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COMPUTER CHESS AND INDEXING

Overview of Computer-Chess History

Computer chess probably began in 1769 with an impressive chess automaton called
Turk (1) that had been devised and presented by Baron Wolfgang von Kempelen. This
automaton looked like a large desk with a chessboard and chess pieces on top. Before
the beginning of a game Turk’s doors were opened and the audience saw a prolifera-
tion of gear wheels inside. Over a few decades it participated in hundreds of
exhibitions and won against most of its opponents, including Napoleon. In May 1827,
however, two boys observed a small man coming out of Turk, revealing that there was
a chessmaster who made his moves from a secret compartment.

In 1914 an electromechanical device was demonstrated by an engineer named
Torres y Quevedo (2). In contrast to Turk, this was a real machine, capable of mating
an endgame with a king and rook against a king. This kind of ending is rather simple,
since a few rules can explain how to win in such a way. The application was quite a
marvel for that period, however.

Thirty years later, John von Neumann and Oskar Morgenstern (3) presented the
minmax algorithm and explained how it applied to chess. During the early 1950s, when
computers became available to a few people, a significant contribution was made by
two landmark papers. In his paper, Claude Shannon (4) described the basic ideas
concerning how a chess program could be constructed. Alan Turing (5) independently



COMPUTER CHESS AND INDEXING 46

wrote his hand-simulated chess program and one of its games. Both scientists
proposed the use of the minmax algorithm and a simple evaluation function.

In 1967, Mac Hack Six, developed by Richard Greenblatt at the Massachusetts
Institute of Technology, became the first chess program to play and win in a tourna-
ment game. CHESS 3.0, the Northwestern University chess program programmed by
David Slate and Larry Atkin, reached the level of a tournament player in 1970. In
1976, CHESS 4.0, programmed by the same team, reached the expert level. BELLE,
developed by Ken Thompson and Joe Condon at Bell Labs, was the first chess
program to achieve the American Master level. HIGHTECH, developed by Hans
Berliner, Carl Ebeling, Murray Campbell, and Gordon Goetsch at Carnegie Mellon
University, achieved the American Senior Master level in 1988. DEEP THOUGHT,
developed by Thomas Anantharaman, Murray Campbell, Feng Hsu, Andreas
Nowatzyk, and Mike Brown at Carnegie Mellon University, reached the level of
Grandmaster in 1988. In 1997, an IBM team that included Murray Campbell, Feng
Hsu, Jerry Brody, Joe Hoane, Joel Benjamin, and C. J. Tan developed DEEP BLUE, a
massively parallel computer running that became the first chess program to beat a
world champion in a regulation match. It won against Garry Kasparov in a six-game
match by the score of 3.5 to 2.5.

A more comprehensive overview of computer chess in general and its history in
particular can be found in Refs. 6-10. An overview of the theory and practice of
computer game playing, along with references on this subject, is found in Ref. 11.

Overview of Computer-Chess Conceptions

With more people involved in developing chess-playing programs, two philosophi-
cal camps have emerged: the emulation camp and the engineering camp. The
disagreement between these two camps is whether to emphasize simulating human
play or searching.

The first camp claims that computers should simulate humans’ playing by modeling
their decision-making process. Chess masters decide on their moves in a “knowledge-
intensive” mode, applying relatively small amounts of search. Their strategies of play
and the knowledge they use therefore should be simulated.

The second camp claims that computers should use their computational power by
using special-purpose hardware and/or applying brute-force search (i.e., extensive
tree searching on very large game trees using various Artificial Intelligence (Al)
techniques and complex evaluation functions). As is summarized in Ref. 12: “The
further a process can look ahead, the less detailed knowledge it needs.” It appears now
that the second camp has won. The most high-level playing programs belong to this
camp; for example, HITECH (13) and DEEP BLUE (I4).

Even the second camp, however, uses knowledge, especially in the following three
domains: (1) the opening stage (using theoretical opening books), (2) the middlegame
and endgame stages (transposition tables; see the section “Overview of Using Chess
Precedents” below, and (3) the endgame stage (endgame databases based on theoreti-
cal endgames and endgames constructed by special programs).




47 COMPUTER CHESS AND INDEXING

Computer-chess scientists have invested more in problem-solving heuristics than in
retrieval from past matches, however. In the next subsection we discuss things that
have done in the domain of using knowledge in general and previous cases in
particular.

COMPLEXITY OF CHESS

Shannon (4) estimated the number of different legal chess positions to be about 10%

(10 to the forty-third power). Shannon reached this estimation by the following

64!
(32! x (81?2 x (21’
tion for this combinatorial calculation is as follows: there are 64 squares on the
chessboard, 32 different pieces, 8 white pawns, 8 black pawns, 6 different groups of
two identical pieces (2 rooks, 2 bishops, and 2 knights for both sides), and 4 groups
of one piece each (king and queen for both sides) which do not imply on the
denominator.

This calculation takes into consideration only possible arrangements of the pieces
on the board. There are positions that are not legal, however (the two kings are in near
squares, both kings are checked, etc.), therefore chess problemists and mathemati-
cians estimate the number of different legal chess positions to be 10* (17).

In addition, the number of nodes in the chess tree that can be developed during a
search is estimated by at least 10'“ nodes (12, p. 173). Such number of positions is
impractical to store in memory, thus chess programs store only important positions in
three kinds of databases. (See “Overview of Using Chess Precedents below.) In
addition, there is, of course, a need to compress stored positions and played moves.
These subjects are discussed below.

calculation

which is more exactly about 4.63 x 10*. The explana-

Representation of the Chessboard and the Moves

SHANNON’S MAILBOX METHOD

Shannon (4) proposed that the chessboard be presented by 64 computer words in
the computer’s memory. Each word (like a mailbox) would contain information about
one square of the chessboard. The information can be one of 13 possible integer
values between -6 to 6: 0 for empty square, 1 for white pawn, 2 for white knight, 3 for
white bishop, 4 for white rook, 5 for white queen, 6 for white king, -1 for black pawn, -2
for black knight, and so on; that is, a word needs 4 bits to enable 13 possibilities. The
8x 8 chessboard is numbered according to the coordinate system presented in
position 1. A representation of a whole position needs 256 bits.

