

where the connection 1-forms; composing the matrix (10) are calculated along
the curvex = x(¢), anda is a new 1-form. Hence, the differential equation of
geodesics has the form

dg*
dr
The same Equation (11) is the equation of straight lines of the space
Next we will find the curvature form and the curvature tensor of the sgce
To this end, we take exterior derivative of the connection farnmore precisely,

of its independent part. Applying Equations (7), we find the following components
of the curvature form:

£'A,, u=0i,n+1

+ %! = at". (11)

Q) = dw) — wh A @2 = WL A @D,

Qf):dwf)—a)g/\wfj—wé/\w;:wZH/\a)fl, 12

0 — 4 — ® A a® — o Ad = —o ) A ) (12)
P = o) — 0] ANwg — o] Ao} = —gijon Aoy,

n+1 i _ ok i
AWy, = —gjrwy A ).

iAo — 0 A ek — ok A i
Q) = do; — w; Ny — @) Awp — ] :

But the general expression of the curvature form of(ant 1)-dimensional
pseudo-Riemannian space with a cofranjew’, andw*! has the form

1
Q =dof — Ao = ERguua)Z Aw?, (13)
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wherer, s, t,u,v = 0,1,...,n — 1, n + 1 (see, for example, [14]). Comparing
Equations (12) and (13), we find that

QL =0 A gno,
and

Rguu = SZgSU - Sngu, (14)
where(g,,) is the matrix of coefficients of the quadratic form (2). But this means
that the spacéf+l is a pseudo-Riemannian space of constant positive curvature
K = 1. The Ricci tensor of this space has the form

Ry, = R:W = ngsy- (15)

This confirms that the spacg™ ! as any pseudo-Riemannian space of constant
curvature, is the Einstein space.

Thus by means of the method of moving frame we proved the following well-
known theorem (see, for example, [14]):

THEOREM 1. The de Sitter space, whose model is the domain of a projective
spaceP"*! lying outside of an oval hyperquadri@”, is a pseudo-Riemannian
space of Lorentzian signatur@, 1) and of constant positive curvatu€ = 1.

This space is homogeneous, and its fundamental grRQp: + 2, 1) is locally
isomorphic to the special orthogonal gro@§®( + 2, 1).

2. Lightlike Hypersurfaces in the de Sitter Space

A hypersurfacd/" in the de Sitter spacq+l is said to bdightlike if all its tangent
hyperplanes are lightlike, that is, they are tangent to the hyperquédnighich is
the absolute of the spacg ™.

Denote byx an arbitrary point of the hypersurfadé”, by n the tangent hy-
perplane toU" at the pointx,n = T,(U"), and byy the point of tangency of
the hyperplane; with the hyperquadriaQ”. Next, as in Section 1, denote Iy
the hyperplane which is polar-conjugate to the paintith respect to the hyper-
guadric 9", and associate with a poirta family of projective frames such that
x=A,,y= A the points4;,i = 1,...,n — 1, belong to the intersection of the
hyperplaneg andn, A; € £€Nn, and the point4,,, 1, as well as the point, belong
to the straight line that is polar-conjugate to the— 2)-dimensional subspace
spanned by the points;. In addition, we normalize the frame vertices in the same
way as this was done in Section 1. Then the matrix of scalar products of the frame
elements has the form (2), and the components of infinitesimal displacements of
the moving frame satisfy the Pfaffian Equations (5).
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Since the hyperplang is tangent to the hypersurfaéé at the pointx = A,
and does not contain the poiAt,, 1, the differential of the poink = A, has the
form

dA, = 0PAo+ o A;, (16)
the following equation holds:
oyt =0, (17)

and the formso? ande’ are basis forms of the hypersurfabé. By relations (5),
it follows from Equation (16) that

wp=0 (18)
and
dAg = w3Ao + whA;. (19)

Taking exterior derivative of Equation (17), we obtain

n+l_0

i
w, N w;

Since the forms, are linearly independent, by Cartan’s lemma, we find from the
last equation that

a)“l = vija)j Vij = Vji- (20)

n’

Applying an appropriate formula from (5), we find that

w0y = gt = gy, (21)
where(g") is the inverse matrix of the matrig;;).

Now formulas (16) and (19) imply that fes’, = 0, the pointA, of the hyper-
surfaceU" moves along the isotropic straight ling, Ag, and hencel/” is a ruled
hypersurface. In what follows, we assume thatghtre straight lineA, Ag belongs
to the hypersurfac&”.

In addition, formulas (16) and (19) show that at any point of a generator of the
hypersurfacd/", its tangent hyperplane is fixed and coincides with the hyperplane
n. Thus,U" is atangentially degenerate hypersurface

We recall that theank of a tangentially degenerate hypersurface is the number
of parameters on which the family of its tangent hyperplanes depends (see, for
example, [6, p. 113]). From relations (16) and (19) it follows that the tangent
hyperplanen of the hypersurfacé/" along its generator,, Ao is determined by
this generator and the points, n = A, AAgA A1 A--- A A,_1. The displacement
of this hyperplane is determined by the differentials (16), (19), and

dA; = wf Ao+ w/A; + of Ay + ] T Ay
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But by (5),0! = —gijw{,', and the formsaoj‘+l are expressed according to formulas

(20). From formulas (20) and (21) it follows that the rank of a tangentially degener-
ate hypersurfac&” is determined by the rank of the matiix;) in terms of which

the 1—1‘orm3a);’+l and) are expressed. But by (19) and (21) the dimension of the
submanifoldV described by the poind on the hyperquadri@” is also equal to
the rank of the matriXv;;). Thus we have proved the following result:

THEOREM 2. A lightlike hypersurface of the de Sitter spa§g™ is a ruled
tangentially degenerate hypersurface whose rank is equal to the dimension of the
submanifoldv described by the poimtg on the hyperquadri@”.

Denote the rank of the tensoy; and of the hypersurfac&” by r. In this and
next sections we will assume that= n — 1, and the case < n — 1 will be
considered in the last section of the paper.

Forr = n — 1, the hypersurfacé&” carries an(n — 1)-parameter family of
isotropic rectilinear generatois = A, Ag along which the tangent hyperplane
T.(U") is fixed. From the point of view of physics, the isotropic rectilinear gen-
erators of a lightlike hypersurfacg” are trajectories of light impulses, and the
hypersurfacd/” itself represents kght fluxin spacetime.

Since rank(v;;) = n — 1, the submanifoldV described by the pointiy on
the hyperquadri@” has dimensiom — 1, that is,V is a hypersurface. We denote
it by V"~1. The tangent subspada,(V"1) to V=1 is determined by the points
Ag, A1, ..., A,_1. Since

(A, A)) =0,

this tangent subspace is polar-conjugate to the rectilinear genetgtgr of the
lightlike hypersurfacd/".

