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ABSTRACT. It is well known that linear system theory, Lax-Phillips scattering
theory, and operator model theory for a contraction operator are all intimately
related. A common thread in all three theories is a contractive, analytic,
operator-valued function on the unit disk W (z) having a representation of the
form W(z) = D + 2C(I — zA)~1B, known, depending on the context, as the
transfer function, the scattering function, or the characteristic function. In this
paper we discuss the extension of these formalisms and the connections among
them to the time-varying context. As an application we obtain a formulation
of the Katsnelson-Kheifets-Yuditskii Abstract Interpolation Problem for the
time-varying context.

1. INTRODUCTION

A time-invariant causal bounded linear system (with state initialized to be 0 at
time 0)

5. { z(n+1) = Az(n)+ Bu(n), z(0)=0 (1.1)
y(n) Cz(n) + Du(n) '
can be viewed in two possible ways: in the time domain, as a lower triangular
bounded Toeplitz operator S = [s; ;)i >0 (with s, = 0 for n < 0) acting on an £2
space (the input-output operator of the system) and, in the frequency domain as
a multiplication operator Ms acting on the Hardy space Ha, the function S being
the transfer function of the system given by

oo
S(z2) =D+2C(I-24)"'B= _ snz"™ (1.2)

n={)
Thus the Taylor coefficients {s,}nez (also called Markov moments) of S(z) can be
read off from the input-output matrix S = [s;_;], and, as is seen from the equality

in (1.2), are determined from the system matrix {g ,{3)] by

so=D, s,=CA" 'Bforn>0. (1.3)
A similar formula holds in the time-domain for the input-output operator S:
S=D+C(I-ZA)'ZB (1.4)

where A, B, C and D are diagonal operators acting on block #2 with the appropriate
block sizes with constant diagonal entries equal to A, B, C, D respectively, and
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where Z is the forward shift operator on #2. (This formula requires some careful
interpretation if the lower weighted shift operator Z.4 has spectral radius equal
to 1 rather than strictly less than 1; this can be made precise via an appropriate
limiting process.)

Of particular interest is the case where the system is dissipative (i.e., the matrix

[g g] is contractive); then the transfer function S is analytic and contractive on

the open unit disk . Such a function $ also arises as the scattering function of a
discrete-time Lax-Phillips scattering system (see [26]), as well as the characteristic
Junction of a completely nonunitary contraction operator 7' on a Hilbert space H
(see [27]). Indeed, there is a natural correspondence between a unitary system, a
Lax-Phillips scattering system and a completely nonunitary contraction operator so
that the same function § arises as the transfer function of the system, the scattering
function of the scattering system and the characteristic operator function of the
operator. Conversely, given a contractive, analytic function S (z) on the unit disk,
it is well understood (from various points of view) how to construct a dissipative,
or more restrictedly, a conservative (also called unitary) linear system (X as in

(1.1) with system matrix [g g} unitary), a model scattering system and a model

completely nonunitary contraction operator, all corresponding to one another in
the sense alluded to above, so that S is realized as the common transfer function,
scattering function and characteristic operator function. One way to construct
such models for a given contractive analytic function S(z) is through the use of
reproducing kernel Hilbert spaces. For example, if S is a contractive, analytic
function of the unit disk I, then the kernel Ks(z,w) = I—_ﬂl%‘fx is positive
(in the sense of reproducing kernels) on D and the associated reproducing kernel
Hilbert space H(S) provides a coisometric realization of S. Indeed, one has