Additional variables are needed in order to know who has to move (White or Black)
and what the privileges are concerning castling and en passant captures. A move
(except of promotion and castling) can be presented by giving the source square and
the target square. For example, a white pawn on 10 that proceeds 2 squares will be
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presented as 1,0; 3,0. Such a move can be stored in the memory in 12 bits because each
square can be one of 64 squares (i.e., 26 squares needs 6 bits).

7071|7273 | 74|75 76| 7T

60| 61|62 |63 |64|65| 66|67

50 | 51 | 52 | 53 | 54 | 65 | 56 | 57

40| 41 | 42 (43 | 44 | 45 | 46 | 47

30131)32|33(34|35|36|37

20121122 (23 (24|25|26|(27

101112 |13 |14 | 15| 16| 17

00)01)02|(03|04(05(06]|O07

Position 1

More advanced programs have also used this procedure. Instead of a 8 x 8 board,
however, they used a 10 x 12 board with a special value (e.g., 7) stored of all squares
that are outside the board. In this way, they can easily detect the edges. In all these
methods (including Shannon’s) legal moves can be quite easily determined, simply by
defining the offsets to its present square. For example, a white pawn can proceeds +10
or +20 and a knight’s address can be changed by one of the following offsets: +8, +19,
+21, +12, -8, -19, =21, —-12. After calculating the move the program must check the
new address to see whether or not the move was legal.

A more modern method to represent the chessboard called a bit-map presentation
was proposed in the late 1960s by several groups independently. The first group to do
so was the Russian computer-chess group (15). Instead of using 256 bits for a whole
chessboard and assigning four bits for each square, they used 12 (64-bit) words for a
whole chessboard, assigning one bit for each square. The first word represents the
places of the white pawns. The second word represents the places of the black pawns.
In this way 10 other words represent all other kinds of chess pieces (knights, bishops,
rooks, queens, and kings) for both sides. Moreover, in this way we can define many
other needed words (e.g., one word for all squares attacked by white pieces or one
word for all squares for which a black knight can fork black pieces). Various chess
relationships can be presented in these bit maps. Bit maps that are oriented toward
relationships between pieces and generation of moves can support the program in
working out plans and achieving improved results. An example for a program that
makes extensive use of these bit maps is the advice-taking program developed by
Zobrist and Carlsson (16). A more comprehensive overview on representation of the




49 COMPUTER CHESS AND INDEXING

chessboard and the moves can be obtained in Chess Skills in Man and Machine, edited
by P. W. Frey (8), especially the third chapter.

OVERVIEW OF DATA COMPRESSING IN ENCODING CHESS
KNOWLEDGE :

Nievergelt found that any legal chess position of about 10 can be determined by
136 bits (17). His explanation for this is that a question with n possible answers is
about logyn bits. (If we make an accurate calculation, however, we will see that 133 bits
suffice, because 2'** is about 1.09 x 10 while 2'% is about 8.7 x 104.) Nievergelt
conducted experiments in which a human was allowed to determine a master-level
tournament position by asking multiple choice (yes/no) questions. The average
number of bits required to guess a position was about 70. The question of whether or
not the storage of positions by computers can be done with similar efficiency was
partially solved by Balkenhol (18), who wrote an algorithm encoding realistic posi-
tions by 1-bit answers to a sequence of yes-or-no questions. On the average his
algorithm found that 79 bits are required for such a position to be encoded. Special
questions about castling rights, en passant captures, or the player, however, will
require five additional bits of encoding.

Compressing chess games is another important issue in storing chess games in
databases. One simple method is the short correspondence chess notation method. In
this method every move is represented by the coordinates of its source and target
squares. Each move needs 12 bits, as 3 bits (eight possibilities) are needed for each
coordinate.

Althofer (19) proposed a method called compression by prediction, which
compresses tournament games with the help of a fast deterministic chess program.
Althofer’s method saved about 75% of the storage needed by the short correspond-
ence chess notation method (i.e., only about 3 bits for a move). The key idea of this
method was that the move is encoded relative to its probability to be played by a
tournament player.

Overview of Chess Precedents

KINDS OF CHESS PRECEDENTS

Chess precedents can be categorized into several main categories; for example,
chess games, chess positions, and chess patterns (chunks). The kinds of precedents
needed for a computer-chess program depend on the tasks the program should take
care of (e.g., playing, solving problems, and analyzing).

Each kind of precedent usually requires additional information, e.g., evaluation
and/or analysis in different levels, recommended moves to play, expected continua-
tion, and expected results for each size (white or black).
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CHESS PATTERNS AND THEIR ANALYSIS

A psychological study by de Groot (20) shows that chess players base their
evaluations of chess positions on patterns (called also chunks) gained through
experience. A pattern/chunk is part of a board position represented by a meaningful
grouping of pieces. Each board can be further divided into several chunks. According
to psychological evidence, human chess players perform chunking (27).

Two processes take place as a chess player improves his quality: (1) the number of
stored chunks increases and (2) part of his chunks become more rich and more
complex. (They will contain more pieces and more relationships between them.) The
player’s chunks guide him in deciding which move to play, or rather which strategy to
choose in a given position. Simon (22) estimates that a master has an estimated
repertoire of between 25,000 and 100,000 patterns.

Why use patterns in computer chess? Patterns encode important information. They
contain various situations with related information (e.g., evaluation and move to play),
and using them is considerably more powerful than brute-force search. Without
working with patterns many more additional searches would be needed to get similar
results.

