
 IEEE 2001 - ECBS, Washington D.C., April 2001 1 ה"ב
(Minor corrections made April 2001 after publication)

Using 'Parallel Automaton' as a Single Notation

 to Specify, Design and Control small Computer Based Systems

H.G. Mendelbaum1,2 , R.B. Yehezkael1 (formerly Haskell)
1Jerusalem College of Technology - POB 16031 - Jerusalem 91160

2Univ. Paris V, Institut Universitaire de Technologie, 143-av. de Versailles, Paris 75016, France
Email : {mendel, rafi}@mail.jct.ac.il Fax 00-972-2-6751-200

Abstract

We present in this paper a methodology how to use

'Parallel Automaton' to set up the requirements, to specify
and to execute small Computer Based Systems (CBS). A
'Parallel Automaton' is an extended form of the Mealy
Machine. It handles a finite set of events (or variable
conditions or clock conditions) which can occur in
parallel, and performs a finite set of actions which can be
done in parallel. In the 'Parallel Automaton' there is no
concept of "global state" as in the Mealy Machine.
Instead, to each action and each event, is associated a
"private state" representing their occurrence in the
application. Nevertheless, the number of events/actions
private states is also finite.

This single notation ('Parallel Automaton' with Private
States) can be used to describe in the same way
requirements and specifications. More than that, these
two descriptions can be connected. The aims of the
application can be described using a 'Parallel
Automaton', as a black-box with initial inputs and final
outputs. This 'Parallel Automaton' can then be refined
and enhanced with intermediate conditions and actions to
obtain detailed requirements. By successive refinements
and enhancements, a sufficiently detailed executable
specification can be derived.

We present this methodology through a simple CBS
example, for the requirements and the specifications
using the 'Parallel Automaton' notation. We then give an
architecture of a Virtual Machine that we have built to
execute such a 'Parallel Automaton' on a network.

Keywords : Extended Automata and Finite state
Machines, EFSM, Parallel Automata, CBS methodology

1. Introduction

Most CBS applications contain concurrent parts e.g. :

hard/soft parts, network distribution, windows and data-
bases software, etc.. Analysis and design methods (such
as SFC/Petri-nets, UML, Corba, State-Charts etc.) contain
notations and rules for specifications of concurrent parts.
Modern languages (such as Ada, C++, Java etc.) now

offer possibilities to program tasks or threads in current
applications.

Many languages and tools have been proposed to
describe the requirements, to specify the solution, to
implement and execute systems. In fact different tools or
languages or platforms have been proposed for each stage,
and that introduces a supplementary degree of uncertainty
: is the translation from one stage to the other correct ?

In our course of Real-Time Systems (at JCT-Jerusalem
and at IUT-Paris), we teach how to use a simgle notation
to specify, design and control CBS applications. This can
be done using several methods cited above (SFC/Petri-
nets, State-Charts), but this requires their translation into
Ada, C++ or Java for execution.

We wanted a single tool which is able to describe all
the stages of the development including the execution. For
this we defined a new kind of generalized automata able
to describe globally, applications which contain
events/actions parallelism, synchronizations, and also
timing or data constraints.

Here we propose this model ('Parallel Automaton')
which can be used to describe the requirements, to
specify, to design and also to control the CBS
application. It can be implemented or simulated as a
software scheduler for parallelism and synchronization, or
as a hardware processor running a general
parallel/synchronization automata table. It can be used to
control applications or distribute algorithms in various
changing conditions, by just changing the automata table.

2. A review of extended automata models

In the following, we shall present a bibliographic

review and compare various proposals of extensions to
sequential automata, in which parallelism, synchronization
and timing features were introduced.

This review does not pretend to be exhaustive, but
gives roughly the main kinds of possible extensions
proposed until now.

Extensions to sequential automata were proposed in the
literature as theoretical models, some authors study
parallel extensions to automata to specify and/or analyze
grammars describing sets of events (or symbols)

 2

e.g.[9][12][18] or set of processes e.g. [18][22]. Other
authors view automata as specific kinds of geometrical
spaces [17]. Others studied the rules of timed automata
[19][20][21]. Other researchers studied the theoretical
links between automata and temporal and/or linear
logic[18][20].

All these theoretical models are important and we are
interested in applying these models of extended automata
in real parallel implementations. So, here, we shall review
(not extensively) such extended automata which have
been used for design of protocols, Web programming,
Data-Bases, simulation graphics, chip-design, real-time or
concurrent or distributed software etc.

2.1 A common representation for making

 comparisons
The problem is that each extended automaton proposed

in the literature uses a different notation and a different
mathematical abstraction. Each one has its own formalism
and language.