The submanifoldv”~! of the hyperquadri@?” is the image of a hypersurface
of the conformal spac€” under the Darboux mapping. We will denote this hy-
persurface also by”~1. In the spaceC”, the hypersurfacd/"~! is defined by
Equation (18) which by (5) is equivalent to Equation (17) defining a lightlike hyper-
surfaceU" in the spacesf“. To the rectilinear generatat, Ag of the hypersurface
U" there corresponds a parabolic pencil of hypersphares s Ag tangent to the
hypersurface/"~* (see [7, p. 40]). Thus, the following theorem is valid:

THEOREM 3. There exists a one-to-one correspondence between the set of hy-
persurfaces of the conformal spa€é and the set of lightlike hypersurfaces of the
maximal rankr = n — 1 of the de Sitter spac&i‘”. To pencils of tangent hyper-
spheres of the hypersurfag&—* there correspond isotropic rectilinear generators

of the lightlike hypersurfacée/”.

Note that for lightlike hypersurfaces of the four-dimensional Minkowski space
M* the result similar to the result of Theorem 2 was obtained in [12].
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3. The Fundamental Forms and Connections on a Lightlike Hypersurface of
the de Sitter Space

The first fundamental form of a lightlike hypersurfabé of the spacr—zSTrl is a
metric quadratic form. It is defined by the scalar square of the differentialf @
point of this hypersurface. Since we have- A,,, by (16) and (2) this scalar square
has the form

(dA,,dA,) = gjwio! =g (22)

n-—-n

and is a positive semidefinite differential quadratic form of signature- 1, 0).

It follows that the system of equations, = O defines on the hypersurface’

a fibration of isotropic lines which, as we showed in Section 2, coincide with
rectilinear generators of this hypersurface.

The second fundamental form of a lightlike hypersurféce determines its
deviation from the tangent hyperplaneTo find this quadratic form, we compute
the part of the second differential of the poitif which does not belong to the
tangent hyperplang = Ag A AL A --- A Ay

d’A, = o' 0" A, (modn).

n-i

This implies that the second fundamental form can be written as

b= a)fla)?J’l = vl 0!, (23)
where we used expression (20) for the fomjh*l. Since we assumed that rank
(vij) = n — 1, the rank of the quadratic form (23) as well as the rank of the form
g is equal ton — 1. The nullspace of this quadratic form (see [13, p. 53]) is again
determined by the system of equation’s = 0 and coincides with the isotropic
direction on the hypersurfadé”. The reduction of the rank of the quadratic form
b is connected with the tangential degeneracy of the hypersutfdcé he latter
was noted in Theorem 2.

On a hypersurfac&”~* of the conformal spac€” that corresponds to a light-
like hypersurface/” C S;‘*l, the quadratic forms (22) and (23) define the net of
curvature lines, that is, an orthogonal and conjugate net.

To find the connection forms of the hypersurfd¢é, we find exterior deriva-
tives of its basis form&? andw! :

do? = w2 A 03 + ol A &P, (24)
dow! = w2 A 0 + ) A .
This implies that the matrix 1-form
0 0
o= (20 o) 25)
wp @

defines a torsion-free connection on the hypersurfdteTo clarify the proper-
ties of this connection, we find its curvature forms. To this end, we substitute the
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null value ! = 0 of the formw”*1, which by (17) defineg/" along with the
frame subbundle associated wiiti in the spaces; ™, into expression (12) for the

curvature forms of the de Sitter spagg™. As a result, we obtain

Q) = dw) — wh A @? =0,

Qf):da)f)—a)g/\wé—wé/\wj-zo, 26
0_ 40 _ 0,0 _ _Jj. 0_ __ j . 0 (26)
Q dw! — w; A wg — w! Aw Wl A
i = Yw; i 0~ @ j = T 8ij@n A Wy,
n+1

i — Ao 0 A o kA o N
Q) =do; —w; Aoy — 0f Aoy — O AWy = —gjw, A o,

In these formulas the forms’;* ! andwj are expressed in terms of the basis forms

o', and the forms}, a)’] and? are fiber forms. If the principal parameters are
fixed, then these fiber forms are invariant forms of the greupf admissible
transformations of frames associated with a paintE A, of the hypersurface
U", and the connection defined by the form (25) iS-@onnection.

To assign an affine connection on the hypersurtétgit is necessary to make a
reduction of the family of frames in such a way that the fowfi®ecome principal.
Denote by the symbol of differentiation with respect to the fiber parameters, that
is, for a fixed pointc = A,, of the hypersurfac&”, and byn§ the values of the
1-form5w§ for a fixed pointx = A,,, that is,yrg = a)g((S). Then we obtain
70 =0, i =0, " =0, 't =o.

1 1

It follows that
8A; =lAo+ 7/ A;. (27)

The pointsAg and A; determine the tangent subspace to the submaniféid
described by the pointg on the hyperquadri@”. If we fix an (n — 2)-dimensional
subspace not containing the poindg in this tangent subspace and place the points
A; into ¢, then we obtaint?. This means that the forms® become principal, that
is,

o) = o] + oy, (28)

and as a result, an affine connection arises on the hypersurface
We will call the subspace C Ta,(V"~1) the normalizing subspacef the
lightlike hypersurfacd/”. We have proved the following result:

THEOREM 4. If in every tangent subspacg,,(V"~1) of the submanifold/"~*
associated with a lightlike hypersurfade’, V"~ ¢ Q”, a normalizing(n — 2)-
dimensional subspaggnot containing the poin#, is assigned, then there arises
a torsion-free affine connection @n".

The last statement of Theorem 4 follows from the first two equations of (26).
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By (28), the last equation of (26) can be written in the form
oF ik i
Qj = de Wi A
= & (—gjk&mi + KjkVmi + Viktm)®5 A & + (29)
+ &M (Vs — V) @0 A @

From the first three equations of (26) and Equation (29) we can find the torsion
tensor of the affine connection indicated in Theorem 4:

v

0 i 0 0
ROuv =0 ROuu =0, RijO = _Rin = 2

Riy = Eglm(gjlgmk — &jk8&ml + MjkVmi — MjiVmk +

+ Vjkmi = Vjitmk)s
i i 1.,
Ry = —Rjp= 58 (L jVmi — mVj1)- (30)

The constructed above fibration of normalizing subspacedsfines a distribu-
tion A of (n — 1)-dimensional elements on a lightlike hypersurfage In fact, the
pointx = A, of the hypersurfac&” along with the subspace

é‘:Al/\“‘/\An—l

define the(n — 1)-dimensional subspace which is complementary to the straight
line A, Ap and lies in the tangent subspagef the hypersurfacé/". Following

the book [10], we will call this subspace tlsereen and the distributionA the
screen distributionSince at the point the screen is determined by the subspace
A, NALA--- A A,_1, the differential equations of the screen distribution has the
form

w? = 0. (31)
But by (28)
dw? = o) A (wijwl + pie)).