Kinds of Chess Databases

Computer chess programs use four kinds of databases: opening databases, endgame
databases, chunk databases, and transposition tables. Why use databases when we
achieve such good results with brute-force search using heuristic evaluation functions?
The answers will be presented in the descriptions of the next three databases that
computer chess programs tend to use.

ENDGAME DATABASES

High-level playing in the endgame stage requires huge amounts of detailed knowl-
edge. Part of this knowledge is seldom used. Plans may contain variants of more than
40 plies, therefore brute-force search won’t be enough in the endgame stage.

Ken Thompson has constructed well-known endgame databases (which are availa-
ble on CD-ROMs) that are widely used. These databases include solutions for all five-
man endgames and several six-man endgames. Using his databases, Thompson (23)
showed several previously unknown results in the endgame literature, including that a
king and a queen win against a king and two bishops in general and that a king and a
queen win against a king and two bishops (or two knights) in most positions.

OPENING DATABASES

Brute-search functions using heuristic evaluation functions are relatively weak for
choosing good moves in the opening stage. This is because the opening emphasizes
optimal development of the pieces for the middlegame stage 20 to 30 plies later, which
are beyond the machine look-ahead horizon. All reasonable computer chess programs
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therefore use extensive databases of theoretic variants of different openings taken
from a wide variety of opening literature.

CHUNK DATABASES

A library of analyzed chunks in a limited domain (a special kind of king and pawn
endgame) has been used successfully in order to evaluate whole positions in a playing
program called CHUNKER (24). CHUNKER solved difficult problems using chunks
during search.

Flinter and Keane (25) proposed a method for automatically generating a case
library of chunks from master games. They took positions from 350 games of an ex-
world champion, Mikhail Tal, and created a library with 4,533 base chunks after
reducing chunks with a too low a frequency (too rare) and a too high frequency (too
primitive). Further work is needed to refine the generation of the chunks, however.

TRANSPOSITION TABLES

Transposition tables (26, 27) are large direct-access tables that store positions that
have already been evaluated in previous searches. They are used to prevent recalcula-
tions of the same positions and different kinds of symmetric positions, such as white
and black symmetric, vertical symmetric, horizontal symmetric, and diagonal sym-
metric. The transposition tables save not only the results of positions previously
evaluated, but also the moves that achieved these results and the depth of the subtrees
that have been searched.

Overview of Using Chess Precedents

USING HASH TABLES

In practice, the memory required for all the positions in chess exceeds the available
random-access memory of computers, therefore transposition tables are usually
implemented as hash tables (28). The most common kind of hash table used by chess
programs was defined by Zobrist (29).

A hash table is one with a number that is sufficiently large, called the hash value.
Using special hash functions, a given position is converted into a hash index (a number
between 0 and the hash value). If, for example, the hash table contains 2" entries, then
n low-order bits of the hash value are used as a hash index. The remaining bits, called
the key, are used to distinguish between different positions, which were mapped into
the same hash index. Using a hash table can cause two kinds of errors, which have been
identified by Zobrist (29). A short summary of these errors and methods to cope with
them can be found in Breuker et al. (30).

A hash table is usually implemented as one table with one entry per position.
According to Marsland (37) an entry should at least contain the following com-
ponents: key, move, score, flag indicating whether the score is a true value or only a
bound, and the relative depth in the subtree searched.
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The information stored in the transposition table is used for each node in the search
tree; that is, the resulting position for each checked move is looked up in the hash
table. If the position is present and its search depth is not smaller than the depth still to
be searched for the current position, then the information in the hash table is used.

Ebeling proposed a two-level hash table as an improvement (32). Schaeffer (33)
implemented this idea with two table positions per entry. The last recently used
position is stored in the first-level position and the other position is stored in the
second-level position.

LEARNING CHESS PRECEDENTS

Perhaps the most basic type of learning by a computer program is storing analyzed
positions in the transposition table. Such a program was constructed by Slate (34). He
implemented a simple method proposed by Samuel (35). This technique enables a
tree-searching program to accumulate selected positions and information related to
them during its play. The transfer of information constitutes a kind of learning from
experience. A limited capability of generalization from specific positions to classes of
similar positions is available. The learned knowledge may be used in further play via
the transposition table. The constructors of BEBE (36), a full-playing program,
developed a technique for updating its transposition program during playing by using
concepts of both short-term memory and long-term memory. Their experimental
results showed that when playing against a single specific opponent in 100 to 200
games, an improvement of about one level in chess rank is possible.

Learning patterns is considered to be more complicated. Such learning was done in
the program Patterns and Learning (PAL), constructed by Morales (37, 38). This
program plays simple endgames (e.g., a king and a rook against a king) while it
incrementally learns chess patterns expressed in a subset of first-order Horn clauses.

Grandmaster Nunn (39) used computer-generated endgame databases for analyz-
ing endgames and discovering new and interesting endgames. Nunn describes differ-
ent ways of using this software as follows: checking and correcting analyzed endgames,
analyzing over-the-board endgames, exploring endgames to extend theory, discover-
ing general rules that govern a certain type of ending, and forming key positions that a
human player could memorize.

Overview of Representation of Knowledge and
Knowledge-Based Programs

KNOWLEDGE-BASED REPRESENTATIONS AND PROGRAMS

The importance of the utility of expert knowledge is described in experiments made
by Schaeffer and Marsland (40). They show that knowledge cannot be added in
arbitrary order, however, since additional knowledge and interactions need to be
taken into consideration to solve contradictions and improve evaluating.

Michie’s (41) advice language applied Al techniques to solve simple endgames. A
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pattern-based representation of chess endgame knowledge was proposed by Bratko et
al. (42). An elaboration of this representation was given in Bratko and Michie (43).