So to facilitate a clearer comparison, we tried to
express each kind of these proposed extended automata,
using a common representation of automata, as extensions
of Mealy State Machines, i.e. using sets of registers for
events, states, actions etc... and a table containing
transition functions of the minimal form :

 event, state → action, newstate.
We shall try in this bibliographic review to classify the

proposals into : extensions to state, time extensions and
extensions to multiple events and actions.

2.2 Extending the state of the Automata

2.2.1 Adding Conditions to the state: In an early
research (1974-77), we proposed a generalized model of
Mealy Machine for the scheduling of synchronized
processes for software, hardware and distributed systems
[1-4]. This model has finite sets of events E{e1,e2,e3...},
states S(s1,s2,s3...}, actions A{a1,a2,a3...} and boolean
conditions C{c1,c2,c3...}. The transition function of this
extended automata is of the form
 em,sk,cn,!cp..etc.. → ai,sr,!cq,ct.. etc..

which means : when the event em arrives in the machine
state sk and if the condition cn is true and the condition cp
is false ..etc.. then → perform the action ai , put the
automata in the state sr, and the conditions cq to false and
ct to true..etc..

This kind of automata has a global state, like the
classical Mealy Machine, it helps in describing
synchronizations, using the boolean conditions C. The
receiving of parallel events is done by recording their
arrivals each one in a given state of the machine, using
conditions (boolean flags).

Associated with Petri-nets, this model of automata has
been used for designing, describing and executing the

process control of chemical plants. Nevertheless this
model does not express the possibility of parallel
execution of actions. And also, to take into account the
parallel events, you need a condition flag cn and a separate
statement to record each event's arrival, and in addition, a
statement to activate the action when all the events have
already arrived, so it increases the number of states and
statements.

2.2.2 Adding variables to the state EFSM

Other extensions to FSM have been proposed [e.g.: 5-
8]. For instance, an n-dimensional linear space D of n-
tuples can been added to the finite sets of events, states
and actions. D is not necessary finite. An ordered pair
<state,value of D> is called a configuration of the
machine, a set of configurations is called a region .

The transition function of this automata is of the form
em,sk,dn,… → ai,sr,dt, ...

For instance , in the case of a micro-controller [5], the
space D can be made of a set of registers R, the events can
be inputs I and the actions can be outputs O, so the
transition-functions can be like :

i1, s1,r1<7 → out:=r1, s0, r1:= r1+4
meaning that when the input i1 is true and the machine

is in the state s1 , and if r1<7 then → set the out:=r1 ,
set the machine to the new state s0, and increment r1 such
as r1:= r1+4.

This kind of automata too has a global state as regular
FSM, but it helps in describing synchronizations using
arithmetic conditions. It has been used in chip design, and
in various protocol specification and analysis.

In this type of modelization, it seems difficult to
describe the parallel receiving of events and the parallel
execution of actions. Parallel events could be recorded
using register values as the space D can be defined as a set
of booleans, and then it would look like the preceding
‘automata with conditions’ model. In any way, we seek a
model which easily expresses the possibility of parallel
execution of actions.

2.2.3 Parallel graphs to represent multiple states

2.2.3.1 Stotts et al.[9] proposed a model of PFA
(parallel finite automata) which is based on a modified
interpretation of Petri-nets, it has a finite set of nodes
(with initial and final nodes), a finite set of states (with
initial states), a finite set of inputs that we call events in
our common representation, a finite set of state transition-
functions which are composed of node transitions, which
can be written in the form : ei,{n2,n5,..etc..} →

 {n4,n6,..etc }
This means that when the input ei arrives in the state

"where the nodes {n2,n5,..etc..} are active", then
deactivate the nodes {n2,n5,..etc..} and then activate the
nodes {n4,n6,..etc }.

 3

In fact, this model (which is an extension of the Moore
automata) seems to extend the concept of a unique
machine state, but here the state is represented by several
nodes which can be active in parallel, when an event
occurs. The transition-functions perform a unique action,
and switches the state of the machine by activating new
node(s).

This model accepts a string of sequential inputs and
treats it with a sequence of actions of parallel nodes
activity. This 'Parallel Automaton' has been used [10-11]
in multi-Web applications and in Hyperdocuments
treatment. It is interesting, because it brings the idea of
multiple-states, but it does not answer our search for
parallel multiple events and actions.