Hence, the screen distribution is integrable if and only if the tepsois symmet-
ric. Thus we arrived at the following result:

THEOREM 5. The fibration of normalizing subspacesdefines a screen distri-
bution A of (n — 1)-dimensional elements on a lightlike hypersurfdée. This
distribution is integrable if and only if the tenser;; defined by Equatioi28) is
symmetric.

Note that the configurations similar to that described in Theorem 5 occurred in
the works of the Moscow geometers published in the 1950s. They were called the
one-side stratifiable pairs of ruled surfacesee [11, 830] or [6, p. 187]).
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4. An Invariant Normalization of Lightlike Hypersurfaces of the de Sitter
Space

In [1] (see also [7, Ch. 2]) an invariant normalization of a hypersurfaces of
the conformal spac€” was constructed. By Theorem 3, this normalization can be
interpreted in terms of the geometry of the de Sitter s;ﬂéé.
Taking exterior derivative of Equations (18) defining the hypersurfate in
the conformal spac€”, we obtain

n i _
w; AN wy =0,

from which by linear independence of the 1-formfson V"~! and Cartan’s lemma
we find that

a)ln = )\,ija)é, )\ij = )\ji- (32)

Here, and in what follows, we retain the notations used in the study of the geometry
of hypersurfaces of the conformal spacéin the book [7].
It is not difficult to find relations between the coefficients in formulas (20)

andx;; in formulas (32). Substituting the values of the formeandwé from (5)
into (32), we find that

|y ikl
—8ijwy, = hijg Wi

Solving these equations far! **, we obtain

Cl)l(t+1 —

~ )
—gikA" gljw;,

where (3! is the inverse matrix of the matri¢d;;). Comparing these equations
with Equations (20), we obtain

Vij = _gikxklglj- (33)

Of course, in this computation we assumed that the métgpy is nondegenerate.

Let us clarify the geometric meaning of the vanishing of(dg. To this end,
we make an admissible transformation of the moving frame associated with a point
of a lightlike hypersurfacé/" by setting

A, = A, + 5A,. (34)

The pointhn as the point4,, lies on the rectilinear generatdr, Aq. Differentiating
this point and applying formulas (16) and (19), we obtain

da, = (ds + 50§ + @) Ag + (@}, + swh) A;. (35)
It follows that in the new frame the forma’ becomes

~i_ i
w, = w, + sw.
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By (5) and (32), it follows that

o = —g"* (i — sgrj) ).

This implies that in the new frame the quantities become
/):ij = )‘ij — Sgij- (36)

Consider also the matri@j.) = (g"k/k\kj). Sinceg;; is a nondegenerate tensor, the
matrices(1’) and(%;;) have the same rank< n — 1.
From Equation (35) it follows that

dA, = (ds + sof + wS)Ao —/):;-Aiwé.

Hence, the tangent subspace to the hypersuiécat the pointh,, is determined

by the pointsA,,, Ao, and Y;A,». At the points, at which the rank of the ma-

trix @;) is equal ton — 1, p = n — 1, the tangent subspace to the hypersurface
U" has dimensiom, and such points anegular pointsof the hypersurface. The
points, at which the rank of the matrix(ﬁc;) is reduced, arsingular pointsof the
hypersurfaceU". The coordinates of singular points are defined by the condition
dem;) = 0 which by (36) is equivalent to the equation

del()w — Sgij) =0, (37)

the characteristic equatiorof the matrix(i;;) with respect to the tensgs;. The
degree of this equation is equalic- 1.

In particular, if A, is a regular point of the hypersurfaé#’, then the matrix
(%ij) is nondegenerate, and Equation (33) holds. On the other hang, i§ a
singular point ofU", then Equation (33) is meaningless.

Since the matrix1;;) is symmetric and the matri¢g;;) defines a positive defi-
nite form of rankn — 1, Equation (37) hag — 1 real roots if each root is counted as
many times as its multiplicity. Thus on a rectilinear generat@a of a lightlike
hypersurfacé/” there are: — 1 real singular points.

By Vieta’s theorem, the sum of the roots of Equation (37) is equal to the coeffi-
cient ins"~2, and this coefficient i;;¢"/. Consider the quantity

A=

which is the arithmetic mean of the roots of Equation (37). This quaataitows
us to construct new quantities
aijj :)\ij _)\gij- (39)

It is easy to check that the quantitieg do not depend on the location of the
point A, on the straight lineA, Ag, that is,q;; is invariant with respect to the
transformation of the moving frame defined by Equation (34). Thus, the quantities
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a;; form atensor on the hypersurfaté defined in its second-order neighborhood.
This tensor satisfies the condition

aij g7 =0, (40)

that is, it is apolar to the tensgy;.
On the straight lined,, Aqg we consider a point

C = A, + MA,. (41)

It is not difficult to check that this point remains also fixed when the pdint
moves along the straight ling, Ag. Sincea is the arithmetic mean of the roots
of Equation (37) defining singular points on the straight linelq, the pointC is
the harmonic pole(see [9]) of the pointAy with respect to these singular points.
In particular, forn = 3, the pointC is the fourth harmonic point to the poidt,
with respect to two singular points of the rectilinear generatpt, of the lightlike
hypersurfacd/? of the de Sitter spacs;.

In the conformal theory of hypersurfaces, to the pdinthere corresponds a
hypersphere which is tangent to the hypersurface at the gginthis hypersphere
is called thecentral tangent hypersphe(see [7, pp. 40-41]). Since

(d?Ao, C) = a;j0hw), (42)
the cone
a,-ja)f)a)é =0

with vertex at the pointig belonging to the tangent subspatg (V") contains
the directions along which the central hypersphere has a second-order tangency
with the hypersurfacé/"~1 at the pointA,. From the apolarity condition (39) it
follows that it is possible to inscribe an orthogorial— 1)-hedron with vertex at
Ag into the cone defined by Equation (42) (see [6, pp. 214-216])).

Now we can construct an invariant normalization of a lightlike hypersurtéte
of the de Sitter spac&;‘“. To this end, first we repeat some computations from
Ch. 2 of [7].

Taking exterior derivatives of Equations (32) and applying Cartan’s lemma, we
obtain the equations

Viij + hijof + 8ij @y = hijke, (43)
where
V)x,’j = d)\ij - )\,’ka)"; - kkjwf,

and the quantities.;j; are symmetric with respect to all three indices. Equa-
tions (43) confirm one more time that the quantitigsdo not form a tensor and
depend on a location of the poidi, on the straight lined, Ap. This dependence
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is described by a closed form relation (36). From formulas (43) it follows that the
quantityx defined by Equations (38) satisfy the differential equation

dr 4 2l + 0f = Lok, (44)
where
A = 87 hijk
n—1 !

(see formulas (2.1.35) and (2.1.36) in the book [7]).