Pitrat’s system (44) is a chess combination game program that analyzed a given
middlegame position, generated some plans, and tried to execute them while consid-
ering natural branches of the search tree. Wilkins’s system (45, 46) is also a planning
program for middlegame positions. This system is more complicated than Pitrat’s
system and has more kinds of plans. In addition, it was the first program that used
knowledge to control tree searching.

Wilkins’s program used a knowledge base containing about 200 production rules
(that resemble if-then rules) to find the best move in various chess positions. Each
production rule has a pattern (a complex interrelated set of features) as its condition.
The action can be one or more concepts that can be used by the program in its
planning process.

A more comprehensive model of chess knowledge and reasoning was proposed by
Seidel (47). This model elaborated the knowledge used in Pitrat’s and Wilkins’s
programs. Seidel proposed a “generative grammar,” which can be used to analyze
positions and create more kinds of plans than those proposed in the programs
mentioned.

Most computer chess programs do not involve using knowledge in the sense of
retrieving similar positions and adapting their solution (e.g., evaluation, move to play)
to the position at hand. There are some computer chess programs, however, that
involve this kind of using knowledge, which is better known as case-based reasoning,

Case-Based Reasoning

Case-based reasoning (CBR) means adapting solutions of previous cases to solve
new cases. In computers CBR has been successfully employed in several domains,
such as law (48) and medicine (49). Another potentially exciting CBR domain is game
playing in general and chess in particular, since human players use extensive knowl-
edge in their playing. Little research has been done in these areas, however. In CBR
research on non-chess-playing programs, we find treatment in the games of Eight-
puzzle (50) and Othello (51).

HITECH (13) is a pattern-based program that can play a full game at a strong
master level. It combines large and fast searches with pattern recognition. HITECH
has production rules that define temporary goals for both sides and the patterns
needed to recognize achievement of these goals during the search. At the start of each
search iteration the program analyzes the position and selects the appropriate
patterns. These patterns are compiled into a form that can be used effectively by the
program.

A pattern-based evaluation process is proposed by Levinson and Snyder (52). Their
system, called Morph, splits the given position into several chosen patterns, which
have already been evaluated, and computes the evaluation value of the entire position
based on the values of the chosen patterns. Morph is restricted to lower-level tactical
or piece position patterns with only a limited ability to abstract from these, however.
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Morphll (53) has addressed these concerns by abstracting new and wider patterns
from the rules of the domain. However, these patterns may not really coincide with the
way humans would classify the position, and thus only have limited explanatory use.
Morph and MorphlI do not supply any detailed evaluative comments about the given
position.

Lazzeri and Heller (54) constructed an intelligent consultant system for chess.
Their system ICONCHESS uses CBR and fuzzy logic techniques in order to supply
the user with high-level advice, especially for middlegame positions. ICONCHESS
analyzes a position, extracting its relevant features, and then evaluates the position
and proposes possible strategies for play. Then it retrieves similar positions by
considering syntactical similarities (exact place of pieces) and semantical similarities
(strategic goals/plans are similar) to supply additional advice. At the end ICON-
CHESS presents advice by combining graphical and a textual approaches. The cases
that Lazzeri and Heller use are positions taken from games played by experts and
masters and their analysis.

Another intelligent educational chess system constructed by Kerner (60) before
ICONCHESS will be discussed here as a simple but a detailed example of computer
chess and indexing. This system includes a case-based model that supplies a compre-
hensive positional evaluation for any given position.

THE EVALUATION PROBLEM

The quality of the player’s evaluation and analysis capabilities are the most
important factors in determining his strength as a player. These capabilities allow a
chess player to work out plans and to decide which specific variations to calculate.
Evaluation combines many different factors, each with its own weight, depending
upon the factor’s relative importance (55).

Most game-playing programs do not make the evaluation process explicit, however.
Current systems do not supply any detailed evaluative comments about the internal
content of the given positions; that is, there is a deficiency of evaluative comments
concerning given positions. General evaluative comments concerning given positions
have been supplied by several systems (e.g., 56-359); nevertheless these systems do not
supply any detailed evaluative comments about the internal content of the given
positions. Moreover, these systems are not case-based. We believe that using CBR can
contribute to the task of giving detailed evaluative comments about the internal
content of the given positions.

Out goal was the development of an intelligent educational chess system. We
believe that using CBR can contribute to the task of giving detailed evaluative
comments about the internal content of the given positions. In Kerner (60) we
proposed a case-based model that supplies an analysis for any chess position (except
for illegal and mate positions). A given position is analyzed by examining the most
significant basic features found in the position. The proposed analysis is mainly
directed at teaching chess evaluation and planning. This model should be helpful to
weak and intermediate players wishing to improve their play.
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EVALUATION OF CHESS POSITIONS USING PREVIOUSLY ANALYZED
POSITIONS

Our model is based on a concept called the basic chess pattern. A basic chess
pattern is defined as a certain minimal configuration of a small number of pieces and
squares that describes only one salient chess feature. In order to discover as many
different basic chess patterns as possible, we—with the help of chess masters—have
constructed a hierarchical tree structure that includes most basic positional features
concerning the evaluation of chess positions.

This tree is a hierarchical classification of most of the common chess features at
different levels of abstraction. At the root of the tree we have the concept of “static
evaluation.” Each leaf (a node at the last level) in this tree represents a unique basic
pattern (e.g., “one isolated pawn in the endgame stage”). Each basic pattern has two
suitable explanation patterns (one for white and one for black) that contain several
important comments concerning the discussed pattern.

Most of the concepts were collected from a variety of relevant chess books (61-65).
The highest-level concepts of this tree are shown in Fig. 1. Figures 2 and 3 illustrate
the subtrees describing the pawn and king concepts, respectively. A few important
concepts mentioned in these trees are defined in the glossary.

