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Abstract 
 
We present in this paper a methodology how to use 

'Parallel Automaton' to set up the requirements, to specify 
and to execute small Computer Based Systems (CBS). A 
'Parallel Automaton' is an extended form of the Mealy 
Machine. It handles a finite set of events (or variable 
conditions or clock conditions) which can occur in 
parallel, and performs a finite set of actions which can be 
done in parallel. In the 'Parallel Automaton' there is no 
concept of "global state" as in the Mealy Machine. 
Instead, to each action and each event, is associated a 
"private state" representing their occurrence in the 
application. Nevertheless, the number of events/actions 
private states   is also finite.  

This single notation ('Parallel Automaton' with Private 
States) can be used to describe in the same way 
requirements and specifications.  More than that, these 
two descriptions can be connected. The aims of the 
application can be described using a 'Parallel 
Automaton', as a black-box with initial inputs and final 
outputs. This 'Parallel Automaton' can then be refined 
and enhanced with intermediate conditions and actions to 
obtain detailed requirements. By successive refinements 
and enhancements, a sufficiently detailed executable 
specification can be derived. 

We present this methodology through a simple CBS 
example, for the requirements and the specifications 
using the 'Parallel Automaton' notation. We then give an 
architecture of a Virtual Machine that we have built to 
execute such a 'Parallel Automaton' on a network. 

Keywords :  Extended Automata and Finite state 
Machines, EFSM, Parallel Automata, CBS methodology 

 
 

1.  Introduction 
 
Most CBS applications contain concurrent parts e.g. : 

hard/soft parts, network distribution, windows and data-
bases software, etc..  Analysis and design methods (such 
as SFC/Petri-nets, UML, Corba, State-Charts etc.) contain 
notations and rules for specifications of concurrent parts. 
Modern languages (such as Ada, C++, Java etc.) now 

offer possibilities to program tasks or threads in current 
applications.  

Many languages and tools have been proposed to 
describe the requirements, to specify the solution, to 
implement and execute systems. In fact different tools or 
languages or platforms have been proposed for each stage, 
and that introduces a supplementary degree of uncertainty 
: is the translation from one stage to the other correct ? 

In our course of Real-Time Systems (at JCT-Jerusalem 
and at IUT-Paris), we teach how to use a simgle notation 
to specify, design and control CBS applications. This can 
be done using several methods cited above (SFC/Petri-
nets, State-Charts), but this requires their translation into 
Ada, C++ or Java for execution.  

We wanted a single tool which is able to describe all 
the stages of the development including the execution. For 
this we defined a new kind of generalized automata able 
to describe globally, applications which contain 
events/actions parallelism, synchronizations, and also 
timing or data constraints. 

Here we propose this model ('Parallel Automaton') 
which can be used to describe the requirements, to 
specify, to design  and also to control the CBS 
application. It can be implemented or simulated as a 
software scheduler for parallelism and synchronization, or 
as a hardware processor running a general 
parallel/synchronization automata table. It can be used to 
control applications or distribute algorithms in various 
changing conditions, by just changing the automata table. 

 
2.  A review of extended automata models  

 
In the following, we shall present a bibliographic 

review and compare various proposals of extensions to 
sequential automata, in which parallelism, synchronization 
and timing features were introduced. 

This review does not pretend to be exhaustive, but 
gives roughly the main kinds of possible extensions 
proposed until now. 

Extensions to sequential automata were proposed in the 
literature as theoretical models, some authors study 
parallel extensions to automata to specify and/or analyze 
grammars describing sets of events (or symbols) 
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e.g.[9][12][18] or set of processes e.g. [18][22]. Other 
authors view automata as specific kinds of geometrical 
spaces [17]. Others studied the rules of timed automata 
[19][20][21]. Other researchers studied the theoretical 
links between automata and temporal and/or linear 
logic[18][20].  

All these theoretical models are important and we are 
interested in applying these models of extended automata  
in real parallel implementations. So, here, we shall review 
(not extensively) such extended automata which have 
been used for design of protocols, Web programming, 
Data-Bases, simulation graphics, chip-design, real-time or 
concurrent or distributed software etc. 