S(Z) =D + ZC(IH(S) == ZA)_lB

o o] [¥)- &) 0
is the backward shift realization defined by

(Af)(z) = w0
(Be)(z) = ﬂf):—s—@-e
cf £(0)
D = 5(0)
The pair (C, A) satisfies N2 jKerCA™ = {0} (i.e. is closely outer connected) and the
operator matrix (1.5) is coisometric; these two conditions determine the realization
uniquely up to a similarity operator, which moreover is unitary. See [11], [15], 18,
[3], [1] for more on these coisometric realizations (and also the related isometric
and unitary realizations) which were first introduced and studied by L. de Branges
and J. Rovnyak.
In the setting of time-varying systems, the system (1.1) is replaced by a time-
varying system

where

s { T = et B
iv - y(n) = Cﬂx(N)'l'Dﬂu(n):
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the Toeplitz operator S = [s;_;] is replaced by an upper triangular bounded opera-
tor S = [s;;] which is moreover contractive when the system is dissipative (i.e. the

system matrix [g“ g“] is contractive for each n € Z). One has
n n

8 =Di, 8i;=CiAi1...Aj1B;ifi>j
as the analogue of (1.3) and
S=D+C(I - ZA)'ZB

where now

A= diag{A,} B=diag.{B,}

C =diag.{C,} D =diag.{D,}
are nonconstant diagonal block matrices and Z is the bilateral forward shift operator
on the appropriate block #2 space.

The time-varying analogue of the transfer function in the frequency domain (1.2)
is more problematical, but some progress has been made recently. An older ap-
proach is via the Zadeh transform (see [21] and [30]); we review this idea in Section
2.2. There is now a whole theory of nonstationary point evaluation and nonsta-
tionary matrix Nevanlinna-Pick interpolation (see e.g. [19], [18], [14]); moreover,
this nonstationary interpolation theory has applications to time-varying systems
which parallel the recently discovered applications of the time-invariant theory to
robust control (see e.g. [13]). In a somewhat different direction, the first and third
authors [4] used the observation that multiplication by an upper triangular matrix
on the left is a contraction operator from the Hilbert space Uys of upper triangular
Hilbert-Schmidt operators into itself to define a nonstationary analogue of the de
Branges-Rovnyak space H(S) and of the backward shift realization: see [2], [4]. In
this way they recovered much of the reproducing kernel Hilbert space structure of
the time-invariant setup in this formalism.

In this paper we systematically develop the ideas of and connections between
unitary systems, Lax-Phillips scattering systems and operator model theory for
the time-varying case. A model of this synthesis of the three theories for the
time-invariant case can be found in the work of Nikolskii and Vasyunin (see [28]
and [29] for a recent update). As an application, we also present a time-varying
version of the Abstract Interpolation Problem recently introduced by Katsnelson,
Kheifets and Yuditskii (see [25], [23]), in both the original de Branges-Rovnyak
model formulation, and the “coordinate-free version” pointed out in [9], and thereby
further complete ideas already presented in [16]. The expert may find some new
insight in the present paper even for the time-invariant case; when specialized
to the time-invariant case, this paper can be considered an update of [20] and
[8] giving the connections between systems, scattering and operator model theory
which incorporates the ideas of Nikolskii and Vasyunin [28] on scattering and model
transcriptions.

The paper consists of seven sections besides this introduction. In Section 2 we
introduce the main ideas concerning time-varying unitary linear systems, and as-
sociated objects (input-output operators, analogues of the transfer function and
the frequency domain). Section 3 introduces the notion of a Lax-Phillips scat-
tering system for the discrete-time, time-varying case; the main invariant here is
the scattering operator, a lower triangular operator acting on an appropriate £2
space. Section 4 presents the ideas from [28] concerning a coordinate-free models
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adapted to the time-varying setting; now we are modeling a family of operators
Tn: Hny1 — Hn rather than a single operator T’ on a Hilbert space H. Section
5 lays out the equivalence between the scattering and model theory formalisms on
the one side and unitary systems on the other, and establishes the identification
between the scattering operator for the system, the characteristic operator for the
contraction family T = {7}, and the transfer function for the embedded unitary
system. Section 6 discusses the time-varying versions of the Pavlov, Sz.-Nagy-Foiag
and de Branges-Rovnyak models from the unified perspective found in [28] for the
time-invariant case. Section 7 treats an augmented form of time-varying scatter-
ing systems and operator models which makes contact with operator model spaces
consisting of Hilbert-Schmidt operators found in [4]. Finally Section 8 deals with
the time-varying version of the Abstract Interpolation Problem from [25] in both
the de Branges-Rovnyak model and coordinate-free forms and its application to the
time-varying version of the right tangential Nevanlinna-Pick interpolation problem
([19], [18], [14]).

