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Abstract

In this paper fuzzy dynamics are applied to the description of motivated
behavior. We have shown that in an important case of instrumental reflex
elaboration the theory gives a good agreement with the experiment and clears
up an important biological and behavioral features of this phenomenon.
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1 Introduction

Motivation is a cause for actions leading to achievement of some goal. Main
biologic motivations are: need of feeding, drinking, respiration, temperature
regulation, sexual motivation, avoidance of danger. There are also artificial
motivations as self-stimulation or drug-dependence. (see [1] and bibliography
there for details). If an animal knows how to act, its behavior is almost
deterministic and is governed by the long term memory patterns. If the
animal does not know how to act, it tries to reach the goal by choosing an
actions from the set of preferable actions in the given situation. This choice is
uncertain enough. It is unlikely that such decision is determined by internal
stochastic forces, because in this case the reaction would be looking as an
averaging the activity of the individual neurons that has not been observed
2].

The motivated behavior acts as follows. Signals indicating the motiva-
tion reach the motivation centers and excite the one (or sometimes a few)
of them. The neurons of the center send a reinforcement signal to the ”be-
havior neurons” that generate an action. The action generation take place
until the motivation cause disappear. Any motivation is connected with a
reward (positive reinforcement) or with a punishment (negative reinforce-
ment). There are experimental evidences [1] that the motivated activity of
the behavior neurons is a function of the neuron “damage” caused by the
reinforcement signal.

In non-deterministic motivated behavior the number of available actions
must be as large as possible in order to find the solution, but the possibility
of actions leading to dangerous situations must be minimized. In such a case
the use of the Fuzzy Dynamics (FS-dynamic for short) [3] (see also [4] for
details) is preferable since the min t-norm minimizes the maximal error. Also
the use of this dynamic description does not require an averaging which, as
mentioned above, was not found in the process of motivated action .

2 Experimental results

An important particular case of the motivated behavior under which the an-
imal learns how to avoid punishment is called an instrumental reflex elabora-
tion. It was shown [2] that even a single neuron can produce an instrumental
reflex reactions.



Without training the neuron activity decreases after multiple repetition of
the same stimulus. In the experiment, a single neuron of the snail Helix was
trained to preserve the activity in response to multiply repeating conditional
stimulus. The training procedure was as follows. The animal was punished
(negative reinforcement) if the trained neuron did not generate an action
potential in response to the conditional stimulus. So the activity of this
neuron become an instrumental reaction. Typical behavior of the training
and the surrounding (control) neurons are shown in Fig.1 and Fig.2.

At the last cycles of this procedure the activity of the trained neuron
remain high, while the activity of the control (non trained) neurons become
low. This show that the instrumental reflex was elaborated.

In these experiments forty sessions of neuron training were performed
for each of the trained snail Helixes and several physiological parameters of
the snail neurons were measured. It was found that the neuron activity and
specific characteristic of the inner neuron state (which was called above as
damage) play, apparently, main role in this situation.

Substantial for our consideration experimental results are shown in Fig.3
and Fig.4. These results could be summarized by the following qualitative
claims:

a-b The neuron activity increases if the neuron damage is large and decreases
if the neuron damage is small.

c-d. The damage increases with a negative reinforcement or high activity of
the surrounding neurons and decreases with a positive reinforcement
and a non-violent activity of the surrounding neurons.