 
2.1 A common representation for making 

 comparisons 
The problem is that each extended automaton proposed 

in the literature uses a different notation and a different 
mathematical abstraction. Each one has its own formalism 
and language.  

So to facilitate a clearer comparison, we tried to 
express each kind of these proposed extended automata, 
using a common representation of automata, as extensions 
of Mealy State Machines, i.e. using sets of registers for 
events, states, actions etc... and a table containing 
transition functions of the minimal form : 

    event, state  →    action, newstate. 
We shall try in this bibliographic review to classify the 

proposals into : extensions to state, time extensions and 
extensions to multiple events and actions. 

 
2.2  Extending the state of the Automata  

2.2.1 Adding Conditions to the state: In an early 
research (1974-77), we proposed a generalized model of 
Mealy Machine for the scheduling of synchronized 
processes for software, hardware and distributed systems 
[1-4].  This model has finite sets of events E{e1,e2,e3...},  
states S(s1,s2,s3...}, actions A{a1,a2,a3...} and boolean 
conditions C{c1,c2,c3...}. The transition function of this 
extended automata is of the form 
 em,sk,cn,!cp..etc.. →   ai,sr,!cq,ct.. etc.. 

which means : when the event em arrives in the machine 
state sk and if the condition cn is true and the condition cp 
is false  ..etc.. then  →  perform the action ai , put the 
automata in the state sr, and the conditions cq to false and 
ct to true..etc.. 

This kind of automata has a global state, like the 
classical Mealy Machine, it helps in describing 
synchronizations, using the boolean conditions C.  The 
receiving of parallel events is done by recording their 
arrivals each one in a given state of the machine, using 
conditions (boolean flags).  

Associated with Petri-nets, this model of automata has 
been used for designing, describing and executing the 

process control of chemical plants. Nevertheless this 
model does not express the possibility of parallel 
execution of actions. And also, to take into account the 
parallel events, you need a condition flag cn and a separate 
statement to record each event's arrival, and in addition, a 
statement to activate the action when all the events have 
already arrived, so it increases the number of states and 
statements. 

 
2.2.2 Adding variables to the state  EFSM  

Other extensions to FSM have been proposed [e.g.: 5-
8]. For instance, an n-dimensional linear space D of n-
tuples can been added to the finite sets of events, states 
and actions. D is not necessary finite. An ordered pair 
<state,value of D> is called a configuration of the 
machine, a set of configurations is called a region .  

The transition function of this automata is of the form 
em,sk,dn,… →   ai,sr,dt, ...  

For instance , in the case of a micro-controller [5], the 
space D can be made of a set of registers R, the events can 
be inputs I and the actions can be outputs O, so the 
transition-functions can be like : 

i1, s1,r1<7  →  out:=r1, s0, r1:= r1+4 
meaning that when the input i1 is true and the machine 

is in the state s1 , and if r1<7     then →    set the out:=r1 , 
set the machine to the new state s0, and increment r1  such 
as r1:= r1+4. 

This kind of automata too has a global state as regular 
FSM, but it helps in describing synchronizations using 
arithmetic conditions. It has been used in chip design, and 
in various protocol specification and analysis. 

In this type of modelization, it seems difficult to 
describe the parallel receiving of events and the parallel 
execution of actions. Parallel events could be recorded 
using register values as the space D can be defined as a set 
of booleans, and then it would look like the preceding 
‘automata with conditions’ model. In any way, we seek a 
model which easily expresses the possibility of parallel 
execution of actions. 

 
2.2.3 Parallel graphs to represent multiple states 

2.2.3.1 Stotts et al.[9] proposed a model of PFA 
(parallel finite automata) which is based on a modified 
interpretation of Petri-nets, it has a finite set of nodes 
(with initial and final nodes), a finite set of states (with 
initial states), a finite set of inputs that we call events in 
our common representation, a finite set of state transition-
functions  which are composed of node transitions, which 
can be written in the form : ei,{n2,n5,..etc..} →

 {n4,n6,..etc  } 
This means that when the input ei arrives in the state 

"where the nodes {n2,n5,..etc..} are active", then 
deactivate the nodes {n2,n5,..etc..} and then activate the  
nodes {n4,n6,..etc  }. 
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In fact, this model (which is an extension of the Moore 
automata) seems to extend the concept of a unique 
machine state, but here the state is represented by several 
nodes which can be active in parallel, when an event 
occurs. The transition-functions perform a unique action, 
and switches the state of the machine by activating new 
node(s). 