2. TIME-VARYING LINEAR SYSTEMS

2.1. Time-domain analysis. By a time-varying linear system we mean a system
of equations of the form

5. { z(n+1)

y(n)

Anz(n) + Bnu(n
Cnx((ng - D,ﬁu.%n% (21)

where, for each integer n € Z, z(n) is the state vector at time n taking values in
the time-n state space H.,, u(n) is the input vector at time n taking values in the
time-n input space £, and y(n) is the output vector at time n taking values in the
time-n output space £.,. Here H,, £, and &., are all considered to be Hilbert
spaces, and A,, B,, C,, and D, are linear operators such that

el B JE-[E] e

The family of operators {Un}nez in (2.2) is called the time-varying colligation
associated with the time-varying system X (2.1). We will consider only the case
where the colligation {U,.} is contractive, i.e.

lz(n+ DI + lly@)|* < llz(n)|* + [[u(n)|* (2.3)
for all » € Z. In this case, (2.3) can be rewritten as

l=(n+ )12 = llz(n)|? < lu(n)]? - [ly(n)|?
which, upon iteration, leads to

n=Np
l=(Nz2 + DI = lle(N)I < Y (llu(@)]2 = ly()]%) (2.4)
n=N;
for all system trajectories {z(-), u(-),y()}.
To discuss the input-output map for such a system, it will be convenient to
introduce various Hilbert spaces associated with this setup. We denote by £ the
whole aggregate {€, }ncz of input Hilbert spaces, and similarly, H = {Hn}nez and
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& = {&m}nez. For X equal to £, M or &, we define Hilbert spaces £2(Z,X),
£ (Z>n, X) and £(Zpn, X) by

2(Z,X) = {{=z(k)}2 o z(k) € & and > kez lz(E)|[? < oo}
P(Zon, X) = {{z(k)}2,: =(k) € X and o |lz(k)]? < oo}
BZn,X) = {{zb)il: 2(k) € X and " [2(k)|2 < 00} (2.5)

On occasion we shall also have need for the #° version of these spaces

£2(Z,X) = {{z(k)}2_o: (k) € Xk and supyc, ||z(k)| < oo}
£2(Z>p, &) = {{z(k)},:  2(k) € X and sup,s, (k)] < oo}
0°(Zcn, X) = {{z(k)}p',: =z(k)e X and supy ., [lz(k)| < oo}

and the shifted versions

(2, X0)
£2(z, x)

{z(R)} _o: 2(k) € Xy and 3527 ||=(k)|? < oo},
{z(k)}2 ;' (k) € X1 and supycy [2(k)|| < oo}.

We shall also have occasion to need the following notation for any families of Hilbert
spaces F = {Fp}nez and G = {Gp bnez:

X(F,G) = the space of bounded operators from 2(Z,F) into £(Z,G)
L(F,G) = lower triangular elements of X’ (F,G)
U(F,G) = upper triangular elements of X(F,G)
U_(F,G) = strictly upper triangular elements of X (F,9)
L _(F,G) = strictly lower triangular elements of X (F,G6)
D(F,G) = diagonal elements of X(F,G)
DM(F,G) = ({[Fy] € X(F,G): F;; =0for j #i+n}.

and the Hilbert-Schmidt version of all these spaces:

Ays(F,G) = Hilbert-Schmidt elements of X(F,G)
Lus(F,G) = Hilbert-Schmidt elements of L(F,G), etc.

Finally, it will be convenient to use C to denote the family of Hilbert spaces {C,: n €
Z} with C,, equal to the complex numbers C for all n. (No confusion should result
as the meaning will be clear from the context.)