We will describe the state of a neuron by the “exponents” of the activity
and of the damage :

r7 = In th — exponent of the activity,
0

D
o = In D—t — exponent of the damage,
0

for the training neuron and

Yy = lné
Ay’
Y2 = ln&
Dy’



for a control neuron, where A;, A. and D;, D, are current levels and Ag, D,
are some typical levels of activity and damage of the neurons. The velocities
of change of z; and x5 will be denoted by u; and uy ( vy, vy for y;,ys corre-
spondingly). The reinforcement value is denoted by r. Then, the linguistic
rules for the training neuron dynamics are:

a) uy is Positive for xo Positive,
b) wy is Negative for x5 Negative,

c) ugy is Positive for v Negative OR y; Positive,
d) wus is Negative for r Positive AND y; Negative,
while for the control neurons these rules are:
a’) vy is Positive for yo Positive,
b’) vy is Negative for yo Negative,

c’) vy is Positive for r Negative OR 1y, Positive,
d’) vy is Negative for r Positive AND 1, Negative,
To these laws we add a natural restriction:

e) uy,up and vy, vy are Limited.
These rules are logically related as

[a orb] and [c ord] and e (1)

which mean that velocity u; satisfy either rule a) or b) and velocity uy satisfy
either rule ¢) or d) and both of them satisfy e).



3 Theory

For the quantitative description of the fuzzy information about state of a
neuron we introduce a fuzzy state- s(x,t) as a grade of our belief or possibility
that the system is in the physical state x € X at the time ¢. We will assume
that this function has real values between 0 and 1 and the value s(x,t) = 1
corresponds to the most possible state, while s(x,t) = 0 to the less possible
state x at time t. Note that s is not a measure and in many cases it may not
be integrable. For mathematical foundation of fuzzy logic and introduction
to the main concepts see [6]. In accordance with F'S approach we consider a
fuzzy generator of the evolution - g(u;x), which is a possibility that system
has the velocity u at the state x. We have to assume that [5]

sup s(x,t) < sup g(u;x) (2)

and (for definiteness) we normalize g(u;x,t) and s(x,t) as
sup g(u;x,t) = sup s(x,t) = 1. (3)
Then, the dynamics law for fuzzy state can be represented in the form [3],[5]
s(x,t+0) ~ sup min {g(u;x,t); s(x —ud,t)}. (4)

where the time interval ¢ is assumed to be small. From a general point of
view such “pseudo-convolution” has been considered in [7].

It can be shown [3],[5] that in the limit 6 — 0 this equation is equivalent
to:

Os (x,1)
ot

where U(x, Vs, s) is solution of the optimization problem:

+ U’ (x,Vs(x,t),t,5(x,t))V;s (x,t) =0 (5)

(U - Vs) — is minimal with respect to U, (6)

under the restriction

g(U;x,t) = s. (7)

Equation (5) is the fuzzy analog of the Hamilton-Jacobi equation [8], with
the Hamiltonian

H =U’(x,Vs(x,t),t,5(x,1))V;s (x,1).
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Note that U depend only on the direction of Vs rather on Vs. If the minimum
in (6) is obtained on a set of elements of u, then U is equal to the set of
vectors, rather to a single one. Thus U(x, Vs, s) is a generalized vector field
or a set-valued function. For points with s = 1 condition (6) does not make
sense since in such point either Vs = 0 or is not defined and U must be
taken equal to all u satisfying (7). This can be shown by approximating
g(u;x,t) monotonically with a function with unique maximum at any given
u satisfying (7).

The Hamilton-Jacobi equations with not-smooth U(x, Vs (x,t) , t, s (x,t)),
that appear in the control theory, have been studied in [9],[10]. In our case
U may be a set-valued map, so that a whole interval

U (x,t) < U <UD (x,1),

satisfy to (6)-(7) (for example, for s = 1, see above and in [3]). In this case
the equation (5) is a differential inclusion rather then a differential equation.
Such equations where used by several authors to describe "nonstochastic”
uncertainty. See [11] and referenced literature therein for the definitions and
the theorems of existence of solutions for such equations.

In according with the standard theory of partial differential equations of
the first order [8], equation (5) can be solved by the method of characteristics
€(t) and ((t) of this differential equation:

s(§(t),1) = s (x,t = 0) = s0 (x). (8)
The characteristics satisfy the system of characteristic differential equations
[8]:

d

dﬁ = U(f? C? tv 80)7 (9>

dC 8U2(57 <7t750)

- = —————=(;— 0, 10

- Sl e (10)

with the initial conditions:

§0) = x (11)
C(0) = Vsp(x).