This model accepts a string of sequential inputs and 
treats it with a sequence of actions of parallel nodes 
activity. This 'Parallel Automaton' has been used [10-11] 
in multi-Web applications and in Hyperdocuments 
treatment. It is interesting, because it brings the idea of 
multiple-states, but it does not answer our search for 
parallel multiple events and actions. 

2.2.3.2 Badler et al.[13-14] use also an extension of 
Petri-nets called PAT-NETS (Parallel Transition 
Networks) for the representation of the movements of 
human bodies in virtual reality. Each part of the bodies 
can move in parallel, but in synchronization. In this 
extension of automata, they represent the parallel moves 
using a parallel graph which shows also  an extension of 
the global state concept to simultaneous states. This a 
good answer for graphical parallelism expression, but 
needs a translator to execute it. We prefer an 'automata 
description' which can be directly executed. 
 
2.2.4  Time extension to the automata state 

Alur and Dill [19] proposed to use "timed 
automata" to model the behavior of real time systems. 
Clocks are added to finite automata and timing 
constraints are put on the arcs of its state transition 
diagram.   In our tentative common notation it could 
be represented by  

eq, sp, condn(clockm) →    ak , sj , reset(clocki). 
which means when the input eq arrives in the 

machine state sp and the conditionn of the clockm is 
verified , then → do the action ak ,put the global state 
to sj, and reset the clocki.  

(in this interpretation, we do not use time-invariant 
conditions inside the states). 

All clocks start at zero, they progress at the same 
rate but they may be independently reset to zero. So as 
to enable timed automata to be converted to classical 
untimed automata, restrictions are put on the timing 
constraints. (Clocks can only be compared against 
constants for the most part and adding clocks time 
together is not allowed etc.) The region and zone 
constructions are used for making this conversion [19]. 
Closure decidability and verification are issues 
discussed. As timed automata may be converted to 
untimed automata, existing minimization and testing 
techniques may be applied or adapted to timed 
automata - e.g. Bloch, Fouchal, Petijean[15, 23], 
Springintveld et al. [16]. Another approach for testing 

timed automata proposed by Laroussinie et al. [20] is 
to convert an automaton to a characteristic formula in 
a timed logic, and then use model checking techniques 
for verification. These proposals are only time-
extension oriented, we want also to express and 
execute parallel actions responding to parallel events. 

 
2.3  Extending Automata for several events and 
multiple actions (I/O automata) 

Bob Harms [12] proposed an extended automaton that 
can take into account the arrival of several events, for this 
he used an extension of a Turing Machine which can read, 
each time, characters coming from several tapes in 
parallel. The machine has one global state, and a memory 
with statements of the form : 

evgr, evph,stj  →  acti, stk 
He used such a machine to model the human language, 

in which you have to take into account both the grammar 
(evgr) and the phonology (evph) of  a sentence. This very 
simple and nice, but in our case (real-time systems), we 
need also an extension to take into account timing and 
variable condition and multiple actions.  

  Nancy Lynch [24] has used an extension of automata 
formalism using multiple inputs, timers and variable 
conditions, and multiple outputs. But it is rather a 
formalisation of distributed algorithms, than an executable 
automata specification.  

 
2.7 Summary 

In the litterature review that we have presented, 
we saw various kinds of extensions to the Mealy model, 
we found extensions to automata to express parallelism of 
events[12], parallelism of actions and synchronizations [1-
4, 15-16, 24], expression of constraints on time [19-24] 
and data[5-8]. But we did not find all the extensions 
needed for our purpose of specification automata which 
also executable. 
 
3.  Our proposal :  the 'Parallel Automaton'  

 
For parallel or distributed applications, each branch of 

a parallel application or each processor of a distributed 
application has its own behavior, and can be described 
separately by a different automaton with its own local 
states. So a parallel application can be represented by a set 
of several (simple) interacting automata. But in this case, 
we risk coming back to the problem of the complexity of 
the description of the synchronizations between the 
various interacting automata, and to the problem of 
verifying that their interactions produce an execution 
corresponding to the global requirements of the 
application. 