2.2.3.2 Badler et al.[13-14] use also an extension of
Petri-nets called PAT-NETS (Parallel Transition
Networks) for the representation of the movements of
human bodies in virtual reality. Each part of the bodies
can move in parallel, but in synchronization. In this
extension of automata, they represent the parallel moves
using a parallel graph which shows also an extension of
the global state concept to simultaneous states. This a
good answer for graphical parallelism expression, but
needs a translator to execute it. We prefer an 'automata
description' which can be directly executed.

2.2.4 Time extension to the automata state

Alur and Dill [19] proposed to use "timed
automata" to model the behavior of real time systems.
Clocks are added to finite automata and timing
constraints are put on the arcs of its state transition
diagram. In our tentative common notation it could
be represented by

eq, sp, condn(clockm) → ak , sj , reset(clocki).
which means when the input eq arrives in the

machine state sp and the conditionn of the clockm is
verified , then → do the action ak ,put the global state
to sj, and reset the clocki.

(in this interpretation, we do not use time-invariant
conditions inside the states).

All clocks start at zero, they progress at the same
rate but they may be independently reset to zero. So as
to enable timed automata to be converted to classical
untimed automata, restrictions are put on the timing
constraints. (Clocks can only be compared against
constants for the most part and adding clocks time
together is not allowed etc.) The region and zone
constructions are used for making this conversion [19].
Closure decidability and verification are issues
discussed. As timed automata may be converted to
untimed automata, existing minimization and testing
techniques may be applied or adapted to timed
automata - e.g. Bloch, Fouchal, Petijean[15, 23],
Springintveld et al. [16]. Another approach for testing

timed automata proposed by Laroussinie et al. [20] is
to convert an automaton to a characteristic formula in
a timed logic, and then use model checking techniques
for verification. These proposals are only time-
extension oriented, we want also to express and
execute parallel actions responding to parallel events.

2.3 Extending Automata for several events and
multiple actions (I/O automata)

Bob Harms [12] proposed an extended automaton that
can take into account the arrival of several events, for this
he used an extension of a Turing Machine which can read,
each time, characters coming from several tapes in
parallel. The machine has one global state, and a memory
with statements of the form :

evgr, evph,stj → acti, stk
He used such a machine to model the human language,

in which you have to take into account both the grammar
(evgr) and the phonology (evph) of a sentence. This very
simple and nice, but in our case (real-time systems), we
need also an extension to take into account timing and
variable condition and multiple actions.

 Nancy Lynch [24] has used an extension of automata
formalism using multiple inputs, timers and variable
conditions, and multiple outputs. But it is rather a
formalisation of distributed algorithms, than an executable
automata specification.

2.7 Summary

In the litterature review that we have presented,
we saw various kinds of extensions to the Mealy model,
we found extensions to automata to express parallelism of
events[12], parallelism of actions and synchronizations [1-
4, 15-16, 24], expression of constraints on time [19-24]
and data[5-8]. But we did not find all the extensions
needed for our purpose of specification automata which
also executable.

3. Our proposal : the 'Parallel Automaton'

For parallel or distributed applications, each branch of

a parallel application or each processor of a distributed
application has its own behavior, and can be described
separately by a different automaton with its own local
states. So a parallel application can be represented by a set
of several (simple) interacting automata. But in this case,
we risk coming back to the problem of the complexity of
the description of the synchronizations between the
various interacting automata, and to the problem of
verifying that their interactions produce an execution
corresponding to the global requirements of the
application.

This brings us to the idea of a single global automaton
describing globally the parallel/distributed application, its

 4

requirements, its groupings parallel events and their
synchronizations, and all the parallel actions. So all these
descriptions are done in one representation. It is likely to
be easier to reason on it, because everything is described
in one representation. Supplementary statements for
handling the interaction between several independent
automata are not needed (see our example in chapter 4).

But this obliges us to define a new kind of automaton
which allows to describe the receiving of multiple events
in parallel, and the activation in parallel of multiple
actions. The problem is that the number of states of such a
global automata would explode because of three causes :

(1) to take into account the synchronizations between
several events

(2) to differentiate the same actions/events that occur in
various different situations in the application

(3) to take into account all the possible values of
variables and clocks.

3.1 The notion of a machine with private states

We propose that the global automaton would not have
the feature of global state, but should take into account
parallel events and actions each one in their own private
states (to differentiate various branches or events or
actions, or processors). This would avoid the explosion of
the number of the states, since it would have the feature to
deal separately with the 3 above points : event
synchronization (in their private states), event/action
differentiation (each state would then be just the
occurrence number of the event/action), variable/clock
values (each variable/clock would change its state only
when they are required in a new case by the application).

This bring us to the idea of a single automaton
describing globally the parallel/distributed application
corresponding to its requirements, but with private states
for its events and actions.