The quantity U(&, ¢, t, sg) should be found from the equations:

9(Us&t) = so (12)
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and

U; &t
¢= gD (13)
that is equivalent to the optimization problem (7),(6) (4 is a Lagrange mul-
tiplier).
Note, that s remains constant on the characteristics £(t):
ds(&(t),t 83
PELD 24 (U Gt =0 (14

dt

The system (12)-(13) is covariant under the transformation ¢ — f¢ and
8 — fB, where f is a positive scalar function of ¢ and £. If we put p =f(
with

df =1
= =1 1
B0 (15)
the system (9)-(10) becomes Hamiltonian:
d¢ OH
o Y 1
dp OH
o T 1
with the Hamiltonian
H(Sapa SO) = <pU(€a‘z‘ata SO)) . (18)

and with the initial conditions:

£0) = x, (19)
p(0) = Vsp(x).

For more information about FS-dynamics see [4]

4 Fuzzy dynamics of the reflex elaboration

Introduce a membership grade of the expression “a is Positive” as a smooth
monotone increasing function Pos (a) such that:

0 < Pos(a) <1, (20)
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In the mentioned above experiments the reinforcement r has been chosen as
an increasing function of the training neuron activity, so we can put:

Pos (r) = Pos (x7) . (21)

The truth value of the rule a) by use of the min-maz version of fuzzy logic
is

e = min { Pos(au, ), Pos (yxs)},

where o and v are some constants depending on the fuzziness of the state-
ments. By use of (20) this gives:

to = Pos (min {auy, yxsa}) .

Similarly for the other rules we obtain:

y = Pos(min{—au, —yxs}),
pe = Pos(min{a'uy, max{—r,v'y1}}),
pg = Pos(min{a/us, min{r, =y }}).

By the same way we have for surrounding neurons:

po = Pos(min{avy,vys}),

y = Pos(min{—avy, —yys}),

pe = Pos(min{a’vy, max{—r,vy1}}),
pa = Pos(min{a’vy, min{r,—'y1}})

and
pe (u;) = Pos (min {um,; — wi,wl,; + u;}),
per (v;) = Pos (min {v,; — v;, ), +v:}).

According to (1), the non-normalized possibility - x (u1,us; z1, x2) that the
velocity of change of the trained neuron state x = (x1, 2) is u = (uy, ug) can
be expressed as

X¢ = min {max {4tq, iy} , max {4ic, pat , pe} - (22)



Correspondingly, for the control neuron we have:

Xc = min {max {Ma’7 Mb’} , max {Mc’a :ud’} ) :ue’} . (2?))

The generator of evolution - g (u,v;x,y) of the neuron system can be ob-
tained by normalization with respect to u and v of min (x¢; x.). Thus:

min {x; (4%, y); Xe (Vix, ¥)} (24)
SUPy,y min (X¢: Xe) '

For simplicity we put the value of our constants «, ',y and 7' to be equal

1 and wy,; = vy = w (which is enough to obtain qualitative agreement with

the experiment). Then

sup min (x¢; X¢) =

u,v

. w .
= Pos (mln {2, | o], |yl |m1n{—x1,y1}|}> . (25)

The dynamics of this system is described in the terms of “fuzzy trajectories”
- X (t;50), Y (t; s0), where the constant 0 < sy < 1 is the preferability of the
given trajectory. These fuzzy trajectories are obtained from the system:

% (9pt ’
dp, _ 90 (pe- W),
dt ox
N oW
dt op.
dp.  9(p.-W)
dt oy (26)
where p = (py, pe) and W = (U (X,Y;p), V(X,Y;p)) is obtained as:
dg (U, V;X,Y
dg(U,V; XY
So0 = g (Uv V7 Xa Y) ) (27)

where (3 is an auxiliary gauge factor. Substituting (22) into (?77?) we get:

min [V, (U; X, Y}); ¥, (V; Y, X,)] =
= Pos! (soPos (min [V, Uern])) (28)
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where U = {¢ 1,9 o} :