This brings us to the idea of a single global automaton 
describing globally the parallel/distributed application, its 
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requirements, its groupings parallel events and their 
synchronizations, and all the parallel actions. So all these 
descriptions are done in one representation. It is likely to 
be easier to reason on it, because everything is described 
in one representation. Supplementary statements for 
handling the interaction between several independent 
automata are not needed (see our example in chapter 4). 

But this obliges us to define a new kind of automaton 
which allows to describe the receiving of multiple events 
in parallel, and the activation in parallel of multiple 
actions. The problem is that the number of states of such a 
global automata would explode because of three causes :  

(1) to take into account the synchronizations between 
several events 

(2) to differentiate the same actions/events that occur in 
various different situations in the application 

(3) to take into account all the possible values of 
variables and clocks. 

 
3.1  The notion of a machine with private states 

We propose that the global automaton would not have 
the feature of global state, but should take into account 
parallel events and actions each one in their own private 
states (to differentiate various branches or events or 
actions, or processors). This would avoid the explosion of 
the number of the states, since it would have the feature to 
deal separately with the 3 above points : event 
synchronization (in their private states), event/action 
differentiation (each state would then be just the 
occurrence number of the event/action), variable/clock 
values (each variable/clock would change its state only 
when they are required in a new case by the application).  

This bring us to the idea of a single automaton 
describing globally the parallel/distributed application 
corresponding to its requirements, but with private states 
for its events and actions. 

Remarks: It could be seen as a paradox, that a good 
way to describe a parallel/distributed application is to use 
a single (centralized) description, not several descriptions 
corresponding to the various parallel/distributed parts. But 
this way has advantages because it gives an overview of 
the global situation.  

a) Regrouping the requirements allows to enumerate, 
reduce and solve, in an easier way, the interaction 
problems between the various branches (common 
events),  

b) It can also reduce the necessary number of 
variables and clocks. 

c) Finally there is no need to deal with the problem 
of differentiating the handling of the same 
events/actions which can occur in various 
(synchronized) branches, during the progress of the 
application. 

 

3.2 Definition of a 'Parallel Automaton'  
Suppose we have a finite set of events (or conditions) 

which can be received in parallel, a finite set of actions 
which can be performed in parallel. Events can be valued 
or not, that is they can be Dirac signals (triggers) or 
conditions  (i.e. changes in values of variables and timers). 

To each action and each event, is associated a "private 
state" representing their occurrence number in the 
application. The number of  states is also finite. This is a 
'Parallel Automaton'. 

The execution of a 'Parallel Automaton'can be viewed 
as a set of several threads, each one being a succession of 
actions and events, according to their private states,  each 
thread is of the form : 

           applic                            automat            applic                        automat 

        produces                           performs           produces                    performs   

act1  →  /evt1,PS1/  →  act2  →  /evt2,PS2/  →  act3 
which means that an action act1 produces an event evt1 
associated with its private state PS1, in the application, 
and the occurrence of the pair /evt1,PS1/  in the 
automaton  will cause the activation of the action act2,  
and so on. 

The private state will change only in two cases :  
• Each time when the same pair act1 → 

/evt1,PS1/ occurs in different situations, 
• When the same variable or when the same 

clock is reset and used in different situations of 
the application, so their respective private state 
will change. 

This paradigm of state-change can also be suited to the 
applications containing several parallel branches of events 
and actions, each branch having its own private state. This 
comes in place of the Mealy model in which the execution 
is sequential with one unique global state. 

On the other hand, synchronizations can be described 
by a product of pairs /evti,PSi/ without changing the states 
to record the arrival of the events. And there is no need at 
all for a global state in the automaton, i.e. for the whole 
application, only private states for each couple 
event/action or for each branch in the whole application . 
Each transition of the generalized 'Parallel Automaton'-
table is written in a product form: 

ππππi /condi, LocalStatei/ → ππππk /actionk, newLocalStatek/  
condi are boolean relations, it can be an event, a signal 

or an input flag (true or false) e.g "evt1" or "!evt2", it can 
be a variable condition e.g. "v != 10", or it can be a clock 
condition e.g. "100<=clock(x)<=200". 

actionk are execution of actions,  it can be an output 
flag e.g. "out3", it can be the execution of a function e.g. 
"sendEvt(to)" or " changeState(g)", it can be the setting of 
a value to a variable e.g. "setvar( v, 18 )", or it can be the 
setting of a value to a clock e.g  "setclock( b , 100 )" or . 
"resetclock(t)". 