The pointC lying on the rectilinear generatot,, Ag of the hypersurfacd/”
describes a submanifold/ ¢ U" when A, Ay moves. Let us find the tangent
subspace t&/" at the pointC. Differentiating Equation (40) and applying formulas
(16) and (19), we obtain

dC = (dA + Awg + @0) Ao + (@] + Aah) A;.
By (5), (32), (39), and (44), it follows that

dC = (A Ao — g'far A ) wy. (45)
Define the affinor

aj. = g”‘akj, (46)

whose rank coincides with the rank of the tenggr Then Equation (45) takes the
form

dC = (Ao — al A} ).
The points
Cl' Z)\.l'Ao—ClijAj (47)

together with the poinC define the tangent subspace to the submanifdlde-
scribed by the poin€ on the hypersurfac&™”.

If the pointC is a regular point of the rectilinear generatqrA, of the hypersur-
faceU", then the rank of the tensay; defined by Equations (39) as well as the rank
of the affinora’ is equal taz — 1. As a result, the points; are linearly independent
and together with the point' define the(n — 1)-dimensional tangent subspace
T (W), and the submanifoldV itself has dimension — 1, dmW =n — 1.

The pointsC; also belong to the tangent subspatg(V"~1) and define the
(n — 2)-dimensional subspage = T4, (V"~1) N Tc(W) in it. This subspace is a
normalizing subspace. Since such a normalizing subspace is defined in each tan-
gent subspacg,,(V"1) of the hypersurfac& "~ C Q", there arises the fibration
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of these subspaces which by Theorem 4 defines an invariant affine connection on
the lightlike hypersurfac&”. Thus we have proved the following result:

THEOREM 6. If the tensorq;; defined by formulg39) on a lightlike hypersur-
faceU" C S{‘” is nondegenerate, then it is possible to construct the invariant
normalization ofU" by means of thé: — 2)-dimensional subspaces

E=CiANCon---ANC,_1.

This normalization induces dri” an invariant screen distribution and an invariant
affine connection intrinsically connected with the geometry of this hypersurface.

Theorem 5 implies that the invariant normalization we have constructed defines
onU" an invariant screen distributiof which is also intrinsically connected with
the geometry of the hypersurfate; hereA, = x A&, x € A, Ap.

Note that for the hypersurfacé”—! of the conformal spac€” a similar in-
variant normalization was constructed as far back as 1952 (see [1] and also [7,
Ch. 2]). In the present paper we gave a hew geometric meaning of this invariant
normalization.

5. Singular Points of Lightlike Hypersurfaces of the de Sitter Space

As we indicated in Section 4, the points
z2=A,+s5A0 (48)

of the rectilinear generatot,, Ag of the lightlike hypersurfacé/" are singular if
their nonhomogeneous coordinatsatisfies the equation

del()w — Sg,'j) =0. (49)

We will investigate in more detail the structure of a lightlike hypersurféédn a
neighborhood of its singular point.

Equation (49) is the characteristic equation of the matkix) with respect to
the tensor(g;;). The degree of this equation is— 1, and since the matrig;;)
is symmetric and the matrixg;;) is also symmetric and positive definite, then
according to the well-known result of linear algebra, all roots of this equation are
real, and the matrice8.;;) and(g;;) can be simultaneously reduced to a diagonal
form.

Denote the roots of the characteristic equatiorshyr = 1,2,...,n — 1, and
denote the corresponding singular points of the rectilinear genetatby by

B, = A, + s, Ao. (50)

These singular points are calléati of the rectilinear generatot, Ao of a lightlike
hypersurfacd/".
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It is clear from (50) that the poim, is not a focus of the rectilinear generator
A, Ao. This is explained by the fact that by our assumption rank =n — 1, and
by (21), on the hyperquadri@” the pointAg describes a hypersurfad&—1 which
is transversal to the straight lindg A,,.

In the conformal theory of hypersurfaces, to the singular panptihere corre-
spond the tangent hyperspheres defining the principal directions at aAgodrit
the hypersurfac&”—* of the conformal spac€” (see [7, p. 55]).

We will construct a classification of singular points of a lightlike hypersur-
faceU" of the spaceSf*l. We will use some computations that we made while
constructing a classification of canal hypersurfaces in [8].

Suppose first thaB; = A, + s1Ao be a singular point defined by a simple root
s1 of characteristic Equation (49}, # s, h = 2, ..., n—1. For this singular point
we have

dBy = (dsg + 5109 + w0) Ag — A wdA;, (51)
where
3:3 = ¢ O — s181)) (52)

is a degenerate symmetric affinor having a single null eigenvalue. The matrix of
this affinor can be reduced to a quasidiagonal form

iy O AO
@ =(5 %) (59

wherep,qg = 2,...,n — 1, and@’,’) is a nondegenerate symmetric affinor. The
matrices(g;;) and(A;; — s1g;;) are reduced to the forms

(1 O) and (0 AO)
0 gpq 0 Apg /)’

Where('):,,q) = (Apqg — 518p¢) IS @ NONdegenerate symmetric matrix.
Since the poiniB; is defined invariantly on the generatay, Ao, then it will be
fixed if w) = 0. Thus it follows from (51) that

ds; + slwg + w,? = sy’ (54)
here and in what follows’ = w{. By (53) and (54) relation (51) takes the form
dB]_ = slla)le + (SlpAO —/)»\L[I;Aq)a)p. (55)

Here the point<C, = 51,40 — A}A, are linearly independent and belong to the
tangent subspack,,(V"1).

Consider the submanifol@ ; described by the singular poi; in the space
§7+1. This submanifold is called thiecal manifoldof the hypersurfacé/”. Rela-
tion (55) shows that two cases are possible:
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() s11 # 0. In this case the submanifolé is of dimensiom —1, and its tangent
subspace at the pois is determined by the pointB;, Ao, andC,,. This subspace
contains the straight ling,, Ao, intersects the hyperquadr@”, and thus it, as well
as the submanifold; itself, is timelike. Forw? = 0, the pointB, describes a curve
y on the submanifold; which is tangent to the straight ling, Ag coinciding with
the generator, Aq of the hypersurfacé/". The curvey is an isotropic curve of
the de Sitter spac& ™. Thus, on#; there arises a fiber bundle of focal lines. The
hypersurfacd/" is foliated into an(n — 2)-parameter family of torses for which
these lines are edges of regressions. The pdntare singular points of a kind
which is called dold.

If the characteristic Equation (49) has distinct roots, then an isotropic rectilinear
generator! of a lightlike hypersurfacd/" carriesn — 1 distinct foci B,,h =
1,...,n — 1. If for each of these foci the condition of type, # 0 holds, then
each of them describes a focal submanifld carrying a conjugate net. Curves of
one family of this net are tangent to the straight liheasnd this family is isotropic.
On the hypersurfac&”~! of the spaceC” = Q" described by the pointg, to
these conjugate nets there corresponds the net of curvature lines.

