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Abstract. In this paper we study analogs of de Branges—Rovnyak spaces
and prove a realization theorem in the setting of upper triangular ma-
trices

1 Introduction

Given a CP*%-valued function S analytic and contractive in the open unit disk
D, the function

I, — S(z)S(w)*

1— zuw*

(1.1)

is positive in ). The associated reproducing kernel Hilbert space was introduced in
[10], [11] by L. de Branges and J. Rovnyak. This space, which we will denote by
H(S), plays an important role in various fields such as model theory of operators
in Hilbert and Pontryagin spaces, interpolation theory and realization theory; see
(12], (1]. The main property of the space H(S) of interest to us in this work is that
H(S) is the state space of a coisometric realization of S. More precisely, one has

S(z) = D+ 2C(I sy — zA) ' B, (1.2)
where
(£5) (&)-(%)  w
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is the backwards-shift realization defined by

(4u)(s) = 220 (1.9
Bi(z) = 250, (1.5)
Cu = u(0) (1.6)
Df = S(0)f. (1.7)

The matrix (1.3) is coisometric, and the realization (1.2) is closely outercon-
nected in the sense that N2 Ker CA™ = {0}. In general, it is not minimal but the
closely outerconnectedness property insures uniqueness up to a similarity operator
which moreover is unitary; see [6)].

Analogs of H(S) spaces and of the associated coisometric backward shift rep-
resentation appear in a surprising number of situations. For instance in the setting
of upper triangular operators [7], lower triangular integral operators [2] and in the
setting of compact real Riemann surfaces [8] and of the bidisk [3]. In [1, §2.5 p.
39] we showed how such spaces also appear in the setting of finite matrices, but no
theory was elaborated. The purpose of this paper is to begin such a theory. An im-
portant feature here is that we lose the coisometricity property; see equation (5.9).
The main results of the paper are the analogue of the backwards—shift realization
(1.4)~(1.7), see Theorem 5.1, and the analogue of the realization formula (1.2), see
formula (5.16).

2 Preliminaries

We denote by X;'*" the Hilbert space of C"*" matrices, with the Hilbert—
Schmidt inner product, i.e. for F,G € C**n

(F, G’)f,‘.2 =TrG*F. (2.1)
Recall that, for A € C"*", one has
(AF:AF)XQ S HA"‘Z ) (F! F)A;'z ] (22)

where ||A|| denotes the operator norm, i.e. the largest eigenvalue of the positive
matrix (AA*)%.

By Uy*", L3*™ and D3*™ we denote the spaces of upper—triangular, lower—
triangular and diagonal matrices, respectively endowed with the inner product (2.1).
Sometimes we will write for simplicity X, U, £ and D, especially when the Hilbert
space structure is not present. We denote by I, or I the n x n identity matrix. By
Z we denote the n x n nilpotent matrix

( 01 0 \
0 1,
Z =
1 0
0 1
\ 0
For any W € L the matrix ZW* is also nilpotent, and therefore

(I-2ZWw*)™ ! = ni(zw*)i.

=0
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Similarly, the matrix W*Z is nilpotent and we have
n—1
-w*2)7 = (w*zy.
j=0
Lemma 2.1 Let F € U. Then there exist uniquely defined diagonal matrices
Fjjj,j=0,... ,n—1 such that F = Y7 Z/Fy;) and
FU]=Z*ijFU]’ jZO,...ﬂ—l.
Similarly, there exist uniquely defined diagonal matrices Fij3,3=0,... ,n—1 such
that F = Y'~0 F(;1Z and
F{J-}=F{j}ZjZ*j, j=0,...n—1.
Proof We note that
ZM 77 = diag (0,...0,1,... ,1)
where the first j elements of the diagonal are equal to 0. It is then easy to see that

F[_}] = d.'la.g (0, T ,0, fj+1yﬂ,, 4 sf-n—j,n)
where the first j elements of the diagonal are equal to 0. The other claims are
proved similarly. il |

Since
inxn 2a Z*Eg)(n GB »D;Xﬂ. @ Zu;xn
we have the natural projections p_ : X — Z*L}*", py : AP*" — DI*" and

Py A" — ZUF™", respectively. The projections p_ + po and pg + p. from
A" to Uy™™ and L5*™ respectively, will be denoted by p and q.