If we intialize the system (2.1) at time n = Ny by (V,) = 0 and feed in an
mput string @ = {u(k)}2,, € £3(Z>y,E), the system equations (2.1) uniquely de-
termines an output string § = {y(k)},; from the dissipation inequality (2.4),
we see that 7 € 2(Z>p,£,) and ||7]> < |[@|2. Thus we have a well-defined con-
tractive linear input-output map 7% acting from #2 (Z>n, £) into £3(Z>,,E.) such
that T3 = T}:Ip{z}m,g) for m > n. Thus we actually have a well-defined, lin-
ear contraction operator T% acting from Unczf?(Z>n, £) into Upezf2(Zsn, £.). As
Unezf?(Z>n,€) is dense in £3(Z, ), this map extends uniquely by continuity to a
contraction operator

Ts: $X(Z,€) — P(Z,E,).
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We call this operator T% the input-output operator for the system X. If we represent
elements of £%(Z,£) and £2(Z, £.) as biinfinite block column vectors

i= W], 7= |[w],

then any bounded, linear operator from #2(Z, £) to £3(Z,£,) can be expressed as a
biinfinite matrix T' = [Ti;]; jez. When this is done for T = T, we see that T5; is
lower triangular, i.e. [Tx];; =0 for i < j.

It follows from the dissipation inequality (2.4) that the input-to-state-at-time-k
map @ — Ryt = z(k) (defined as the value z(k) at time k if an input string
@i € £2(Z>n, &) is fed into the system ¥ (2.1) with initialization z(n) = 0) satisfies
the estimate

k-1
IRzsa@? = le®)Z< 3 (i) (2.6)

J=—o

for all @ € Unezf?(Z>n,E). By continuity, Ry, has a uniquely determined ex-
tension to all of £2(Z,€) such that the estimate (2.6) continues to hold for all
u € £%(Z,E). A consequence of (2.6) then is that

Jm [[Rssdl]| =0

for all u € £%(Z,£). For this reason, we refer to the state trajectory Z = Ryii :=
{RskU}kez arising in this way as the state trajectory generated by the system ¥
with input signal @ € £*(Z,€) and with state initialization z(—oc0) = 0. Note as
another consequence of (2.6) that
IRzal%, < ||@]3.
and hence the system trajectory (&, £,7) is in the space of signals
S = £(Z,£) x £°(Z,H) x £(Z,E,). (2.7)

Below we shall derive a sufficient condition for = Ry to be in £2(Z, H) for each
i€ 2(Z,€).

The input-output operator T5; can be represented also in a more explicit operator-

theoretic form as follows. For x = {xn}ncz any system of Hilbert spaces, define
the forward bilateral shift operator Z: £2°(Z, H) — £°(Z, 1)\~ 1) by

T_3 T_9

2 |fal| - [E3).
k5] Iy

Define operators

A: BZH) - B@,H) D, B: (Z,8) - £(Z,H) D,
C: 32(2, H) — P(Z,&), D: F(Z‘ ,5‘) — 32(2‘5’)7
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by

A =diag.(Ax)rez, B = diag.(B)kez,
C =diag.(Ci)rez, D = diag.(Di)rc.

By assumption each system matrix U, (2.2) is contractive, and hence each of A, B,
C and D are contractive as operators between the relevant #2_spaces. If it happens
that the state trajectory & = {2(k)}rcz is in £2(Z, H), then the aggregate of the
system equations (2.1) for all n =...,—1,0,1,... can be viewed as the system of
equations

(2.8)

S { Z7'2 = AZ+Bi

s 7 = CZ+7Di.

As noted above, in general we are only guaranteed that # = Rii € ¢ (Z,H) for

u € £%(Z,E), so the first of the aggregate system equations must be interpreted

on £*°(Z,H) rather than on ¢%(Z,H). A sufficient condition for # = Ri to be in
#(Z,H) is given by the following Lemma.