Each leaf that represents a unique basic chess pattern has its own evaluative value.
For example, the pattern “two isolated doubled pawns in the endgame stage” has an
evaluative value of —0.5. It is important to mention that the evaluative value given to

static evaluation

special patterns unspecial patterns
drawing winning threats  piece mobility area material
patterns patterns el e

pawn king other pieces

FIGURE 1. The evaluation tree.
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FIGURE 2. The evaluation subtree for the pawn concept.
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FIGURE 3. The evaluation subtree for the king concept.

each basic pattern is only a general estimate that represents its value in the majority of
the positions that include this pattern.

In addition, when evaluating a chess pattern we often consider the stage in the game
in which the pattern takes place. This distinction is important since the same pattern
can be evaluated differently in the ¢ and ne stages (the endgame stage and not the
endgame stage, respectively). For example, the pattern “isolated pawn” becomes a
greater weakness in the e stage since the importance of a pawn becomes greater.

The tree contains 613 nodes, of which 403 are leaves (i.e., basic patterns). This tree
is used primarily for two main tasks: (1) searching the tree to find all basic patterns
included in a given position, and (2) determining pattern similarity in the adaptation
process in our model. The structure of our evaluation tree is similar in some ways to
the E-MOP, the memory structure introduced by Kolodner (66). Our chess concepts
resemble Kolodner’s generalized information items, and our basic chess patterns can
be viewed as her “events.”

CHESS EVALUATIVE COMMENTS

Chess experts have established a set of qualitative evaluation measures. Each chess
position can be evaluated by one of these measures. Table 1 presents a few qualitative
measures, their equivalent quantitative measures, and their meanings. These meas-
ures are based on the common relative values of the queen, rook, bishop, knight, and
pawn, which are 9, 5, 3, 3 and 1 points, respectively (4).

Little research has been done concerning the task of giving detailed evaluative
comments for game positions. Most game-playing programs do not make the evalua-
tion process explicit, but rather give-only one evaluative score. A chess student is not
always capable of understanding why the specific chess program he is working with
evaluated the position the way it did. In order to increase his evaluating ability
effectively, he needs to receive explanatory evaluative comments. There are programs
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TABLE 1
A few qualitative measures (LMs) in chess, their equivalent quantitative measures (NMs),
and their meanings
Qualitative measures Quantitative measures Meaning
1 3 <NM ‘White is winning.
y 1<NM<=3 White has a big advantage.
r 0<NM<=1 White has a small advantage.
= NM=0 The game is even.
t -1=<NM <0 Black has a small advantage.
a -3=<NM<-1 Black has a big advantage.
NM < -3 Black is winning.

Note: The LMs are intervals of NMs, which are numbers based roughly on positional
evaluations.

that can supply a more detailed explanation concerning an evaluated position,
however. A few such programs are presented below.

A theory of evaluative comments has been proposed by Michie (56). In addition to
the construction of the classical minmax game tree, Michie has developed a model of
fallible play. His theory assigns to each position two values: “game-theoretic value”
and “expected utility.” Based on combinations of these values, his theory supplies
short comments on chess positions (e.g., “Black has a theoretical win but is likely to
lose.”). His theory does not supply any comments about the internal content of the
evaluated positions, however (e.g., the pawn structure). Moreover, this theory does
not suggest any plans for the continuation of the game.

Another explanation mechanism has been constructed by Berliner and Ackley (57).
Their system, called QBKG, can produce critical analyses of possible moves for a
backgammon position using a hierarchical knowledge tree. It gives only two kinds of
comments. The first is a general evaluation of the discussed position. The second is an
answer to the question “Why did you make that move as opposed to this move?” In
addition, Berliner and Ackley admit that their system is only able to produce
comments on about 70% of the positions presented to it.

In the last years, a few additional programs that can explain their positions, have
appeared [e.g., HOYLE (58) and METAGAMER (59)]. HOYLE and METAGA-
MER view a feature as an advisor that encapsulates a piece of advice about why some
aspect of the position may be favorable or unfavorable to one of the players. Using
these advisors, these programs can comment generally on positions.

To sum up, little research has been done concerning case-based detailed evaluations
of game positions in general and case-based detailed evaluations of chess positions in
particular. Michie, Berliner and Ackley, and Epstein and Pell contribute to the task of
giving general evaluative comments concerning game positions. Their models (and to
the best of our knowledge other existing models) nevertheless do not supply any
detailed evaluative comments concerning the internal content of the given positions.
We propose an initial framework for a detailed case-based evaluation model for
computer chess programs.
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Data Structures for Evaluation of Chess Positions

XPs

XPs are explanation patterns (67). Kass (68, p.9) regards XPs as “variablized
explanations that are stored in memory, and can be instantiated to explain new cases.”
The XP, according to Schank (67, p. 39), contains the following slots: (1) a fact to be
explained, (2) a belief about the fact, (3) a purpose implied by the fact, (4) a plan to
achieve the purpose, and (5) an action to take.

The XP structure has been applied to criminal sentencing (69). We find this
structure also appropriate for the domain of evaluating chess positions. While the
judicial XP describes a specific viewpoint of a judge concerning a sentence, the chess
XP describes a specific viewpoint of a chess position from either White’s point of view
or Black’s point of view.

Since we are concerned with the evaluation of the given position in the case of chess,
we use an evaluation slot instead of an action slot. The evaluation slot contains two
kinds of evaluative values: a quantitative measure (NM) and a qualitative measure
(LM) (demonstrated in Table 1).

In our model, each basic pattern in the evaluation tree has two general XPs (one for
White and one for Black). Six different examples of XPs are included in the MXPs
presented in Figs. 6 and 7. For the sake of convenience, we use some abbreviations: W
for White, B for Black, K for king and Q for queen. Without loss of generality, our
examples will be evaluated from White’s viewpoint, assuming that it is White’s turn to
move.

In summary, the XP structure seems to be a convenient data structure for describing
and explaining a specific chess pattern of a given position. Each chess position usually
includes more than one important pattern, however, thus the XP structure does not
suffice to explain an entire chess position.