Yy = min{w — Uy, w+ Uy;
max [min (Xy; U7) ;min (—Xo; —U4)]},
Yy = min{w — Uy, w + Uy;
max [min (—¢; Us) ; min (p; —Us)]},
¢ = —min(—X1,Ys),

and the similar expressions for ¥.; (V;Y,X;). Correspondingly we have:

‘Ijtm = SUP\Ijt(UaX7Y1):
U

. w
— min (5,15l ¢l )
U = supV. (V;Y, X)) =
Vv

. w
— min (5. 1%l ol

Here we consider only the case so = 1,p.. (0) = 0, which is a “tube” of
the most preferable trajectories. These trajectories does not depend on the
explicit form of the function Pos(a).

In this case a whole interval

U
VX, Y), (29)
satisfy equation (??). Thus, the equations (?7?) become:

dX

U (XY) < - <UD(XY),
_ dY

where U™ (X,Y), UH) (X,Y) and VIO (X,Y), VIH) (X,Y) are lower and
upper bonds of the solution of the equation (??) for sy = 1. The solution of
(26) for initial condition: X; (0) = Y3 (0) = ap < 0 (moderate initial neuron
activity) and X5 (0) = Y5 (0) < ag (small initial damage) is shown in the
Fig.5 and Fig.6. Qualitative agreement with the experiments is very good.



5 Concluding remarks

The proposed theory has an obvious phenomenological form and, thus, does
not need in assumptions about concrete physical and chemical mechanisms
of neuron activity. Although this feature can be considered as an advantage
of the approach, the problem of whether fuzzy dynamic is also realized on
the “microscopic” physical and chemical level, is still unsolved.

The brain is a unique object. We usually examine brain behavior like that
of any other object, but the brain itself also studies the environment. Which
logic does the brain use for description? The choice of the means for the
description of the environment is determined by the salient features of the
brain, not only by the expedient. The huge non-stability of brain function
[12], [13] at the every level of activity is well known. Animal behavior is not
repeated from trial to trial. Neural centers may or may not participate in the
same behavior. Reactions of individual neurons also are extremely non stable.
The behaviors of postsynaptic potentials and potential-dependent channels
of excitable membrane submit to quanta regularities. There is a factor desyn-
chronizing the output of a single neuron with various postsynaptic neurons
[14]. Increasing of chaos at the neuronal level has been demonstrated during
elaboration of a local instrumental reflex in Helix neurons [1]. Increasing of
the uncertainty during the middle stage of the reflex elaboration obtained
here (see Fig.5 and Fig.6) is in good agreement with these experiments.

There are several reasons for the uncertainty of brain’s decision-making.
Firstly, there is a deficiency of knowledge about the environment. This com-
ponent of uncertainty decreases after interaction with the environment. Sec-
ondly, there is the complexity of calculations executed by the brain. The
error in successive processes grows. Although the brain’s calculations are
also in-parallel, we will demonstrate later that in the real brain this does
not decrease the common error of calculations. However, the second com-
ponent of uncertainty may also decrease after memorizing the results of the
intermediate calculations during learning (e.g., the exactness of professional
skill improves after training). The final level for decision-making is, appar-
ently, molecular. There are data indicating that some elemental behavioral
properties, especially simple learning, are inherent to the neuron itself ([15],
[12] , [16],[17]). The main arguments for learning localization in a neuron
are that long-term memory is resistant to extensive nervous tissue ablation;
that learning may be executed locally in a limited part of brain tissue or by
means of local conditioned and unconditioned irritation of the neuron (see
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review [18]). Note that our theory do not assume a memorization process
in the reflex elaboration. Thus, the considered mechanism can provide an
adaptation even for creatures without long term memory.