Lemma 2.1. Let X be a contractive system as in (2.2). Then Z = Ru € £2(Z, )
Jor allu € #(Z,E) if the block diagonal operator ZA on £2(Z, H) has spectral radius
less that 1. Moreover, in this case the input-output operator T;: £2Z.,E) — 1%(Z,E,)
s 1sometric.

(2.9)

Proof. We first collect some needed preliminaries. Note that the operator ZA is a
weighted shift operator with all nonzero block matrix entries on the first subdiagonal
below the main diagonal. The n** power (ZA)" of ZA is a weighted shift operator
with all nonzero block matrix entries on the n** diagonal below the main diagonal.
The norm of (ZA)" is equal to the supremum supy.cy, [|[(ZA)"]&4n x|l of the norms
of these nonzero n**-subdiagonal block entries. By explicit computation one finds
that
(ZA)"k4nk = Argn1 ... Apy14s.
and hence
[(ZAY] =50p [ Autn-s .. Ans Aul,

It follows that the spectral radius of ZA is given by
re(ZA) = lim [sup | Agin—1 ... Axya|]/™
N0 kcZ

Now let us suppose that r,(ZA) < 1 and an input signal @ € £%(Z, &) is fed
into the system ¥ (2.1) such that u(k) = 0 for all k with N; < k < N, for some
finite Ny < Na. If Z = {z(k)}3>__, is the resulting system trajectory, we have that
z(k) =0 for k < N; and that

z(k) = Ak_iAk_z . .ANZ:C(Ng) for & > Nz.

From the condition that r(Z.A) < 1, from the root test we see that en, lz(®))? <
00, and hence that # € £3(Z, H). However since r,(ZA) < 1, we see that the first
aggregate system equation in (2.9) has a unique solution in £2(Z, ), namely

F=(I-Z2A)'ZBi. (2.10)
and hence must be equal to the Z in the system trajectory generated by i. By
entrywise continuity and uniqueness, this same formula (2.10) must continue to
hold for the system trajectory Z generated by any input signal @ in £2(Z,£). We
conclude that Z is in #2(Z, H) for any input signal @ € £2(Z, £) whenever r(Z.A) < 1.
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From the fact that ||z(k)| — 0 for @ € £2(Z,£) with finite support and the
dissipation inequality (2.4), we see that T% is isometric on a dense subspace of
£(Z,€), and hence on all of £2(Z, £) by an easy approximation argument. O

If ZA has spectral radius less than 1, then we have seen that the input-to-state
map @ — & is given by (2.10). We can then substitute this into the second of
equations (2.9) to arrive at

§=Tri=[D+C(I-ZA)'ZBi
If ro(Z.A) is not less than 1, this formula must be interpreted via a limiting process
Ty = h'ﬁa(l) +C(I—-rZA)"'ZB). (2.11)

We view the operator-theoretic formula (2.11) for the input-output operator Tk of
the system X as the téme-domain version of the transfer function of the time-varying
system 2.

Rather than considering inputs # supported on the whole time line Z, it is often
useful to consider the system with initialization of the state vector at some time ng
and then driven by input signals u(r) with n > ng to determine an output signal
y(n) for n > no. In the time-invariant case, one usually takes the initialization time
1y to be ng = 0 since any other choice will lead to the same results after a translation
invariance due to the time-invariance of the system. In the nonstationary case,
different choices of initialization point ng lead to different results in general. This
makes it natural to consider the time-invariant system really as a collection of
different systems, one placed at each point in time ng, depending on the point in
time which one considers as the present (i.e., the point ng at which one imposes the
initialization of the state). Alternatively, one can think of this point ng as the point
relative to which one measures past, present and future. The n§* system Xm0 is
that system obtained from ¥ by measuring past, present and future relative to time
ng; in the time-invariant case £(™) = £ = % but this will fail for the general
time-varying case. With this motivation we are led naturally to consideration of
the system X (2.1) where the input vector u(n) is assumed to be a biinfinite matrix
supported on the n*® diagonal below the main diagonal, i.e. u(n) has the form

[u(n)]:;; = 0 unless i = n+j.