3 The point evaluations

In [4] and [5, Section 3] a point evaluation at a diagonal point is defined for
an upper triangular operator. The analogue in the present setting is as follows: let
F € Y and W € D. The (left sided) point evaluation of F at W is defined to be
the diagonal matrix

n—1
FNW) = po ((1 -W2')'F) =Y w2y zi Ry, (3.1)
7=0

Similarly, the (right sided) point evaluation of F' at W is defined to be the diagonal
matrix

FAW) = po (F(I - Z*W)‘l) (3.2)

The space U3 ™" is a reproducing kernel Hilbert space with reproducing kernel
(I - ZW*)"" in the following sense.

Theorem 3.1 The linear span of the matrices of the form (I — ZW*) ' E
where E € D" and W € D™*", is equal to UP*™. For such E,W and F we have

<F, (I—Zw*)! E)wm = Tr B*FA(W). (3.3)
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Proof The second claim follows from:

(F, (I-ZW*)*U&:) T E* (I-W2)" ' F

M;Xn
= TrEpo ((I —wz*)! F)
= (FA(W),E)D;{XH
= TE'FNW).
It (F,(1 - ZW*)™" E)um = (FN(W), B)pgxn = 0 for all E and W as above,
then FA(W) = 0. Take W = AI; hence,

n—1 n—1
FMNAM) =) XNZ9Z2F; = D NF; =0
F=0 =0
for any A € C. Thus Fo=Fy=:= Fln_1) =0, which implies that F =0. [

We note that one has in a similar way

<F,E(I—W*Z)‘1> =Tr FA(W)E".

u;l:(h
Lemma 3.2 Let F,G €U and let W € D. Then,
(FG)Y(W) = (FANW)G)N(W)
and
(FG)2(W) = (F(GA(W))A(W).

Proof We have

n—1n—1
FG=)_ ) Z"Fnz‘Gy
k=1 i=1
and thus
n—ln-1
(FGY\W) = 3 S (WZz*)+z Ry 2¢G,,.
k=1 7=1
On the other hand
n—-1n—1
FAW)G = (WZ*)Z* Ry 286y
k=1 =1
and thus
n—1ln—1
(FNW)GYW) = 3 S (WZ* )+ 2+ Ry 26
k=1 ¢=1
The second equality is proved in the same way. O

When G is a diagonal operator we note that
(FG)N(W) = FNW)G. (3.4)

For similar results in the setting of upper triangular operators we refer to [5, Section
3.
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4 The state space H(S)

Let HY denote the space of CP-valued functions with entries in the Hardy space
of the unit disk Hy (see e.g. [14, pp. 320-323] for the definition of Hy), and let
S be as in the introduction. The operator M} : Hf — HJ of multiplication by S

1
on the left is a contraction and the operator range Ran ((I - M§MEY) 2) endowed
with the norm

- MiME)? =|lI- ,
({7 — MsMy7) ullm((!_M;Mg_)%) (T — 7l
is the reproducing kernel Hilbert space H(S) with reproducing kernel (1.1); in this
expression, 7 denotes the orthogonal projection onto the kernel of (I — M{MET)?.
From [9, Theorem 3.9], one has the equivalent characterization:
H(S) = {f € H}| k(f) < o0}
where
5(F) = If s = sup {IIf + Salits — gl }-
geH]

We refer to [13, Theorem 4.1 p. 275 for more connections between operator ranges
and the de Branges-Rovnyak spaces.
Motivated by the above discussion we define:

Definition 4.1 Let S € C"*™ be an upper triangular contractive matrix and
let M g be the operator of multiplication from the left from U3™™ into itself. The
de Branges-Rovnyak space associated to S is defined as