(2) s11 = 0. In this case relation (55) takes the form

dBl = (slpAO —/):qu)a)p, (56)

and the focal submanifold; is of dimensiom —2. Its tangent subspace at the point
B, is determined by the point8; andC,. An arbitrary pointz of this subspace can
be written in the form

2=2"B1+12'Cp = 2"(A, + 5140) + 2" (51, A0 — M9 A,).
Substituting the coordinates of this point into relation (3), we find that
(z,2) = g”/):;/):;z”zq + (z"?% > 0.
It follows that the tangent subspa@g, (F1) does not have common points with
the hyperquadria®”, that is, it is spacelike. Since this takes place for any point
B, € #3, the focal submanifold; is spacelike.
Forw? = 0, the pointB; is fixed. The subspacgg, (¥1) will be fixed too. On
the hyperquadriaD”, the pointAq describes a curve which is polar-conjugate
to T, (¥1). Since dinTg, (¥1) = n — 2, the curvey is a conic, along which the
two-dimensional plane polar-conjugate to the subsgac€ef) with respect to the
hyperquadricQ”, intersectsQ”. Thus, forw? = 0, the rectilinear generatot, Ag
of the hypersurfac&” describes a two-dimensional second-order cone with vertex
at the pointB; and the directrix;. Hence, in the case under consideration a lightlike
hypersurfacd/" is foliated into an(n — 2)-parameter family of second-order cones
whose vertices describe thie — 2)-dimensional focal submanifoléF;, and the
points B; areconicsingular points of the hypersurfaég’.
The hypersurfacé/"~* of the conformal spac€” corresponding to such a
lightlike hypersurfaceU” is a canal hypersurface which envelops @n— 2)-
parameter family of hyperspheres. Such a hypersurface carries a family of cyclic
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generators which depends on the same number of parameters. Such hypersurfaces
were investigated in detail in [8].

Further letB, be a singular point of multiplicityz, wherem > 2, of arectilinear
generatorA, Ag of a lightlike hypersurfacd/" of the spaceSi“Ll defined by an
m-multiple root of characteristic Equation (49). We will assume that

S1=1Sp ="+ =8, =50, S0FSp, (57)

and also assume thatb,c =1,...,mandp,q,r =m+1,...,n—1. Thenthe
matrices(g;;) and(x;;) can be simultaneously reduced to quasidiagonal forms

8w O soga» O )
and .
( 0 gm) ( 0 Apg

We also construct the matr'(ﬁij) = (A;j — Sogi;)- Then

() = (8 qu) , (58)

wherei.,, = A,, — s0g,, iS @ nondegenerate matrix of order- m — 1.
By relations (58) and formulas (5) and (32) we have

o' — sow' Tt =0, (59)

a a

o~

Apg?. (60)

n+l _

n
w Sow »

p
Taking exterior derivative of Equation (59) and applying relation (60), we find that
/):[,qa)g Aw? + ga;,a)b A (dso + soa)g + a)g) =0. (61)

It follows that the 1-form ey + sowd + w? can be expressed in terms of the basis
forms. We write these expressions in the form

dsg + sow8 + w,? = Soc@° + sogw?. (62)
Substituting this decomposition into Equation (61), we find that
(Xﬂqwg + gabsoqa)b) Aot + gabSOCCUb Ao =0. (63)

The terms in the left hand side of (63) do not have similar terms. Hence, both terms
are equal to 0. Equating to O the coefficients of the summands of the second term,
we find that

8abS0c = 8acS0b- (64)

Contracting this equation with the matrix“”) which is the inverse matrix of the
matrix (g.), we obtain

msoec = S0c-
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Sincem > 2, it follows that
soc = 0,
and relation (62) takes the form
dso + sow3 + w? = s’ . (65)

For the singular point of multiplicityn of the generatorA, Ao in question
Equation (51) can be written in the form

dB; = (dSo + Soa)g + a),?)Ao —/):ga)gAp.
Substituting decomposition (65) in the last equation, we find that
dBl = (SOpAO —X%Aq)a)g (66)

This relation is similar to Equation (56) with the only difference that in (56) we had
p,g=2,...,n=1,andin (66) we have, ¢ = m+1,...,n—1. Thus, the poinB,
describes now a spacelike focal manifdfgof dimension: —m — 1. Forwj = 0,

the pointB; is fixed, and the poini, describes am-dimensional submanifold on
the hyperquadria®” which is a cross-section a@” by an (m + 1)-dimensional
subspace that is polar-conjugate to the- m — 1)-dimensional subspace tangent
to the submanifold?;.

The point By is a conic singular point of multiplicityn of a lightlike hy-
persurfacelU”, and this hypersurface is foliated into &m — m — 1)-parameter
family of (m + 1)-dimensional second-order cones circumscribed about the hyper-
quadric Q". The hypersurfac& "~ of the conformal spac€” that corresponds
to such a hypersurfac&” is anm-canal hypersurface (i.e., the envelope of an
(n — m — 1)-parameter family of hyperspheres), and it carriesnadimensional
spherical generators.

Note also an extreme case when the rectilinear genergtag of a lightlike
hypersurface/" carries a single singular point of multiplicity — 1. As follows
from our consideration of the cases > 2, this singular point is fixed, and the
hypersurfacel/” becomes a second-order hypercone with vertex at this singular
point which is circumscribed about the hyperquadfit. This hypercone is the
isotropic cone of the spacﬁéf“. The hypersurfacd "1 of the conformal space
C" that corresponds to such a hypersurfadeis a hypersphere of the spa€é.

The following theorem combines the results of this section:

THEOREM 7. A lightlike hypersurfacd/" of maximal rank- = n — 1 of the de
Sitter spaceSf*l possesses — 1 real singular points on each of its rectilinear
generators if each of these singular points is counted as many times as its multi-
plicity. The simple singular points can be of two kinds: a fold and conic. In the first
case the hypersurfacg” is foliated into an(n — 2)-parameter family of torses,

and in the second case it is foliated into én— 2)-parameter family of second-
order cones. The vertices of these cones describéth®)-dimensional spacelike
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submanifolds in the spa(ﬁf“. All multiple singular points of a hypersurfadeg”

are conic. If a rectilinear generator of a hypersurfat® carries a singular point
of multiplicity m, 2 < m < n — 1, then the hypersurfac&” is foliated into an

(n — m — 1)-parameter family ofm + 1)-dimensional second-order cones. The
vertices of these cones describe the-m — 1)-dimensional spacelike submanifold
in the spaceSf“. The hypersurfac& ! of the conformal spac€” correspond-
ing to a lightlike hypersurfacé/" with singular points of multiplicityn is a canal
hypersurface which envelops an—m — 1)-parameter family of hyperspheres and
hasm-dimensional spherical generators.