Remarks: It could be seen as a paradox, that a good
way to describe a parallel/distributed application is to use
a single (centralized) description, not several descriptions
corresponding to the various parallel/distributed parts. But
this way has advantages because it gives an overview of
the global situation.

a) Regrouping the requirements allows to enumerate,
reduce and solve, in an easier way, the interaction
problems between the various branches (common
events),

b) It can also reduce the necessary number of
variables and clocks.

c) Finally there is no need to deal with the problem
of differentiating the handling of the same
events/actions which can occur in various
(synchronized) branches, during the progress of the
application.

3.2 Definition of a 'Parallel Automaton'
Suppose we have a finite set of events (or conditions)

which can be received in parallel, a finite set of actions
which can be performed in parallel. Events can be valued
or not, that is they can be Dirac signals (triggers) or
conditions (i.e. changes in values of variables and timers).

To each action and each event, is associated a "private
state" representing their occurrence number in the
application. The number of states is also finite. This is a
'Parallel Automaton'.

The execution of a 'Parallel Automaton'can be viewed
as a set of several threads, each one being a succession of
actions and events, according to their private states, each
thread is of the form :

 applic automat applic automat

 produces performs produces performs

act1 → /evt1,PS1/ → act2 → /evt2,PS2/ → act3
which means that an action act1 produces an event evt1
associated with its private state PS1, in the application,
and the occurrence of the pair /evt1,PS1/ in the
automaton will cause the activation of the action act2,
and so on.

The private state will change only in two cases :
• Each time when the same pair act1 →

/evt1,PS1/ occurs in different situations,
• When the same variable or when the same

clock is reset and used in different situations of
the application, so their respective private state
will change.

This paradigm of state-change can also be suited to the
applications containing several parallel branches of events
and actions, each branch having its own private state. This
comes in place of the Mealy model in which the execution
is sequential with one unique global state.

On the other hand, synchronizations can be described
by a product of pairs /evti,PSi/ without changing the states
to record the arrival of the events. And there is no need at
all for a global state in the automaton, i.e. for the whole
application, only private states for each couple
event/action or for each branch in the whole application .
Each transition of the generalized 'Parallel Automaton'-
table is written in a product form:

ππππi /condi, LocalStatei/ → ππππk /actionk, newLocalStatek/
condi are boolean relations, it can be an event, a signal

or an input flag (true or false) e.g "evt1" or "!evt2", it can
be a variable condition e.g. "v != 10", or it can be a clock
condition e.g. "100<=clock(x)<=200".

actionk are execution of actions, it can be an output
flag e.g. "out3", it can be the execution of a function e.g.
"sendEvt(to)" or " changeState(g)", it can be the setting of
a value to a variable e.g. "setvar(v, 18)", or it can be the
setting of a value to a clock e.g "setclock(b , 100)" or .
"resetclock(t)".

Remarks :

 5

1) In order to control the timing of execution, the
'Parallel Automaton' can be synchronous, in the sense that
it is activated at intervals of time ∆t , at each time ∆t, all
the events (variable conditions, clocks, in their respective
states) are taken into account, the automata-table is
scanned, all the corresponding actions are performed
simultaneously and must finish before the next ∆t. This
means that there is one internal timer dealing with the
scanning of the automaton, and external clocks used to
measure the progression of the application.

2) For analysis purposes, we do not deal with the
progressing of the clocks - except that when a clock is
tested it gets a value (as in quantum physics, the particle
are supposed to exist only when they are observed). In the
same way variables get their values only when used, and
the occurrence of events are tested only when you need
them in specific situations. This curious assumption, does
not change the reality, nor the control of the application,
but it permits to considerably reduce the explosion of
states, since you consider new states only when the
controller needs them.

R3: A subset of the Parallel Automaton is the Mealy
machine in which there is only one state register (this
means that the machine is running only one thread of
execution, and that it has one (global) state) :
 /event1, state2/ → /action10, state12/

On the other hand, the scheduling of
parallel/distributed applications, which have a finite set of
simultaneous branches of executions, can be written in
such 'Parallel Automaton' forms, using a finite set of state
registers, each one, for each parallel branch, or for each
pair event/action.

4. An example using a parallel automaton

Let's take the Blood Test Machine, a simplified

example, which contain parallelism and synchronization

4.1 Informal Description of the problem
Build a blood-test machine which can test Sugar,

Cholesterol and Creatinin. The Nurse takes the blood and
the data from the patient (name, address, doctor, date
etc…,). The blood tube is introduced with an
identification number in the machine, this blood is
automatically divided (by a dispatcher) in 3 portions in
order to perform the tests . The tests are made in parallel
(but with various timings). The results are sent to the
printer for the report, and to the cashier for the billing.