It has been shown [19], [20], [21], [22] that a neuron becomes more ex-
citable in its reaction to a stimulus as the biological significance of the stim-
ulus increases, whereas it does not change its excitability to a neutral stim-
ulus. The isolated neuron is also capable of primitive plasticity [23]. Asso-
ciative learning in Drosophila is retained after metamorphosis, although the
brain undergoes considerable degeneration, Any controlled entity which does
not behave as a deterministic object may reorganization, and growth during
metamorphosis [24].

It may be supposed, that the uncertainty of the brain’s actions evoked
by the various reasons must decrease during experience and as the result of
the averaging. Nevertheless, this does not correspond to reality. The excep-
tions are the high degree the automation of actions, influence of a narcosis
and other incidents of the unconsciousness, when brain’s participation in
the behavior is rather limited. It could be supposed that in large neuronal
networks non-stability of activity of the individual neurons is averaged over
the ensemble. However, this does not conform to experimental data. The
result of the non-stability of the whole brain is not much smaller than the
non-stability of individual neurons and smoothing is absent. This problem
has been investigated on the example of elaboration of an instrumental con-
ditioned reflex in mollusks. By deficiency of information for the decision
making, when the brain uses trial-and-error methods [25], the condition of
a neuron changes from trial to trial. In different neurons these alterations
occurred coordinated. The actual choice is, evidently, simultaneously non
stable, but not random, since the same choice takes place in the various
brain neurons. Amalgamation of neurons in the ensembles is apparently the
main factor for consciousness [26]. This returns us to the assumption that
the absence of averaging by ensemble is determined by the fact that the de-
cision in the brain is made by the network. Apart from the aforementioned
objections, it should be pointed out that the time delay for decision-making
in cortical neurons is only 20-50 ms [27] and therefore the time for a signal
to travel around the neural network (as was supposed, e.g., in [28]) is absent.
Faint averaging in the brain suggests that neurons receiving the same kind
of information make similar decisions. The goal for brain function is survival
of the organism and the "goal” for neuron function is its own survival. Since
at every level of the neural system, from the organism to the macromolecule,
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behavior is non-stable, the dependence of a reaction magnitude on a stimulus
magnitude is not continued. At each level there is a threshold for activation
of the given system, from disturbances in homeostasis, via action potential
generation and opening of the channels of excitable membranes. During
routine activity, e.g. during perception of signals, the brain’s reactions are
continuous. However, for the most essential cases it is important to choose
between a maximum and a minimum. During threats on life the dangerous
possibilities are rejected, but during the absence of an immediate threat on
life the basis for behavior is the disturbance of neuronal homeostasis. This
disturbance induces a transient damage of the determined brain neurons and
their activities are directed to maximal protection from transient damage [1].
Therefore, for neurons playing a decisive role in actual behavior with an un-
clear result, the situation is generally critical and choice is simple: whether
it is necessary to generate action potential, i.e. it is necessary to the choice
is simple: whether or not it is necessary to generate an action potential, i.e.,
it is necessary to choose between a maximum and a minimum. We may con-
clude that activity of the active brain is extremely non stable in any level of
its function. However, in spite of availability of enormous number of brain’s
elements (10'° - 10 neurons; 10'2- 10" synapses and much more number
of the channels) and absence of the visible synchronizing influences (with
exception of the reception of the essential biological information) activity of
many different elements of the brain is coordinated and is not averaged by
the ensemble. Besides, even normal brain functioning is based on the main-
tenance of the equilibrium between life and death in corresponding sensitive
neurons. Therefore, the choice of uttermost decisions is the normal action
of the brain. We may consider that at least in the important cases neural
system have to make decisions by means of fuzzy logic. For a certain kind of
neurons a mechanism that could carry out min-maz operations was proposed
in [29].
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