Remarks : 



 5 

1) In order to control the timing of execution, the 
'Parallel Automaton' can be synchronous, in the sense that 
it is activated at intervals of time ∆t , at each time ∆t, all 
the events (variable conditions, clocks, in their respective 
states) are taken into account, the automata-table is 
scanned, all the corresponding actions are performed 
simultaneously and must finish before the next ∆t. This 
means that there is one internal timer dealing with the 
scanning of the automaton, and external clocks used to 
measure the progression of the application. 

2) For analysis purposes, we do not deal with the 
progressing of the clocks - except that when a clock is 
tested it gets a value (as in quantum physics, the particle 
are supposed to exist only when they are observed). In the 
same way variables get their values only when used, and 
the occurrence of events are tested only when you need 
them in specific situations. This curious assumption, does 
not change the reality, nor the control of the application, 
but it permits to considerably reduce the explosion of 
states, since you consider new states only when the 
controller needs them. 

R3: A subset of the Parallel Automaton is the Mealy 
machine in which there is only one state register (this 
means that the machine is running only one thread of 
execution, and that it has one (global) state) : 
 /event1, state2/ → /action10, state12/ 

On the other hand, the scheduling of 
parallel/distributed applications, which have a finite set of 
simultaneous branches of executions, can be written in 
such 'Parallel Automaton' forms, using a finite set of state 
registers, each one, for each parallel branch, or for each 
pair event/action. 

 
4.  An example using a parallel automaton 

 
Let's take the Blood Test Machine, a simplified 

example, which contain parallelism and synchronization 
 

4.1 Informal Description of the problem 
Build a blood-test machine which can test Sugar, 

Cholesterol and Creatinin. The Nurse takes the blood and 
the data from the patient (name, address, doctor, date 
etc…,). The blood tube is introduced with an 
identification number in the machine, this blood is 
automatically divided (by a dispatcher) in 3 portions in 
order to perform the tests . The tests are made in parallel 
(but with various timings). The results are sent to the 
printer for the report, and to the cashier for the billing.  

 
4.2 Using a 'Parallel Automaton' to describe the 
requirements 

In order to translate the informal problem-description 
into a formal notation of requirements using a 'Parallel 
Automaton' form, we need to define sets of events, 

variables, conditions, actions, and clocks. Then describe 
the aims of the system in terms of 'Parallel Automaton'. At 
the first stage (aims and general requirements) you don't 
need to define all the events, variables, actions etc .., only 
the ones which are necessary to describe the initial inputs 
of the system (as a black-box), its main operations and its 
final outputs : 

For example, for the informal description of the 
BloodTestMachine, we can define the following valued 
Events : PatientEv and resultsEv, to which can be 
associated the following Variables : Data (for the 
PatientEv event), Crea, Chol and Sugar (for the resultsEv 
event), and also we can define the following Actions : 
CreaTest, CholTest and SugarTest, printer and cashier. 

 
PatientEv(Data)   CreaTest         resultsEv to the printer 

   CholTest 
   SugarTest      resultsEv to the cashier 
Figure 1:  A black-box requirements representation 
 
So, the Parallel Atomaton translation of the informal 

description (Figure 1) of the BloodTestMachine can be : 
[1] /PatientEv(Data), 0/ →→→→ / CreaTest,1/ / CholTest,2/  

 / SugarTest,3/ 
[2] 
/resultsEv(Crea),1//resultsEv(Chol),2//resultsEv(Sugr),3)/ 
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol), 

                       resultsEv(Sugar)),1/ / cashier(Data),2/ 
The first line [1] means that when the Automaton 

receives the event PatientEv with the value Data, it will 
activate the 3 parallel tests CreaTest, CholTest and 
SugarTest, each one in its own private state. The second 
line [2] means that when the Automaton has received the 
3 valued events resultsEv (each one in the private state 
corresponding to the respective tests), it will activate in 
 parallel the printer and the cashier with the values of the 
results. This is in fact a behavioural "goal" description of 
the requirements, the declarative description is not 
covered in this paper. 