4.2 Using a 'Parallel Automaton' to describe the
requirements

In order to translate the informal problem-description
into a formal notation of requirements using a 'Parallel
Automaton' form, we need to define sets of events,

variables, conditions, actions, and clocks. Then describe
the aims of the system in terms of 'Parallel Automaton'. At
the first stage (aims and general requirements) you don't
need to define all the events, variables, actions etc .., only
the ones which are necessary to describe the initial inputs
of the system (as a black-box), its main operations and its
final outputs :

For example, for the informal description of the
BloodTestMachine, we can define the following valued
Events : PatientEv and resultsEv, to which can be
associated the following Variables : Data (for the
PatientEv event), Crea, Chol and Sugar (for the resultsEv
event), and also we can define the following Actions :
CreaTest, CholTest and SugarTest, printer and cashier.

PatientEv(Data) CreaTest resultsEv to the printer

 CholTest
 SugarTest resultsEv to the cashier
Figure 1: A black-box requirements representation

So, the Parallel Atomaton translation of the informal

description (Figure 1) of the BloodTestMachine can be :
[1] /PatientEv(Data), 0/ →→→→ / CreaTest,1/ / CholTest,2/

 / SugarTest,3/
[2]
/resultsEv(Crea),1//resultsEv(Chol),2//resultsEv(Sugr),3)/
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol),

 resultsEv(Sugar)),1/ / cashier(Data),2/
The first line [1] means that when the Automaton

receives the event PatientEv with the value Data, it will
activate the 3 parallel tests CreaTest, CholTest and
SugarTest, each one in its own private state. The second
line [2] means that when the Automaton has received the
3 valued events resultsEv (each one in the private state
corresponding to the respective tests), it will activate in
 parallel the printer and the cashier with the values of the
results. This is in fact a behavioural "goal" description of
the requirements, the declarative description is not
covered in this paper.

4.3 Using a 'Parallel Automaton' to describe the
Successive specifications

Now, by successive refinements, we can enrich this
general description (goal requirements), adding more
detailed events and intermediate actions, or variables,
conditions and clocks. For instance, We can replace the
line [1] by two lines such as :

[1] /PatientEv(Data), 0/ →→→→ /divide,0/
[1'] /divided,0/ →→→→ / CreaTest,1/ / CholTest,2/

 / SugarTest,3/
 To indicate that before performing the tests, you need

to divide the blood in 3 parts.
Then you can add some timing to the tests by replacing

the [1'] line by

 6

[1''] /divided,0/ →→→→ /CreaTest,1/ /resetclock(Cr),1/
 /CholTest,2/ /resetclock(Ch),2/
 /SugarTest,3/ /resetclock(Su),3/

And then add the time constraints to the line [2] :
[2] /resultsEv(Crea),1/ /clock(Cr)=5, 1/
 /resultsEv(Chol),2//clock(Ch)=3, 2/
 /resultsEv(Sugar),3//clock(Su)=2, 3/
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol),
 resultsEv(Sugar)),1/ / cashier(Data),2/
So, we shall get a full specification :
 [1] /PatientEv(Data), 0/ →→→→ /divide,0/
[1''] /divided,0/ →→→→ /CreaTest,1/ /resetclock(Cr),1/

 /CholTest,2/ /resetclock(Ch),2/
 /SugarTest,3/ /resetclock(Su),3/

[2] /resultsEv(Crea),1/ /clock(Cr)=5, 1/
 /resultsEv(Chol),2//clock(Ch)=3, 2/
 /resultsEv(Sugar),3//clock(Su)=2, 3/
→→→→ /printer(Data,resultsEv(Crea),resultsEv(Chol),
 resultsEv(Sugar)),1/ / cashier(Data),2/
[3] /print_end , 1/ /cash_end,2/ →→→→ /finish, 0/

Notes: The private states of the clocks are changed

only when these same clocks are tested in different
situations.

The 1st line [0] initializes the machine for the first
time. In the 2nd line [1], when the PatientEv event occurs
with its Data , the machine divides the blood into 3 parts.
In the 3rd line [1''], when the event divided arrives, the
machine starts in parallel the 3 tests each one with its
respective clock, we mark each parallel branch by a
different private state. In the 4th line [2], when the
parallel events resultsEv come with their respective timing
conditions (each one in its private state), the automaton
activates the printer and the cashier passing them their
parameters. The last line [3] re-initializes the machine
when the printer and the cashier have both sent their end
events.