Since lightlike hypersurfacegg” of the de Sitter spacg ™ represent a light flux
(see Section 2), its focal submanifolds have the following physical meaning. If one
of them is a lighting submanifold, then others will be manifolds of concentration of
a light flux. Intensity of concentration depends on multiplicity of a focus describing
this submanifold.

In the extreme case when an isotropic rectilinear genetatorA, Ao of a hy-
persurfacd/" carries onén — 1)-multiple focus, the hypersurfadé” degenerates
into the light cone generated by a point source of light. This cone represents a
radiating light flux.

If each isotropic generatdrC U™ carries two fociB; and B, of multiplicities
myandm,, mi+mo;=n—1 my > 1, my, > 1, then these foci describe spacelike
submanifolds#; and %, of dimensiorw — m; — 1 andn — m, — 1, respectively. If
one of these submanifolds is a lighting submanifold, then on the second one a light
flux is concentrated.

6. Lightlike Hypersurfaces of Reduced Rank

As we proved in Section 2, lightlike hypersurfaces of the de Sitter sgétk
are ruled tangentially degenerate hypersurfaces. However in all preceding sections
starting from Section 3 we assumed that the rank of these hypersurfaces is maximal,
that is, it is equal tae — 1. In this section we consider lightlike hypersurfaces of
reduced rank < n — 1.

We proved in Section 2 that the rank of a lightlike hypersurfééecoincides
with the rank of the matrixv;;) defined by Equation (20) as well as with the dimen-
sion of the submanifol& described by the poim, on the Darboux hyperquadric
0". As a result, to a lightlike hypersurfadé” of rank r there corresponds an
r-dimensional submanifolf = V" in the conformal spac€”.

The symmetric matricesg;;) and (v;;) first of which is nondegenerate and
positive definite and second is of rankcan be simultaneously reduced to qua-
sidiagonal forms

(&ij) = (ggb gSq) and (v;;) = (8 v[?q), (67)
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wherea,b=1,...,m;p,q, s =m+1,...,n—1,v,, =y, and detv,,) # 0.
This implies that formulas (21) take the form

wd =0, wb = g vl (68)

The last equation in (68) show that the 1-form$ are linearly independent:
they are basis forms on the submaniféid= V" described by the poirtg on the
hyperquadricQ”, on the lightlike hypersurfac&” of rankr, and also on a frame
bundle associated with this hypersurface. The 1-forms occurring in Equations (4)
as linear combinations of the basis fora§ are called principal forms, and the
1-forms that are not expressed in terms of the basis forms are fiber forms on the
above mentioned frame bundle.

By (5) the second group of Equations (68) is equivalent to the system of equa-
tions

w, = A, a)o, (69)

wherekgq = —g,s0" g5, (V*") is the inverse matrix of the matriv,,,), Moy = Agps
and det)), ) # 0. Note that we can also obtain Equations (69) by dlfferentlatlon
of Equation (18) which holds on the hypersurfdée.

Taking exterior derivatives of the first group of Equations (68), we find that

wpy Ay =0.
Applying Cartan’s lemma to this system, we find that

W = Ay @0 Ay = Aoy (70)
Note also that Equations (5) and (67) imply that

8pq® + gape, = 0.
By (70), it follows from the last equation that

ol = —gapg" My w5, (71)

Note also that the quantities, anda’  are determined in a second-order neigh-
borhood of a rectilinear generatb= AgA, of the hypersurfacé/”.

Let us prove that in our frame am: + 1)-dimensional spard. of the points
Ao, A,, @and A, is a plane generator of the lightlike hypersurfdéé. In fact, it
follows from Equations (4) that in the case in question we have

dAo = wdAg +wf A,
dA, = 0lAo + &b A, + 0l Ap + Ay, (72)
dA, = 0lAo+ wlA, + Wi A,
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If we fix the principal parameters in Equations (72) (i.e., if we assumedhat 0),
we obtain

§A¢ = mJAo,
8Ay = 0Ag+ b Ay + 7 A, (73)
8A, = nlAg+ 7l A,.

In the last equations is the symbol of differentiation with respect to the fiber
parameters (i.e., fapf = 0), andr; = % (8).

Equations (73) show that fap) = 0, the pointA, of the hypersurface/,
moves in an(m + 1)-dimensional domain belonging to the subspéce- Ag A
A1 A--- A A, A A, of the same dimension. Let us assume that the entire subspace
L belongs to the hypersurfad®’, and that the poin#,, € L moves freely inL.

The subspace is tangent to the hyperquadr@” at the pointdy € V", and thus.

is lightlike. Since the pointio describes an-dimensional submanifold, the family
of subspaceg depends om parameters. Hencé&]” = f(M" x L), wheref is a
differentiable mapf: M" x L — P"*1,

Equations (72) and (73) show that the basis 1-forms of a lightlike hypersurface
U™ are divided into two classesi;, ande?. The formsw), are connected with the
displacement of the lightlikgm + 1)-plane L in the spacesi‘”, and the forms
w? are connected with the displacement of the straight 4ipd, in this (m + 1)-
plane. Since (73) implies that fa; = 0 the pointAy remains fixed, the rectilinear
generator,, Ag describes am-dimensional bundle of straight lines with its center
at the pointAg, and this bundle belongs to the fixéd + 1)-dimensional subspace
L passing through this point.

Further consider an arbitrary point

z=7A0+ %A, + 7" A, (74)

of the generatoL of the lightlike hypersurfacé&”. From formulas (72) it follows
that the differential of any such point belongs to one and the sadimensional
subspaceipA- - - A A, tangent to the hypersurfaéé® at the original pointA,,. The
latter means that the tangent subspace to the hypersudifaisenot changed when
the pointz moves along the lightlike generatdr of the hypersurfacé/". Thus,
hypersurfacd/" is a tangentially degenerate hypersurface of rank

As a result, we arrive at the following theorem making Theorem 2 more precise:

THEOREM 8. If the rank of the tensoy;; defined by relation(20) is equal tor,

r < n — 1, then a lightlike hypersurfac&” of the de Sitter spac& ™ is a ruled
tangentially degenerate hypersurface of rankith (m + 1)-dimensional lightlike
generators;m = n—r—1, along which the tangent hyperplaned.tf are constant.
The points of tangency of lightlike generators with the hyperqua@ridorm an
r-dimensional submanifolf” on Q™.

The last fact mentioned in Theorem 8 can be also treated in terms of quadratic
hyperbands (see [6, p. 256]). By Theorem 8, the hypersutidcis the envelope
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of anr-parameter family of hyperplanestangent to the hyperquadri@” at the
points of anr-dimensional smooth submanifold” belonging to this hyperquadric.
But this coincides precisely with the definition of the quadratic hyperband. Thus,
Theorem 8 can be complemented as follows:

THEOREM 9. A lightlike hypersurfacé/" of rankr in the de Sitter spacﬁ;“rl is
anr-dimensional quadratic hyperband with the support submanifgltbelonging
to the Darboux hyperquadri@”.