LEARNING XPs

Learned XPs are important because they can direct players’ attention to an
important analysis that might have been overlooked otherwise. These XPs can
improve their understanding, evaluating, and planning abilities. In Kerner (70) we
describe game-independent strategies capable of learning explanation patterns (XPs)
for evaluation of any basic game pattern. We have developed five game-independent
strategies (replacement, specialization, generalization, deletion, and insertion) capa-
ble of learning XPs or parts of them. At present the application is only in the domain of

chess. These five strategies have been further developed into 21 specific chess
strategies.

MXPs

The MXP (multiple explanation pattern) structure (70) was first introduced to
assist judges in deciding which sentence to hand down in a new case. The MXP is a
detailed graphical explanation of a given case and its outcome. In general, the MXP is
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FIGURE 4. Chess position 1.

defined as a collection of XPs and an outcome slot. Each XP represents a unique
important viewpoint concerning the given case and carries its weight in its evaluation
slot to the outcome slot of the entire case. In our model, each important chess
viewpoint regarding the given position is explained and evaluated by a suitable XP, and
the general evaluation for the entire position is represented in the outcome slot.

In order not to overload the user with too much information, we stipulate that the
chess MXP is composed of the three most important XPs (those with the highest
absolute evaluation values) suitable to the discussed position. At present, our evalua-
tion function is a summation over the evaluation values of these XPs. We use this
simple rough function to enable the user to understand how the system reached its
general evaluation. The summation is nevertheless meaningful since each XP
included in the MXP describes only one unique independent basic pattern; that is, the
quantitative measure of the “general evaluation” slot is a summation over its XPs’
quantitative values. Its qualitative measure is dependent on its quantitative measure,
as seen in Table 1.

Figures 4 and 5 present two chess positions. Figures 6 and 7 describe the MXPs that
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FIGURE 5. Chess position 2.

analyze these positions, respectively. The most important chess concepts mentioned in
these MXPs are defined in the glossary.

Our MXP structure fits the way Steinitz (the first formal world chess champion,
between 1886 and 1894) taught players as was written by Kotov (65, p. 24): “Steinitz
taught players most of all to split the position into its elements. Naturally they do not all
play the same role in a given position, they do not have the same importance. Once, he has
worked out the relationship of the elements to each other, the player moves on the process
of synthesis which is known in chess as the general assessment.”

We believe that the MXP structure provides a better framework for explaining a
given position than those given by other systems because we supply comments on the
internal content of the position and our comments are more detailed. Moreover, the
application of the MXP structure for evaluating chess positions shows that the MXP
structure is an appropriate knowledge structure for more than sentencing criminals.
These findings lead us to believe that the MXP should be examined as a suitable tool
for other CBR domains in which there is a need to evaluate or to solve complex
problems.
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FIGURE 6. MXP for position 1.
Our Model

ALGORITHMS FOR EVALUATION OF CHESS POSITIONS

A Simple Evaluation Algorithm

We aim at evaluating any given chess position by constructing a suitable MXP for it.
We search our evaluation tree in order to find all basic patterns included in the
position. We choose only the most important basic patterns (i.e., the patterns with the
highest absolute evaluation values). We retrieve the stored XPs of these patterns and
combine them into a new MXP. The retrieved XPs are analogical to the snippets
(portions of cases) used in other CBR domains by Kolodner (71), Redmond (72), and
Branting (73).
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FIGURE 7. MXP for position 2.

A description of this algorithm, algorithm 1, is given here. Given a new chess
position (NCP)

Find the evaluation values of all basic patterns (features) included in the NCP.

Retrieve the XPs for the most important patterns.

Combine all these adapted XPs into an MXP.

Compute the general evaluation of the MXP of the NCP using a simple summation over
the evaluation values of the retrieved XPs,

& ik, e

This algorithm has been used primarily in the establishment of the original database
of positions and their MXPs. We use this database for evaluating new given chess
positions in our case-based evaluation algorithms described in the next subsection.
The positions of this data-base have been slightly adapted from positions taken from
different relevant chess books (e.g., 64, 65, 74, 75).
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Case-Based Evaluation Algorithms

Case-based algorithms that are more creative than algorithm 1 can also be pro-
posed. These algorithms use the database of positions and their MXPs. Controlled
learning of new positions with their MXPs enlarges the extent of this database and
improves the explanation ability of the evaluation algorithms. General descriptions of
two algorithms are given below.

Algorithm 2, given below, uses only the MXP most suitable to the NCP. Given an
NCP, the algorithm is as follows:

Retrieval of suitable MXPs and selection of the best MXP

1. Find the evaluation values of all basic patterns included in the NCP.

2. Choose the most important patterns according to their absolute evaluation values.
These patterns will be the indexes in the retrieval stage.

3. Retrieve all positions that their MXPs include at least one fact slot which is either one of
the patterns found in step 2 or a “brother” of one of them (according to the evaluation
tree). In case of failure, jump to step 8.

4. Compute the similarity measure relative to the NCP for each retrieved position.

5. Choose the most suitable MXP (i.c., with the highest similarity measure).

Adaptation and system evaluation

6. Keep exactly matched XPs.

7. Adapt suitable XPs of the chosen MXP to the NCP using the evaluation tree and
suitable general XPs.

8. [Explain other important acts of the NCP by general XPs.

Construction of the solution, real-world evaluation, and Storage
9. Combine all exactly found and adapted XPs into a new MXP.

10. Compute the general evaluation of the new MXP by summing the evaluation values of
its XPs.

11. Test the proposed MXP by a chess expert and make optional improvements by hand
where needed.

12.  If the proposed MXP is found appropriate for acquisition then store it according to the
fact slots of its XPs.

Algorithm 3 can use several MXPs suitable to the NCP. The differences between it
and algorithm 2 is step 8. In algorithm 3 step 8 is as follows. For all important facts of
the NCP not found in the facts of the MXP nor adaptable to the XPs of the MXP,
select the next MXP suitable to the NCP, and return to step 6.