We can use this PARALLEL AUTOMATON as a
unifying notation along all the stages of the development
process :

[i] to define its requirements,
[ii] then to specify the solution,
[iii] then as an execution tool (hard and/or soft) which
implements this solution,

5. 'Parallel Automaton' as an execution tool

The specification as a Parallel Automaton can also

serve as a solution to build the application. Furthermore
this automaton can help in simulating it in a rapid
prototyping.

For this, a Virtual Machine can be designed as a
platform to run the 'Parallel Automaton'.

This can be a platform for a single processor and in
that case the parallel actions will be handled as time-
shared threads, or the platform can be designed to run the
application on a network with several machines, and in
this case we can distribute the parallel actions on various
processors and run them as real parallel processes.

We have built such a network platform to emulate the
'Parallel Automaton' on several machines. Here is the
architecture of the emulation.

The 'Parallel Automaton' can be used as an interpreter
to execute the applications, for this it is necessary to build
a Virtual Machine as a run-time platform.

There are several ways how to implement such a
Virtual Machine , let us give one that we have developped
on a star-syle network:

The Virtual Machine is made of 4 parallel threads for
controlling the 'Parallel Automaton' on a main computer +
N threads on N satellite computers (each one for each
parallel action) :
4 parallel threads for the PARALLEL AUTOMATON
VM on a main computer :

1- An "event Handler" receives the events from the
network, each one with its private state, the Handler
transforms the pair /E,S/ into a flag (using a reference-
table: /Em,Sn/ →Fk) and updates this flag in the "Arrived-
Flag Vector".

2- A "clocks-conditions Handler" manages a set of
clock registers (each one associated to a private state),
each time the real-time clock ticks it increments the clock-
registers and updates the "Arrived-Flag Vector" if a
condition is reached (according to a reference-table

/clockm(condition), Sn /→Fk).
3- A "variables-conditions Handler" manages a set of

Variables (each one associated to a private state), each
time an action-function modifies a variable, it updates the
"Arrived-Flag Vector" if a condition is reached (according
to a reference-table /Variablem(condition), Sn /→Fk).

4-an "Automaton Processor" is activated each ∆t by a
timer when it searches in the "Automaton table" to
activate the transitions for which the events arrived and
the (variable and clock) conditions are true. The
"Automaton table" is like a reference-table

(Maskn → /listn(action-functions,S/). Each Mask
corresponds to the Arrived-Flag Vector relevant for each
transition, if a Mask corresponds to the present "Arrived-
Flag Vector", the "Automaton Processor" executes the
action-functions indicated in the "Automaton table" for
this transition, and updates the acknowledged flags of the
Arrived-Flag Vector (then the satellite computers receive
the acknowledgement of their events).

N action-threads on N satellite computers
The action-functions are distributed on the network on

various computers working in parallel. The action-
functions are activated when receiving (from the

 7

"Automaton Processor") a message with its private state.
When an action-function finishes its work, it sends back to
the event-Handler computer an event with its private state.

Notes
1) In a fault-tolerant view, all the computers of the star-

network have the same Virtual Machine and actions
Threads, only one computer plays the role of the Main
VM. If the Main Parallel Automaton Processor fails, the
first Satellite computer, which sends an end-action event
and receives back a net-error, will become the new main
VM and will send a notify-message to all the other
satellites. The other satellites will send him again their last
not acknowledged events to update the actual lost
Arrived-Flag Vector. If a satellite fails after receiving the
order to perform an action, the main VM computer will
know it by a time out exception, and will send the same
action to do on another satellite.

2) So at the beginning, the global PARALLEL
AUTOMATON of an application is split and coded in
several reference-tables :

*> the event/flag table /Em,Sn/ → Fk
*> the clock/flag table /clockm(condition), Sn /→Fk
*> the variable/flag table

 /Variablem(condition), Sn /→Fk
which are made of all the pairs /condi,Sj/ of the

application, and serve to detect the occurrences of the
various conditions and translate them in Flags of the
"Arrived-Flag Vector".

*> And finally the PARALLEL AUTOMATON table
 Maskn → /listn(action-functions),S/

which serves to compare the various transition-Masks
with the actual "Arrived-Flag Vector", in order to activate
the corresponding relevant action-functions.

6. Conclusion

In this paper, we define a PARALLEL AUTOMATON

and show how we use it in order to describe formally the
requirements of Computer-Based Systems, to specify it,
and to execute it. Our Engineering students used this tool
on a lot of examples since 1995. They have built
platforms to emulate a Virtual Machine running 'Parallel
Automaton'. And we intend to build a prototype of co-
processor based on this model.