Note also an extreme case when the rank of a lightlike hypersutfaée equal
to 0. Then we have

Vij =0, 61)620

The pointAg is fixed on the hyperquadri@”, and the pointd,, moves freely in
the hyperplane; tangent to the hyperquadri©” at the pointAg. The lightlike
hypersurfacd/" degenerates into the hyperplapgangent to the hyperquadr@”
at the pointAg, and the quadratic hyperband associated Wwithis reduced to a
0-pair consisting of the poiMg and the hyperplang.

Let us also find singular points on a rectilinear generdtaf a lightlike hy-
persurfaceU" of rank r of the de Sitter spacﬁf“. To this end, we write the
differential of a pointz € L defined by Equation (74). We will be interested only
in that part of this differential which does not belong to the generatd@y (72),
we obtain

dz = (%08 + 2"w!? + "@f)A, (modL).
By (69), (70) and (71), we find from the last relation that
dz = N;(Z)a)gAp (mod L),
where
N (2) = 8)2° — gung™ h5y2" — g7 a2 (75)

At singular points of a generatat the dimension of the tangent subspace
T.(U™) to the hypersurfacé/" is reduced. By (75), this is equivalent to the re-
duction of the rank of the matri’} (z). Thus, singular points of generatbrcan
be found from the condition

detN/(z) =0, (76)

which defines an algebraic focal submanifdtd of dimensionm and orderr in

the (m + 1)-dimensional plane generatér. The left-hand side of Equation (76)
is the Jacobian of the map: M" x L — P"*!indicated above, and the focal
submanifold¥ is the locus of singular points of this map that are located in the
plane generatoL of the hypersurfacé/”.
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If the rank of a lightlike hypersurfac&” is maximal, that is, it is equal to =
n — 1, then its determinant manifol@ is a set of singular points of its rectilinear
generatorA, Ag determined by Equation (50). On the other hand, & n — 1,
then singular points of the straight lings, Ag lying in the generatod. are also
determined by Equation (50), and they are the intersection points of these straight
lines and the manifoldt .

In a plane generatdr of the lightlike hypersurfac&”, let us find an equation of
the harmonic polar of the pointg with respect to the algebraic focal submanifold
F . Let us assume that the coordinatésandz” in Equation (74) are fixed, and
the coordinate? is variable. Then the point describes a straight line= Ag A
(zA, + 7"A,). The intersection point of this line with the focal submanifold
F is determined by Equation (76) in which the quantitigsand z" are fixed,
andz0 is variable. Equation (76) is of degreewith respect toz® and defines:
focal (singular) points on the straight lidaf each of these points is counted as
many times as its multiplicity. By the Vieta theorem, the coefficientd®)” ! in
Equation (76) is equal to the sum of roots of this equation. Thus,

n—1
E z?, = 72%guhl + 2"A",
p=m+1

1

-
Wherez?, are roots of Equation (76), and the quantitiésand)” are defined by the
formulas

1 1

)\’a = ;gpq)\,;q, )\,n = ;gpq)\,;q. (77)
Thus, the harmonic pole of the poiAg with respect to the foci of the straight line
[ has the form

C = (gapr“2” + 1"2") Ao + 2°A, + 2" A,

The locus of these poles on a plane generatof the hypersurfac&” is defined
by the equation

20— Az’ — A"z" =0, (78)

whose left-hand side is the trace of the matN¥ (z). Equation (78) defines a
subspace of dimension on the (m + 1)-dimensional generatdrof the hyper-
surfaceU". This subspace is the harmonic polar of the pdigtvith respect to the
algebraic focal submanifold.

For construction of screen distribution on a lightlike hypersurfé@eof rank
r < n — 1 we will need differential prolongations of Pfaffian equations (69)
and (70). Taking exterior derivatives of these equations, we find that

a a 0 n 0 a
(V)‘pq + Apg@o T Apg@y t gl’qwn+1) A wj =0, (79)

n n 0 a n n
(V)“pq + )‘pqwo + )\‘pqa)a + gl’qwn+1) A wg = O’ (80)
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where

a __ a a ,.s a ,.§ b a
Vg = iy — A5}, — A0y + A @,
VAL, = dk;q — A, — M o).
Applying Cartan’s lemma to Equations (79) and (80) and fixing the principal para-
meters (i.e., setting{ = 0), we find that

Vsh, + A%, 710 + 19, 10 + gpgi g =0,
VsA, + A 76 + A9, 0+ gpg7h g = 0.

(81)

Note also that by the last equation of Equations (5), the tegisodefined by the
first group of relations (67) satisfies the equations

Vs8pg = 0. (82)

Equations (81) and (82) prove that neither quantiti§s nor quantities\’,  form
a geometric object, but jointly, the quantitie$,, 7, , and the tensog,, form a
linear geometric object.

By Equations (81) and (82), the quantitigsand1” defined by formulas (77)
satisfy the equations

VsA® + Al + A'md + 1l =0, ©3)
VA" + Ml 4+ Al + i, = 0.
It follows that jointly, the quantities.” and A" form a geometric object which is
associated with a second-order differential neighborhood of a plane gernfeiftor
the hypersurfac&’”.

Next we construct the quantities

Cl;q :)\.;q—)\.ag[,q, a;q :)qu—)\.ngpq. (84)

By (80), (81), and (82), they satisfy the equations

0 0_

Vsay,, + ay, g + ap,m, =0, (85)

Vsal, + a;‘,qng +ap,m; =0.
These equations prove that jointly the quantiti€s anda;, form a tensor with
respect to the admissible transformations in a frame bundle associated with the hy-
persurfacd/". Let us assume that the indiceandg takem+1 values 1. .., m, n.
;Lhefn the equations, which the tensgr = {a;,, a,,} satisfies, can be written in
e form

Vsas, + a5 =0, (86)
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whereVsas, = 8as, — af w5 — a%ms + apgms. It follows from Equations (84)
that this tensor satisfies the apolarity condition
a,,8" =0. (87)

Consider the straight lineggA, connecting the poinfg with the pointsA,,
a=1,...,m,n. Their parametric equations can be written in the form

~

Ay = Ay + x4 Ao.