H(S) = {F eU*"| k(F) < 00}

where
K(E) = IIFIys)= sup {IF +SGlupun = [Gllygen .
GEu;nxn

That the space H(S) is a Hilbert space follows from [9, Theorem 3.9] since the
operator of multiplication by S on the left is a contraction from U;*™ into itself.
Still from that paper follows that #(S) is the range of the operator I'Z , where now
I'=Tpxn - MEME, with M§ the operator of multiplication from the left by the

upper triangular contraction S from U5 ™" into itself. T is a positive operator and
we have

(C2U,T3V )5y = (U, Ve, (4.1)

We set
EwE = (I-M§(Mg)*)((I-2ZW*)'E) (4.2)
(I—-8S8"(W)*)(I-Zw*)"1E. (4.3)

This is the analogue of the kernel (1.1). It follows easily from (4.1) that:

Proposition 4.2 The space H(S) is a reproducing kernel Hilbert space with
reproducing kernel Ky in the sense that

(F, KwE)yy(s) = (F"(W), E) ppxn (4.4)
for all F € H(S) and E,W € D.

We conclude this section with
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Proposition 4.3 Let D be a diagonal operator. The operator My, of multipli-
cation by D on the right is everywhere defined and bounded from H(S) into itself
with |Mp || < || DJ.

Proof Let F =3 ;" | Kw,E; be an element of H(S). Then,

m
hE =" KwED € H(S).
=1

Because of the finite dimensional hypothesis and since the Ky E span all of H(S),
this concludes that M, is bounded. We now estimate the norm of M?,: we have

|1FFysy = Tr (z E; Ky, (Wj)Ee)

and
IMbFlbys) = Tr (3 D*EjKiy, (Wy)EeD)
= T (3 DD'EjKiy,(W))E:)
= <Z E;K{'\Vf (Wj)Ef! DD*>X;xn
< DN - 1F sy
where we have used (3.4) and (2.2). O

5 The quasi—coisometric realization
The analogue of the backwards-shift realization (1.4)~(1.7) is given by:
Theorem 5.1 The formulas

AF) = (F- Fiy)Z" (5.1)
B(E) = (S-Si)EZ (5.2)
C(F) = Fg (5.3)
D(E) = SiFE (5.4)

define an everywhere defined bounded operator

(59)—(29).

The adjoint colligation is given by

A(KwE) = KwEZ-5-B*(KwE) (5.5)
B'(KwE) = Z*((S-Sp) 2")" (W)EZ (5.6)
C*(G) = (I-5S},)C (5.7)
D*(E) = SinE (5.8)

and is such that

A B A B\ ([ My, 0 (5.9)

C D C D a 0 I '
where M7 ;. is the operator of multiplication from the right by the diagonal operator
ZZ*.
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Proof We first show that A is everywhere defined:
I(F = Fyoy) 2" + SG‘ilf,;xn ~ Gl n

IIF{o}Z'lli;xn +IFZ* + SG|ypxn
—2Re (F(0} 2", FZ" + 8G) ypxn — ||Gll7 s
IFZ* +5GI2xn = | Fioy 2 e ~ [1Cl2gr,
since (F{O}Z*,SG)X;XH = 0 and (F{O}Z‘,FZ*)X;XH = {F{U}Z*,F{Q}Z*)X;xn.
But we have

IFZ* + SG|?

|FZ*||> + |SG|® + 2Re (F,8GZ)
= ||F+SGZ|*+||FZ*|* - | F|* + | SG|* - |SGZ|?
(5.10)

since

(FZ*,8G) =Tr Z*'G*S*F =Txr G*S*FZ* = (F,SGZ).
Hence we can write (where, from now on, we denote the norm of matrices without
the index apxn to lighten the notation),