In the next subsections we shall give a detailed description of the most important
CBR stages of algorithm 2.

RETRIEVAL OF SUITABLE MXPs AND SELECTION OF THE BEST MXP

Given an NCP, we retrieve all MPXSs that include at least one XP whose fact slot is
either one of the patterns found in step 2 or a “brother” of one of them (according to
the evaluation tree). The MXP with the highest similarity measure (s ) to the NCP is
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chosen for the next stage of our CBR algorithm. Our similarity function has the
following form: sm = a*ifs + b*ps where sm is the computed similarity measure, a
and b are specific constants, ifs is the important features’ similarity, and ps is the
position’s similarity. The ifs is similar to the contrast measure of Tversky (76), and the
ps is similar to the nearby measure of Botvinnik (77). Intuitively, the if and ps can be
regarded as a semantic similarity and a structural similarity, respectively.

The ifs function is the computed similarity measure between the important facts
(basic patterns) found in the NCP and the retrieved MXP. It is defined as follows. Let
S1 be the set of all facts found both in the NCP and in the retrieved MXP. Let S2 be the
set of all facts of the NCP for which we found near-neighbors patterns to them in the
retrieved MXP (according to the evaluation tree). Let S3 be the set of all facts found in
the NCP, but without near-neighbor facts in the retrieved MXP. Let S4 be the set of all
facts found in the retrieved MXP, but without near-neighbor facts in the NCP. Then, ifs
=o* Y Wi+B* Y (Witdi)-y* X Wi-& X Wiwherea,b,y,andd are spe-

ies1 €52 iE83 €S54
cific constants, w (weight) is the evaluation value of every discussed fact, whether it is
an important fact found in the NCP or a fact slot of an XP of the discussed MXP, and
d is a near-neighbor factor that measures the distance between each pair of facts.

The ps function measures the similarity between two positions: the NCP and the
position related to the retrieved MXP. It is defined by: ps = c*ips + d*wms + e *bms,
where ¢, d, and e are specific constants, ips is the identical pieces’ similarity, wms is
White’s material similarity, and bms is Black’s material similarity. The ips is defined as
the number of the exact pieces found on the same squares of the two positions divided
by the number of pieces found in the NCP. The wms and bms are defined as follows:

wms = I-abs {[wpm (NCP)-wpm (RP))/ wpm (NCP)}
bms = I-abs{[bpm (NCP)-bpm (RP)]/ bpm (NCP)}

where abs is the absolute function, wpm is the calculated material value of White’s
pieces (except the king) according to Table 1, bpm is the same function for Black’s
pieces, NCP is the new chess position, and RP is the retrieved position.

Adaptation and System Evaluation

After choosing the most suitable MXP we adapt its XPs in order to construct an
MXP for the NCP. In step 6, for the facts found both in the NCP and in the retrieved
MXP, we take exactly the XPs of these facts from the retrieved MXP.

In step 7, for the facts of the retrieved MXP found as nearneighbors (according to
the evaluation tree) using suitable general XPs, we operate a learning process on each
XP of the MXP (call each in turn XP-1) in order to adapt XP-1 to its matching fact in
the NCF. To validate the proposed adaptation we use some chess tests (e.g., a limited
search). These tests are partly a simulation of the proposed adaptation and serve as
the system evaluation to its own solution.

In step 8§, for all important facts of the NCP that are not found in the facts of the
chosen MXP or could not be adapted reasonably to the XPs of the chosen MXP, we
adapt suitable general XPs using chess tests.
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Construction of the Solution, Real-World Evaluation, and Storage

An MXP for the NCP is proposed after combining all exactly found and adapted
XPs and computing the general evaluation slot of the MXP using a summation over
the evaluation values of the XPs of the new MXP. A chess expert will either approve or
disapprove of this MXP. In case of disapproval, potential improvements are at present
inserted by hand. In case of approval, a potential learning process is executed.

We have constructed a learning mechanism that is able to enlarge our database of
MXPs. A new MXP will be added to the database of MXPs only if at least one adapted
XP is learned (step 7 and 8). Such an MXP is inserted in the flat database of MXPs.
The indexes that enable any kind of access (insertion or retrieval) to a MXP in this
database are the fact slots of the XPs of the MXP.

A Short Example

In this section, we illustrate a use of algorithm 2. Assuming the NCP is position 2
(Fig. 5), we retrieve the MXP presented in Fig. 6 (which is the MXP of position 1
presented in Fig. 4) as the best MXP for explaining position 2.

The adaptation process constructs the MXP presented in Fig. 7 as an explanation
for the NCP. Due to the lack of space, we will only explain the construction of the XP
that describes the Black’s backward pawn (a7) on the closed a file in the e stage (i.c.,
XP-1 in Fig. 7) from White’s viewpoint.

The fact slot of XP-1 of the NCP relates to a closed file, while the fact slot of the
XP-1 of the retrieved MXP relates to a semiopen file. These facts are close neighbors
in the evaluation tree. We therefore choose XP-1 of the retrieved MXP for the
adaptation process. In addition, we retrieve a suitable general XP according to the
discussed fact of the NCP. Using these two retrieved XPs, we construct XP-1 of the
new MXP.

In the fact slot we write exactly the discussed fact of the NCP. Since the belief and
purpose slots are the same in both retrieved XPs, we take them as they are. The plan
slots in the two retrieved XPs are different. The plan slot of the general XP proposes
to attack the weak pawn through its rank (i.e., the seventh rank). The plan slot of the
XP-1 of the retrieved MXP proposes to attack the weak pawn through its file (i.e., the
a file). Utilizing an elaboration strategy, we refine the plan slot of these two retrieved
XPs and construct a new plan slot, which is to attack the weak pawn through both the
a file and the seventh rank.