 
4.3 Using a 'Parallel Automaton' to describe the 
Successive  specifications 

Now, by successive refinements, we can enrich this 
general description (goal requirements), adding more 
detailed events and intermediate actions, or variables, 
conditions and clocks. For instance, We can replace the 
line [1] by two lines such as : 

[1] /PatientEv(Data), 0/ →→→→ /divide,0/ 
[1'] /divided,0/ →→→→ / CreaTest,1/ / CholTest,2/  

 / SugarTest,3/ 
 To indicate that before performing the tests, you need 

to divide the blood in 3 parts. 
Then you can add some timing to the tests by replacing 

the [1'] line by 
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[1''] /divided,0/ →→→→ /CreaTest,1/ /resetclock(Cr),1/ 
 /CholTest,2/ /resetclock(Ch),2/ 
 /SugarTest,3/ /resetclock(Su),3/ 

And then add the time constraints to the line [2] :  
[2] /resultsEv(Crea),1/ /clock(Cr)=5,  1/ 
      /resultsEv(Chol),2//clock(Ch)=3,   2/ 
      /resultsEv(Sugar),3//clock(Su)=2,  3/ 
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol), 
                        resultsEv(Sugar)),1/ / cashier(Data),2/ 
So, we shall get a full specification : 
 [1] /PatientEv(Data), 0/ →→→→ /divide,0/ 
[1''] /divided,0/ →→→→ /CreaTest,1/ /resetclock(Cr),1/ 

 /CholTest,2/ /resetclock(Ch),2/ 
 /SugarTest,3/ /resetclock(Su),3/ 

[2] /resultsEv(Crea),1/ /clock(Cr)=5,  1/ 
      /resultsEv(Chol),2//clock(Ch)=3,   2/ 
      /resultsEv(Sugar),3//clock(Su)=2,  3/ 
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol), 
                        resultsEv(Sugar)),1/ / cashier(Data),2/ 
[3] /print_end , 1/ /cash_end,2/  →→→→ /finish, 0/ 
 
Notes: The private  states of the clocks are changed 

only when these same clocks are tested in different 
situations.  

The 1st line [0] initializes the machine for the first 
time. In the 2nd line [1], when the PatientEv event occurs 
with its Data , the machine divides the blood into 3 parts. 
In the 3rd line [1''], when the event divided arrives, the 
machine starts in parallel the 3 tests each one with its 
respective clock, we mark each parallel branch by a 
different private  state. In the 4th line [2], when the 
parallel events resultsEv come with their respective timing 
conditions (each one in its private  state), the automaton 
activates the printer and the cashier passing them their 
parameters. The last line [3] re-initializes the machine 
when the printer and the cashier have both sent their end 
events. 

We can use this PARALLEL AUTOMATON as a 
unifying notation along all the stages of the development 
process :  

[i] to define its requirements,  
[ii] then to specify the solution,  
[iii] then as an execution tool (hard and/or soft) which 
implements this solution,  

 
5. 'Parallel Automaton' as an execution tool 

 
The specification as a Parallel Automaton can also 

serve as a solution to build the application. Furthermore 
this automaton can help in simulating it in a rapid 
prototyping. 

For this, a Virtual Machine can be designed as a 
platform to run the 'Parallel Automaton'.  

This can be a platform for a single processor and in 
that case the parallel actions will be handled as time-
shared threads, or the platform can be designed to run the 
application on a network with several machines, and in 
this case we can distribute the parallel actions on various 
processors and run them as real parallel processes. 

We have built such a network platform to emulate the 
'Parallel Automaton' on several machines. Here is the 
architecture of the emulation. 

The 'Parallel Automaton' can be used as an interpreter 
to execute the applications, for this it is necessary to build 
a Virtual Machine as a run-time platform. 