I(F = Fi0}) 2" + SG g = IGIZ
= —IF@Z" 12+ IF2*|? - |F|? + ISG| - |G
+|F + 8GZ|? - |sGzZ|?
< NFlygs) + IEZ°I - |IFI? = |1Fop 22
Fls) = IF(I - 22°)| - | Foy2° P
< IFls) — 1Py 2°I1%

and it follows that A is bounded and in fact satisfies the inequality
1AF 35y < | Fli3s) = I Frop 2711 (5.11)
We now turn to the operator B:
I(S — S(ay)EZ* + SGI* - |2
ISt} EZ*||* + ||ISEZ* + SG|?
—2Re (S(0}EZ*,SEZ* + SG) — ||G||?

|

< -8 EZ*|? + ISEZ*|* + |ISG|* - |G|I*
< ISEZ*|? - S EZ*|I?

= (S-S EZ*|?

< EZ*|? - Sy BZ*|?

< |BI? - ISy EZ*|?

and so B is bounded. The operators C' and D are clearly bounded. We now
compute the adjoint colligation: the computation of the adjoint of the operator B
is as follows:

(G, B*(KwE))pyxn = (S~ S(0))GZ*, KwE)ss)
= (S~ 80))GZ)\(W), E) ppxn
= TrE"(I-W2Z*)\(S - S(0,)G2*
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since
((S = S})GZ*) W) =po (I =W Z*)"}(S - S;0))GZ").
Since
Tr B*(I-W2Z*)"Y(8 - S(0})GZ* = Tx GZ*E*(I - WZ*)~(S — S(0y)
we obtain that
B*(KwE) =po (S*(I - ZW*)"'EZ).

We now show that this expression coincides with (5.6): in view of the diagonal
expansions

n—1 n—1

I-2w)t=3 (2w, s =Y z*sy,,

k=0 k=0

the main diagonal of S*(I — ZW*)"1EZ is equal to
n—2

Y 2*ktgy 1 (ZW*)EZ,
k=0
which can be rewritten as

n—2
z (Z Z*"S{‘HI}(ZW")“') EZ,
k=0

i.e. as (5.6).
We now compute C*:
(EwE,C*(G)ns) = ((KwE)gyy,G)p,
= ((KwE)"(0),G)p,
= (KwE, KoG)ys),
and hence C*(G) = KoG = (I — 553,)(G).
The operator D* is trivial to compute, and we compute A*:
(KwG, A" (KwE))ns)
= (A(KwG), KwE)s)
= ((KvG - (Kv)0)G)Z*, KwE)s)
= Tr E*(I,—-WZ2Z*)™! (KvG — (KvG)oy) Z*
= Tr E*(I, -WZ*) 'KyGZ*
= Tv E*(In—-WZ*) Y (I, - SS"(V)*)(I,, — ZV*)"1GZ*
= (r G (I, -VZ*) (I, - SN"V)S*)(I, - ZW*)"'EZ)".
But
Tt G*(In — VZ*) " (I, — SNV)S*)(I, - ZW*)"'EZ
= Tt G*(In-VZ") (I, — SS"(W)*)(I, — ZW*)'EZ (5.12)
+Tr G* (I — VZ*) " (SSNW)* = SN(V)S*) (I — ZW*)1EZ (5.13)

The term (5.12) is equal to Tt G*(Kw EZ)"(V). To estimate the second term
we rewrite it as

Tr G*(In = VZ*) 1 (SSNW)* — SNV)S*)(I, — ZW*)"1EZ
=Tr (G*(In - VZ*)"1SS"(W)*(I, - ZW*)"'E)
+Tr (G* (I, —VZ*)'SpS* (I, — ZW*)"'EZ),
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and show that
P (S*(In — ZW*)'EZ) = SNW)* (I, - ZW*)"'EZ + B*(KwE). (5.14)
The formula for A* then follows. To show (5.14), note that
p (S*(I. — ZW*)"'EZ)
= p((§*-S"(W)*+ 8 W)")(I, — ZW*)EZ)
= SMNW)*(I,-ZW*)"EZ +
+p ((8* - S"(W)*)(I, - ZW*)"'EZ)
= SNW)*(I,-ZW*)'EZ +
+Po ((8* = S"(W)*)(I, — ZW*)'EZ) +
+p4 ((8* = S"W)* ). — ZW*)"'EZ)
= SMW)YU,-ZW*") " EZ 4+
+B*(KwEZ) +p4 ((S* = S"(W)")(In — ZW*)'EZ)