By using simple limited searching, we ensure that the new plan can be theoretically
made on the board. We find a way to switch the white rook on c5 to the a file (a5) and
to switch the white rook on c2 to the seventh rank (c7). For the evaluation slot we take
the evaluation value of the general XP since it relates to the same discussed fact.

Due to the approval of this MXP by our chess expert and to the construction of a
new more complex plan slot, we store this MXP in the database of MXPs according to
the facts slots of its XPs.

To sum up, we think that this controlled learning process will improve the evaluation
ability of our algorithms because of the accumulation of new MXPs. These algorithms
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become more adequate by deriving more creative and better evaluations than those
supplied with fewer MXPs.

SUMMARY AND FUTURE WORK CONCERNING THE DISCUSSED
MODEL

We have made a contribution to CBR research by extending its range in the game-
playing domain in general and in computer chess in particular. We have developed a
case-based model that supplies a comprehensive positional evaluation for any chess
position. This model seems to supply better explanations for chess positions than
other existing computer game-playing programs. In addition, our model includes a
learning mechanism that enables it to supply more adequate evaluation. We think that
this model in principle can be generalized for evaluating any game position for any
board game. The three highest levels of our evaluation tree are appropriate for game
playing in general. While the king and pawn subtrees are unique for chesslike games,
all other subtrees (e.g., threats and material) fit in general to all board games.

In computer chess, profound understanding has been shown to be inefficient
without deep searching, therefore to strengthen our model there is a need to add a
searching capability. Case-based planning is another important issue that we have to
deal with more deeply. The plans that we retrieve for each XP of the MXP for the
discussed position and adapt to fit it may be combined into one complete plan using a
game tree search. Finally, the addition of playing modules will enable our system to
(besides play chess) learn in the real world and therefore to improve its evaluating,
explaining and planning capabilities.

GLOSSARY

Advanced pawn chain: White/black head of a series of pawns in a pawn chain is in the 5th/4th rank,
respectively.

Backward pawn: A pawn that has been left behind by neighboring pawns of its own color and can no longer
be supported by them.

Blocked pawn: A pawn that is blocked by an opponent’s piece other than a pawn.
Castled king: A king that has made a castle.

Castling: A special move between a king and a specific rook with the same color. In this move the king is
moved two squares to the direction of the rook and the rook is moved over the king and placed on the
square near to it.

Center: Squares e4, d4, e5, and d5.
Closed file: A file with pawns of both colors.
Doubled pawns: At least two pawns of the same color on the same file.

Endgame: The last and deciding stage of the chess game. In this stage the position becomes simplified and
usually contains a relatively small number of pieces.

En passant capture: A special capture of a pawn that advances two squares in one move by an opponent
pawn standing near the result square. This capture is done in a diagonal movement and is allowed only
immediately after the advance.

Exposed king: A king without good defense, mainly without a good pawn cover.
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Fork: A simultaneous attack by one piece on two of the opponent’s pieces.
Grandmaster: The highest international rank in chess playing.

Isolated doubled pawns: At least two pawns of the same color on the same file that are not protected by any
neighboring pawns of their own color.

Isolated pawn: A pawn that has no neighboring pawns of its own color.
Mobility: The number of potential single moves in the current position.
Open file: A file without pawns.
Passed pawn: A pawn that has no opponent’s pawns that can prevent it from queening.
Pawn chain: Two consecutive series of pawns abutting on one another in consecutive diagonals.
Ply: Half-move. A move of only one side, either White or Black.

Protected doubled pawns: At least two pawns of the same color on the same file in which at least one is
protected by a neighboring pawn of its own color.

Semiclosed file: A gile with pawn(s) of only one’s own color.
Semiopen file: A file with pawn(s) of only the opponent’s color.

Superadvanced pawn chain: White/Black’s head of a series of pawns in a pawn chain is in the 6th/3th rank,
respectively.
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Yaakov HACOHEN-KERNER

DAHL, SVEND (1887-1963)

Svend Dahl died in November 1963 reading the proofs of the last volume of one of
the many valuable reference works for which he is known in Denmark. He was a
central figure in Scandinavian librarianship in the first half of the century by virtue of
his work in library planning and politics, his work as a library director introducing new
services and techniques, and by virtue of the many publications he wrote or edited. In
Europe at that time research libraries and public libraries existed separately. Svend
Dahl worked in both sectors and was anxious to narrow the gap and promote
cooperation between libraries. Outside Scandinavia he is chiefly known as the author
of an excellent one-volume introduction to the history of books. He always saw
libraries—and culture at large—in an international perspective, and he is a fine
example of a character in twentieth-century librarianship: the scholar librarian. In
accounts of Danish library history Dahl has a prominent position, but apart from
obituaries very little has been written about him outside Scandinavia (7).

Svend Dahl was born 1887 in Frederiksberg (Copenhagen). After high school he
started studies in zoology at the University of Copenhagen. In 1907 he was employed
as an assistant in the Royal Library at the suggestion of the library director H. O.
Lange, who became Dahl’s mentor in library matters. In 1909 he moved to the
Copenhagen University Library as an assistant. In 1911 he returned to the Royal
Library as an assistant librarian. By the time he received a master’s degree in zoology
in 1914 he had already published an extensive bibliography of Danish literature in
zoology (Bibliotheca zoologica Danica 1876—1906; 1910). While only in his twenties
Dahl took an active part in both library politics and in improving library services. As a
consequence he was appointed to the committee that prepared the first Danish law on
public libraries, which was passed in 1920. The aim of the law was to promote
foundation and development of public libraries all over the country as an instrument

This biographical essay is based on the papers and letters of Svend Dahl (in the Royal Library
Copenhagen) and on his published works. When not stated otherwise the publications have been pub-
lished in Copenhagen.
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