There are several ways how to implement such a 
Virtual Machine , let us give one that we have developped 
on a star-syle network: 

The Virtual Machine is made of 4 parallel threads for 
controlling the 'Parallel Automaton' on a main computer + 
N threads on N satellite computers (each one for each 
parallel action) : 
4 parallel threads for the PARALLEL AUTOMATON 
VM on a main computer : 

1- An "event Handler" receives the events from the 
network, each one with its private state, the Handler 
transforms the pair /E,S/ into a flag (using a reference-
table: /Em,Sn/ →Fk) and updates this flag in the "Arrived-
Flag Vector". 

2- A "clocks-conditions Handler" manages a set of 
clock registers (each one associated to a private state), 
each time the real-time clock ticks it increments the clock-
registers and updates the "Arrived-Flag Vector" if a 
condition is reached (according to a reference-table  

/clockm(condition), Sn /→Fk). 
3- A "variables-conditions Handler" manages a set of 

Variables (each one associated to a private state), each 
time an action-function modifies a variable, it updates the 
"Arrived-Flag Vector" if a condition is reached (according 
to a reference-table /Variablem(condition), Sn /→Fk). 

4-an "Automaton Processor" is activated each ∆t by a 
timer when it searches in the "Automaton table" to 
activate the transitions for which the events arrived and 
the (variable and clock) conditions are true. The 
"Automaton table" is like a reference-table  

(Maskn → /listn(action-functions,S/). Each Mask 
corresponds to the Arrived-Flag Vector relevant for each 
transition, if a Mask corresponds to the present "Arrived-
Flag Vector", the "Automaton Processor" executes the 
action-functions indicated in the "Automaton table" for 
this transition, and updates the acknowledged flags of the 
Arrived-Flag Vector (then the satellite computers receive 
the acknowledgement of their events). 

N action-threads on N satellite computers 
The action-functions are distributed on the network on 

various computers working in parallel. The action-
functions are activated when receiving (from the 



 7 

"Automaton Processor") a message with its private state. 
When an action-function finishes its work, it sends back to 
the event-Handler computer an event with its private state. 

Notes 
1) In a fault-tolerant view, all the computers of the star-

network have the same Virtual Machine and actions 
Threads, only one computer plays the role of the Main 
VM. If the Main Parallel Automaton Processor fails, the 
first Satellite computer, which sends an end-action event 
and receives back a net-error, will become the new main 
VM and will send a notify-message to all the other 
satellites. The other satellites will send him again their last 
not acknowledged events to update the actual lost 
Arrived-Flag Vector. If a satellite fails after receiving the 
order to perform an action, the main VM computer will 
know it by a time out exception, and will send the same 
action to do on another satellite. 

2) So at the beginning, the global PARALLEL 
AUTOMATON of an application is split and  coded in 
several reference-tables :  

*> the event/flag table  /Em,Sn/ → Fk 
*> the clock/flag table  /clockm(condition), Sn /→Fk 
*> the variable/flag table 

 /Variablem(condition), Sn /→Fk 
which are made of all the pairs /condi,Sj/ of the 

application, and serve to detect the occurrences of the 
various conditions and translate them in Flags of the 
"Arrived-Flag Vector". 

*> And finally the PARALLEL AUTOMATON table
 Maskn → /listn(action-functions),S/ 

which serves to compare the various transition-Masks 
with the actual "Arrived-Flag Vector", in order to activate 
the corresponding relevant action-functions. 

 
6.  Conclusion 

 
In this paper, we define a PARALLEL AUTOMATON 

and show how we use it in order to describe formally the 
requirements of Computer-Based Systems, to specify it,  
and to execute it.  Our Engineering students used this tool 
on a lot of examples since 1995. They have built 
platforms to emulate a Virtual Machine running 'Parallel 
Automaton'. And we intend to build a prototype of co-
processor based on this model. 

The main advantages of this notation are : 
• same notation at all steps of development: 

requirements, specifications, execution etc… 
• it reduces the problem of validation when 

passing from each step to the next one, 
• parallelism and private states reduce the 

number of automata statements, 
• this notation is close to the way of work of 

automation-engineers (on controllers and PLC) 
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APPENDIX : Converting 'Parallel Automaton' 
    to Sequential Ones 

 
For verification purposes, it is useful to convert a 

PARALLEL AUTOMATON into a sequential one. This 
we describe informally. 