The main advantages of this notation are :
• same notation at all steps of development:

requirements, specifications, execution etc…
• it reduces the problem of validation when

passing from each step to the next one,
• parallelism and private states reduce the

number of automata statements,
• this notation is close to the way of work of

automation-engineers (on controllers and PLC)

Acknowledgements : We want to thank for their work,
help and useful remarks Dr Reuven Gallant, Ariel Lubish,
Chaim Sulam and Arye-Chaim Teitelbaum, and the JCT’s
President for a special research grant.

7. Bibliography on related works

Automata with conditions
[1] H.G.Mendelbaum, F.Madaule “Automata as structured
 tools for real-time programming” IFAC/IFIP workshop on
real-time programming, Griem Ed.,Boston, USA, 1975
[2] H.G.Mendelbaum, F.Madaule “a class of structured
real-time systems centered on a descriptive nucleus”
 1st IFAC/IFIP Symposium on software for computer control
(SOCOCO-76), Tallinn,USSR,1976
[3] F.LeCalvez, F.Madaule, H.G.Mendelbaum “ compiling
Gaelic, a global real-time language” IFAC/IFIP workshop on
 real-time programming, Smedema Ed, Eindhoven, Holl, 1977
[4] R.Samuel, H.G.Mendelbaum, F.Madaule “a fault-tolerant
 distributed real-time machine”
EUROMICRO, North-Holland Publ.,p.229, 1977
EFSM and ECFSM
[5] K.T.Cheng, A.S.Krishnakumar “ automatic generation of
functional vectors using extended state machine model”
ACM trans on design automation of electronic systems, vol 1,
n#1, jan 1996,p57-79
[6] M. Higushi “ a study on verification methods for
communication protocols modeled as ECFSM”,
PhD thesis, (Osaka univ), nov 1994,
http://www-fujii.ics.es.osaka-u.ac.jp/~higuchi
[7] Teruo Higashino et al. “Deriving concurrent synchronous
EFSM from protocol specifications in LOTOS”,
 Trans. IEICE of Japan, 1999,
http://www-fujii.ics.es.osaka-u.ac.jp/~higashino
[8] D.Cypher, D.Lee, W.Martin-Villalba, C.Prins, D.Su :
 “Formal specification, Verification and automatic test
 generation of ATM routing protocol: PNNI”
Proc FORTE/PSTV'98,nov 1998, Paris
Parallel finite automata and parallel graphs
[9] D. Stotts,, W. Pugh “parallel finite state Automata for
modeling concurrent software systems”
Journal of systems and software, Elsevier science, vol 27, 1994, p27-43
[10] B.Ladd, M.Capps, D. Stotts, R. Furuta “ MMM,
 Multi-head, Multi-tail, Mosaic, adding parallel automata to
 Web” Proc. 4th WWW conf, Boston, MA, dec 1995, p433-440
[11] D. Stotts, R. Furuta, JC.Ruiz “ Hyperdocuments as
automata”, ACM Trans. On information systems”, 1996
 (http//:www.cs.unc.edu/~stotts)
[12] Bob Harms “ two-level morphology as phonology (parallel
automata, simultaneous rule application)”,
Texas linguistic Forum 35, fall ‘95 (harms@mail.utexas.edu)
[13] N.I. Badler et al “Behavioral control for real-time
simulated human agents” Proc. 1995 Symp. on interactive
 3D-Graphics, ACM press, New-York, USA, p.173-180
[14] R. Bindiganavale, B.J. Douville “C++ and Lisp PAT-nets
(Parallel Transition Networks)”,1995
ftp://ftp.cis.upenn.edu/pub/graphics/rama/patnets
Timed Automata
 [15] S. Bloch, H. Fouchal et al. “Timed and Untimed Testing”,
univ. reims, 1999 Simon.Bloch@univ-reims.
[16] fr J. Springintvelt, F. Vaandrager, P.R. D’Argenio
“Testing Timed Automata” cath. univ. Nijmegen, Netherlands,
CSI-R9712, aug. 1997, fvaan@cs.kun.nl
Theory of extended automata
[17] pratt@cs.stanford.edu " Chu-spaces a model of concurrency"