The (i,7)** entry of u(r) is recording the input fed into the system at 7 — j time
units past the present time as recorded in the j* time zone, namely, past the time
Jj. In this scheme, with the block diagonal operators A, B, C and D defined as in
(2.8), the system update equations take the form

5. x(n+1) = ZAx(n)+ ZBu(n)
9 y(n+1) = Cx(n)+Du(n).
Here we may consider this evolution of diagonal operators to be initialized at some

particular finite time ny with z,, = 0. Note that this is a time-invariant system
with system operator

| Xus (C, 'H) .

— [xgs = 5)] [Xus(C, £)]

equal to left multiplication by the matrix U®*9 (U%“8 = Ly eus) where
ZA 7B . [E(Z.M)] _ [@H)

c D 2(z,6) 2(zZ,8)|’

(2.12)

s

[eve — [
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but with location of the input signal at time n severely restricted. We note that the
full time-invariant linear system £°“? associated with the system operator Ue*9
(with input space Xys(C,E), input space equal to Xps(C,€) and output space
equal to Xyg(C,£,) can be viewed simply as the direct sum of infinitely many
copies of the system X9’ associated with the system matrix U°" (with state
space equal to £2(C,H), input space equal to £2(C,€) and output space equal to
£(C. This latter system is the time-invariant system associated with a time-varying
system X by the method of “sparse embedding” described in [18], and used there as
a tool to reduce the study of problems concerning time-varying systems to known
results in the theory of time-invariant systems.

Let us assume that each u(n) is a Hilbert-Schmidt diagonal operator such that

Y. lum)? < oco.

n=—0o0

Then we may define the aggregate input signal u € Xyg(C, £ ) as the sum

[= =]

u= E u(n)
n=—o0
with convergence in Hilbert-Schmidt norm. By an analysis similar to what we did
for the conventional case, we can define x € X(C,H) as the entry-wise limit z =
Y ne—oo X(n) and y € Xus(C,£.) as the sum Y0°__ y(n) with series convergence
in Hilbert-Schmidt norm. Then we have that

llyllzs < |lullzs

with equality in the stable case described above for the conventional setting. Also,
by resorting to a limiting argument as we did above for the conventional case, we
may extend the ideas to consider input strings u = {u(n)},ez with u(n) # 0 for in-
finitely many negative values of n. We are thus able to arrive at an arbitrary element
of XHS(C, 8) as being equal to an admissible input St.IiJJg ['l.l],',j = Zf;_m[u(n)],-j
for our augmented system.

It is interesting to consider the aggregate of the system equations as written
down in (2.9) for the setting of the augmented system (2.12). However, rather than
introducing a large amount of sparsity by considering the aggregate input signal
u as an element of £%(Z, D*(C,£)), we define the aggregate input signal u as the
infinite sum u = 37 wu(n) inside Xgs(C,£), and similarly for the state and
output trajectories. When this is done, we get simply the same linear system as in
(2.9)

“ly —
saug . { Z7'x = Ax+Bu (2.13)

a9 y = Cx+Du

where now x € X(C, H), u € Xus(C,€) and y € Xys(C,E,). The resulting input-
output operator T, then maps Xyg(C,&) contractively into Xus(C,E,) and is
given simply as multiplication on the left by Ty, where T%; is the input-output
operator for the original (conventional) system ¥, as given by (2.11), i.e.