1) Removal of "NOT". 
A transition rule such as:    /!e1 , s1/ ...... → /.. , ..//.. , ../ 

.is replaced by a collection of transition rules: 
    /E , S/ ...... → /.. , ..//.. , ../ .... 
for all events (or conditions) and state pairs /E , S/ such 

that /E , S/ ≠ /e1 , s1/ . 
2) A state of the sequential automata is a tuple of 

private  states of the components of the 'Parallel 
Automaton'. An event of the sequential automata is a tuple 
of events handled by components of the 'Parallel 
Automaton', and similarly for actions/outputs. 

The symbols "n_e" and "n_a" are used in the sequential 
automata to denote "no event received" or "no event 
produced" by components of the 'Parallel Automaton'. 
With this in mind, a transition rule such as: 

    /e1 , s1//e2 , s2/ → /a1 , s1'//a2 , s2'//a3 , s3'/ 
is replaced by a collection of transition rules: 
(e1 , e2 , E3 , E4 ...... En) (s1 , s2 , S3 , S4 ...... Sn) 
  → (a1 ,a2 , a3 , n_a ...... n_a) (s1' , s2' , s3' , S4 ...... Sn) 

where S3 to Sn range over all private  states of components 
3 to n of the 'Parallel Automaton' respectively, and E3 to 
En range over all events including the null event "n_e". 
(Note there is no change to private  states S4 to Sn .) 

3) Regarding timed 'Parallel Automaton', the above 
construction can be used to deal with all components of 
the transition rules except for those dealing with the time. 
But once this has been done, we will have a sequential 
timed automata and the algorithms described for example 
in [19] can be used to convert such a sequential timed 
automata into an untimed one. 

Reducing the number of states 
The above construction can produce a very large 

sequential finite automata from a 'Parallel Automaton'. 
Using only relevant private  states and relevant event sets, 
the automata can be reduced significantly. 

A relevant state is one which may be read at its next 
access. If the next access is a write or if it will be never be 
accessed in the future, its value is not relevant and so may 
be set to zero or omitted from the tuple. Relevant states 
may be determined by a path analysis of the parallel 
automaton. Initially we assume all private  states are zero 
(not relevant). 

Similarly, relevant event sets are those sets which are 
formed from the events on the left hand side of a single 
transition. Event sets which would activate more than one 
transition, are replaced by a sequence of the event sets of 
the left hand sides of the transitions. For verification, all 
orders of events arrival need to be tested, so event sets 
which activate several transitions may be ignored. 

With this in mind, a transition rule such as: 
    /e1 , s1//e2 , s2/ → /a1 , s1'//a2 , s2'//a3 , s3'/ 
is replaced by a collection of transition rules: 
{e1 , e2} (s1 , s2 , S3 , S4 ...... Sn) 
  → (a1 ,a2 , a3 , n_a ...... n_a) (s1' , s2' , s3' , S4 ...... Sn) 
where for a relevant state, Sk ranges over all private  

states of component k, and for a state which is not 
relevant, Sk is zero. (Note there is no change to private  
states S4 to Sn .) 

Relevant state and event sets are important in other 
settings, for example, to reduce the state explosion in the 
construction of product automata [19]. 
 
Notion of Conflict Free Automata 
A conflict free automaton is one in which there can be no 
simultaneous read and write, or two writes (of different 
values) to the same location (private state, output, etc.). 
By examining the left hand sides of pairs of transition 
rules, we can determine if they may be active 
simultaneously. If they can be active simultaneously, the 
right hand sides are examined to see if they involve a 
read/write or write/write conflict. In this way, potential 
conflicts can be identified. (This is a strict approach and 
perhaps these conditions can be relaxed ). 
Testing conflict free automata should be simpler, since if 
transition rules can be active simultaneously, the end 
result does not depend on the order of activation. (In this 
way they bear similarities to deterministic sequential 
automata.) Thus all possible interleavings of concurrent 
activities need not be considered, one is enough. 
The parallel automaton example in this paper is conflict 
free according the strict approach, even though we did not 
have this in mind when defining it. 

 