Let us find the points of intersection of these straight lines with the harmonic polar
K of the pointA, with respect to the focal submanifafél. Substituting coordinates
of these points into Equation (78), we find that

Xg =Xy, a=1....m,n,

wherei, = g,A” andi, = A",

The pointsC, = A, +1,Ap lying in the subspac& can be taken as the vertices
of a reduced frame associated with the hypersurtétand defined in a second-
order differential neighborhood of the plane generdtof this hypersurface. If we
consider our hypersurface with respect to this reduced frame, then we have

A=0, A% =dl,. (88)

It follows from Equation (83) that the 1-forms;, ; become principal forms:
Wyyq = bjol. (89)
With respect to the new frame, Equations (69) and (70) take the form

o __ o q o« _ o«
w, = a0, a, =a,, (90)

Consider the rectangular matrik = (a3,) in which « is the row number, and
the pair(p, g) = (g, p) is the column number. The matrix hasm + 1 rows and
%r(r+1) columns. But by (87), not more th%m(r+1)—1 columns of the matrixd
are linearly independent. Suppose that thak p, p < min{m + 1, %r(r +1) -1}
Construct the following tensors:

a(xlg — gpllgs‘lagsa(/ft and ag — gﬂyaya' (91)

It is not difficult to prove that the rank of each of these tensors is equal to the rank
of the matrixA, ranka*?) = rank(a) = p.
Construct the quantity

0 %p
a =G, ay; -y )

which is equal to the sum of the diagonal minors of ordesf the matrix (ag).

Since the rank of this matrix is equal g then if p > 1, the quantity: is different
from 0,a # 0.
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From Equations (86) it follows that the tensdy satisfies the equations
Vsa§ + 2a5md = 0.

Applying the formula for differentiation of determinants, we find from the last
equation that the quantity satisfies the equation

da + Zpang =0, (92)

i.e.,a is a relative invariant of weight2p.
Equation (92) is written for fixed principal parameters, i.e., under the condition
w¢ = 0. If these parameters are variable, then it follows from Equation (92) that

-2 (93)
Taking the exterior derivative of the last equation, we find that
(du[, — gl + a),,a)g + a)g) Aoy =0. (94)

This implies that the quantitigs, form a geometric object. Fas{ = 0, this object
satisfies the equations

Vsip + pwpmg + ng =0. (95)

It follows from Equation (93) that the geometric objec} is defined in a third-
order differential neighborhood of the plane generdtaf the hypersurfacé/”.

Consider the subspa@g, (V") = AgA A1/ - -AA,_1 tangent to the subman-
ifold V" described by the poimtg on the hyperquadri@”. This subspace belongs
to the tangent hyperplangto the lightlike hypersurfac&” and is orthogonal to
its plane generatak = Ag A A1 A --- A A, A A,. The geometric objeqt, allows
us to construct a normalizing subspacef dimensionr — 1 in T4, (V"). To this
end, consider the points

Zp = Ap + XpAo.

Differentiating these points, applying Equations (5), (69), and (70), and assuming
that the principal parameters are fixed, i/, = 0, we find that

S/Tp = (Vsx, + x,70 + n[?)Ao + n[’fgq.

This implies that the subspace spanned by the p(ﬁptis invariant if and only if
the quantitiesc, satisfy the differential equations

Vsxp 4 xpm5 + 7 = 0.

Comparing these equations with Equations (95), we see that they are satisfied if we
takex, = u,. Thus, the points

C,, ZA[,-i-u,pAo
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determine an invariant normalizing subspgce C,,.1 A -+ A C, 1.

Suppose that is an arbitrary point of the generatarof the hypersurfacé’”.
This point and the subspacgedefine anv-plane A, = x A ¢. Suchr-planes are
defined for all pointsc € U" and form anr-dimensionalscreen distributionA on
U" which is complementary to the generatéref U". Since the geometric object
u, is defined in a third-order neighborhood, then the screen distribution is defined
in the same neighborhood. Thus the following theorem holds.

THEOREM 10. If the rank of the matrixd = (a5,) is different from0, then in a
third-order neighborhood of a plane generatbrof a lightlike hypersurfacé/” of
rankr < n — 1, there is defined an invariamtdimensional screen distributioA.

If we place the verticest, of our frame into the point€,, then we obtain
u, = 0. This and Equation (94) imply that

0
w, = Cpqwg’ Cpqg = Cqp- (96)

The pointsC,, and the normalizing subspa¢e= C,,11 A --- A C,_1 are defined
in a third-order neighborhood of a plane generaiorand the quantitieg,, are
defined in a fourth-order neighborhood.

Let us prove that the fibration of normalizing subspaces we have constructed
determines an affine connection on a hypersurté@eéevhich can be considered as
anr-parameter fibration of itén 4+ 1)-dimensional plane generataks In fact, the
basic forms of this fibration are the 1-form§. Taking exterior derivatives of these
forms, we find that

dwg = wg A 67, 97)

whered) = o} — 8¢ 3. Taking exterior derivatives of the formd$ and taking into
account that by (96)af = 0, we obtain

dof —6; AOF = Rjwp A g, (98)
where
Ris = —gaﬁgp“a(‘;lsaﬁu + cqls“stp] + 8418”1t (99)

and

8ap O
g“ﬁ=(ob 1)'

Thus the following theorem is valid.

THEOREM 11. An invariant screen distribution induces a torsion-free affine con-
nection on the fibration of plane generators of a hypersurféée The curvature
tensor of this connection is determined by Equati®8), and its tensor Ricci is
symmetric.
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The last statement of Theorem 11 can be proved by a direct calculation. In fact,
contracting Equation (99) with respect to the indigeand:z, we find that

1
Rpg = Ryys = E(gaﬂg”agsaft + (r = 2)cpg + gpqg”cst)’
It is easy to see that this tensor is symmetRg, = R,,.

We did not consider yet only the case when the rank of the matrix (a},)
is equal to 0p = 0. In this case the matriA is the null-matrix, and the construc-
tion of an invariant screen distribution is impossible. Let us clarify the geometric
structure of the hypersurfade” in this case.

If this is the case, formulas (84) imply that

Mpg = A 8pg; Mpg = 2 8pq- (100)
Thus, the Jacobi matrix (75) of the mappirig M” x L — P"+! takes the form

Ny (2) = 85 (2° = gaph” — A7),
and the equation of the focal submanifdtdbecomes

detNy(z) = (zo — guprlz — z”)r =0.
Thus, the focal submanifol@ is anr-fold linear subspace

22— gurlz —7"=0 (101)

of dimensionm belonging to theim + 1)-dimensional plane generatdr of the
hypersurfacd/”. It is possible to prove that if > 2, then this subspace is fixed,
and the hypersurfac&” is ann-dimensional cone with atm + 1)-dimensional
plane generators and arrdimensional vertex defined by Equation (101).

In this case the submanifold”, along which the hypersurfadé” is tangent to
the hyperquadri@”, is anr-dimensional spher§”.

If r = 1, then the hypersurfacé” is an envelope of a one-parameter family
of isotropic hyperplanes that are tangent to the hyperquadtiat the points of
an arbitrary curvey. Finally if » = 0, then the hypersurfacé” is an isotropic
hyperplane.

Note that the invariant normalization of a lightlike hypersurfécewhich we
have constructed in Section 6 is a new geometric interpretation of a conformally
invariant normalization of a submanifold” of a conformal spac€” which was
constructed in [2] (see also [7, Ch. 3]).
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