 8

 [18] F. Moller,G.Birtwistle "Logics for concurrency : structure versus
automata" Lecture notes in comp. Sc., Springer Publ., vol. 1043, ISBN
3-540-60915-6, 1996
 [19] Rajeev Alur and David Dill “ a theory of timed automata”
Theoretical Computer Science 126:183-235, 1994
 [20] F. Laroussinie, K.G. Larsen,.C. Weise “from timed automata to
logic and back” BRICS, univ Aarhus, RS-95-2, ISSN 0909-0878, 1995
ftp ftp.brics.dk (cd pub/BRICS)
 [21] Gupta/Henzinger/Jagadeesan : “Robust timed automata”, Proc.
intern. workshop HART’97, Maler ed.,Lecture Notes in Comp. Sc., vol
1201,p.331-345, Springer-Verlag, 1997
[22] Z. Manna, A.Pnueli "specification and verification of concurrent
programs by ∀-automata" Proc. 14th ACM POPL, 1987
[23] Eric Petijean and Hacene Fouchal, "From Timed Automata to
Testable UntimedAutomata", RESYCOM lab., Univ. Reims, France
[24] Nancy Lynch : "Distributed Algorithms", Morgan Kaufmann
Publ.,1996

APPENDIX : Converting 'Parallel Automaton'
 to Sequential Ones

For verification purposes, it is useful to convert a

PARALLEL AUTOMATON into a sequential one. This
we describe informally.

1) Removal of "NOT".
A transition rule such as: /!e1 , s1/ → /.. , ..//.. , ../

.is replaced by a collection of transition rules:
 /E , S/ → /.. , ..//.. , ../
for all events (or conditions) and state pairs /E , S/ such

that /E , S/ ≠ /e1 , s1/ .
2) A state of the sequential automata is a tuple of

private states of the components of the 'Parallel
Automaton'. An event of the sequential automata is a tuple
of events handled by components of the 'Parallel
Automaton', and similarly for actions/outputs.

The symbols "n_e" and "n_a" are used in the sequential
automata to denote "no event received" or "no event
produced" by components of the 'Parallel Automaton'.
With this in mind, a transition rule such as:

 /e1 , s1//e2 , s2/ → /a1 , s1'//a2 , s2'//a3 , s3'/
is replaced by a collection of transition rules:
(e1 , e2 , E3 , E4 En) (s1 , s2 , S3 , S4 Sn)
 → (a1 ,a2 , a3 , n_a n_a) (s1' , s2' , s3' , S4 Sn)

where S3 to Sn range over all private states of components
3 to n of the 'Parallel Automaton' respectively, and E3 to
En range over all events including the null event "n_e".
(Note there is no change to private states S4 to Sn .)

3) Regarding timed 'Parallel Automaton', the above
construction can be used to deal with all components of
the transition rules except for those dealing with the time.
But once this has been done, we will have a sequential
timed automata and the algorithms described for example
in [19] can be used to convert such a sequential timed
automata into an untimed one.

Reducing the number of states
The above construction can produce a very large

sequential finite automata from a 'Parallel Automaton'.
Using only relevant private states and relevant event sets,
the automata can be reduced significantly.

A relevant state is one which may be read at its next
access. If the next access is a write or if it will be never be
accessed in the future, its value is not relevant and so may
be set to zero or omitted from the tuple. Relevant states
may be determined by a path analysis of the parallel
automaton. Initially we assume all private states are zero
(not relevant).

Similarly, relevant event sets are those sets which are
formed from the events on the left hand side of a single
transition. Event sets which would activate more than one
transition, are replaced by a sequence of the event sets of
the left hand sides of the transitions. For verification, all
orders of events arrival need to be tested, so event sets
which activate several transitions may be ignored.

With this in mind, a transition rule such as:
 /e1 , s1//e2 , s2/ → /a1 , s1'//a2 , s2'//a3 , s3'/
is replaced by a collection of transition rules:
{e1 , e2} (s1 , s2 , S3 , S4 Sn)
 → (a1 ,a2 , a3 , n_a n_a) (s1' , s2' , s3' , S4 Sn)
where for a relevant state, Sk ranges over all private

states of component k, and for a state which is not
relevant, Sk is zero. (Note there is no change to private
states S4 to Sn .)

Relevant state and event sets are important in other
settings, for example, to reduce the state explosion in the
construction of product automata [19].

Notion of Conflict Free Automata
A conflict free automaton is one in which there can be no
simultaneous read and write, or two writes (of different
values) to the same location (private state, output, etc.).
By examining the left hand sides of pairs of transition
rules, we can determine if they may be active
simultaneously. If they can be active simultaneously, the
right hand sides are examined to see if they involve a
read/write or write/write conflict. In this way, potential
conflicts can be identified. (This is a strict approach and
perhaps these conditions can be relaxed).
Testing conflict free automata should be simpler, since if
transition rules can be active simultaneously, the end
result does not depend on the order of activation. (In this
way they bear similarities to deterministic sequential
automata.) Thus all possible interleavings of concurrent
activities need not be considered, one is enough.
The parallel automaton example in this paper is conflict
free according the strict approach, even though we did not
have this in mind when defining it.