and to show (5.14), it is enough to show that

Py ((8* = S"W)")In— ZW*)'EZ) = 0. (5.15)
One has
n—1n—1
P+ (S*Un—ZW*)'EZ) = pg4 Z*‘Sff}(ZW‘)"EZ)

£=0 k=0

n—ln-—1

= Z*Sty (2W*)FEZ,
=0 k=¢

and

n—1 n—1
P+ (S"W)' (I - 2W*)™Y) = p, (Z > Z"‘S{‘eﬂZW‘)‘{ZW‘)’“EZ)

£=0 m=0

n—1n—144£
(Z ¥ z*fs;e}(zw*)kgz),

=0 Fk=¢

so that
n—1n—-1+¢
P+((8" = 8"W)")In— ZW*)'EZ) = ) > 2"'S{y(ZW*)*EZ
=1 k=n
=0

since (ZW*)* = 0 for k > n. Hence (5.15) holds and so does (5.14).
We now check the “coisometry property” (5.9). First, we verify that AC* +
BD* = 0. We have

(AC* + BD*)(E)

A((1-8Sioy) E) + B(SjyB)

= ((1-3810) - (1-5051y)) BZ* + (S - 510))Si0) E
= 0.
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Next, we verify that CC* + DD* = Ip,.
(CC*+DD*)(E) = C((I-85(y)E)+ D(S}o,E)
(I = 810} S{o} ) E + Syo} S0 B
= B
Finally,
AA(KwE) = A(KwEZ-S-B*(KwE))
= (KwEZ-S-B"(KwE)- (KwEZ - S-B*(KwE)) ) Z*
= (KwEZ~S-B"(KwE)+ Sy, - B*(KwE)) 2*
KwEZZ* — (S - S(0)B*(Kw E) 2*
and thus
(AA*+ BB*)(KwE) = KwZZ7*.
O

Theorem 5.2 Let S be an upper triangular contraction, and let H(S) be the

associated de Branges-Rovnyak space. Then, for W € D of norm strictly less than
1

SAW) = (D + CMy, (Liys) — AMy,)"'B) (I,). (5.16)
Proof We first prove that for F' € H(S), one has:
C(Ins) — My A)"Y(F) = FA(W). (5.17)

Indeed, let (I3sy — My, A)~1(F) = G; then,
F = G- MjAG)
G- AGW
G- (G~-Gp)Z*W
= G(In—Z"W)+ G0, Z*W,

so that
G=(F-GnZ'W)I, - Z2*W)~.,
Applying pg to this equation and using (3.2), we obtain Gy = F&(W}.
We obtain the realization formula (5.16) by using this formula with F =
B(I,)W: indeed, let Y = My, (Iys) — AM{,)~'B(I,). Then
CY = CMyy (Iysy — AMy,) ' B(I,)
= Cllxs) — My A)"' My, B(1,,)
= (BIL)W)> W)
= po ((5-510))Z*'W(I, - Z*W)™)
= po (S$(Z'W - I, + L,)(I, - 2’W)™)
= (psS(ln~ Z?W)™) - (po S)
= S%(W)- S,
from which the realization formula (5.16) follows. O
Remark 5.3 We are lacking a uniqueness result for (5.16).
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Remark 5.4 The preceding analysis is still valid in the case of block n x n
matrices whose entries are themselves matrices of size p x p or even operators. We
did not consider this case to lighten the notation.

Remark 5.5 The “point evaluations” F/(W) and F2(W) allow to consider
in the setting of (block) upper triangular matrices all interpolation problems con-
sidered for functions analytic in the open unit disk.
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