1%y = L1y, where T is given by (2.11). (2.14)

Note in particular that, since T% is lower triangular, it follows that Ts,,, takes
Lys(C, &) into Lys(C,E,).
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2.2. Frequency-domain analysis. A standard and productive technique for the
analysis of time-invariant (discrete-time) systems is to use the so-called Z-transform
(or discrete-time Fourier transform in mathematical terminology) {z(n)} — T()) :=
Yo o @(m)A™. Tt is well accepted that this technique is not so effective for the
time-varying case. Nevertheless, a partial substitute which has been studied in the
literature is the Zadeh transform (see [21], [30]), which amounts to applying the
Z-transform to what we have called the augmented system X, (2.12) rather than
to the original system ¥ (2.1) itself. Thus, in general, if f = {f(n)}ncz is a string of
Hilbert-Schmidt operators with f(n) € D} ¢(F,G), we define the Zadeh transform
of f to be the operator-valued function of the complex variable )\ given by
oo
20 = Y f(n)A" € X(F,6)
n=—00

whenever the sum converges. The associated Zadeh transfer function of the system
¥ is given by

SEZ(\) =D+ XC(I —\ZA)"1ZB. (2.15)

Note that (as a consequence of (2.11)) lim,; SZ(r) = T, as pointed out in [16].
The main result concerning the Zadeh transfer function (and the justification for
the terminology) is the following. This result holds without any assumptions on L
being unitary or contractive, but for simplicity we do not go into these side issues.
We omit the proof as we will prove a different but formally similar result shortly.

Theorem 2.2. Let ¥ be a time-varying linear system as in (2.1) with associated
input-output operator Ty and input-output operator Tx,,, = L1y, for the augmented
system (2.12). Let u = {u(n)}necz be any admissible input string for oy, with
corresponding output stringy = Ty, u. Then

yM2(N) = SE(Mu"Z())
for all X in the unit disk D.

More recently a somewhat different version of the Zadeh transfer function has
been introduced by Alpay-Dewilde-Dym (see e.g. [19] and [18]). Specifically, sup-
pose that £ € Lys(F,G) and that W = diag {Wy}nez € D(F,F1) (and thus
Wn: Fn — Fn_1) and Z7'W € D7(F,F). We assume also that the spectral
radius r5(Z'W) of Z7'W is less than 1. In this case, we think of W as a “time-
varying” analogue of a point in the unit disk and define the right transform of f
evaluated at the point W by

PRW) =Y £(n)(Z27'W)" i £ = 3 £(n) with £(n) € D*(G, F). -

As is explained in [18], this can be viewed as point evaluation for the Zadeh trans-
form £2%(X) = 37°  £(n)A" (a function of a scalar complex variable), but with
operator argument Z W,

Now let us suppose that we are given a time-varying linear system as in (2.1),
and suppose that W € D(C,C) is such that r,(Z'W) < 1. The right transfer
function introduced by the first and third authors in [4] is given by

Sg™(W) = Lp+ Le(I — Rg-1wlza) 'Ry-1wlzs: Dus(C,&) — Dus(C, &)
2.17)
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where Lx and Ry are the operators defined on a space of block operator matrices
of left multiplication and right multiplication:

Lx(M)=X-M, Ry(M)=M.Y

(under the assumption that X, M,Y are block operator matrices of compatible
sizes). Note that the Alpay-Peretz right transfer function collapses to the Zadeh
transfer function if we formally set Z~'W to be of the form Z~1W = AI. (Note that
the Zadeh transform does not correspond to a special case of the right transform
since Z~'W is necessarily strictly upper triangular while \I is diagonal.) The
main result concerning the right transfer function is the following generalization of
Theorem 2.2 obtained in [4]. For completeness we include a derivation here.

Theorem 2.3. Let X be a time-varying linear system as in (2.1) with associated
input-output operator Tx, and input-output operator 1%,., = L1y, for the augmented
system (2.12). Let u = {u(n)}nez be any admissible input string for Baug with
corresponding output stringy =T, ,u. Then

y"R(W) = SpR(W)u"E(W)
for all W in D(C,C) withr,(Z1W) < 1.
Proof. Let u = {u(n)}nez,, be an admissible input string for Yaug With associated

output string y = {y(n)}nez., and state trajectory x = {x(n)}nezs,- Then we
have the system equations

x(n+1) = ZAx(n)+ ZBu(n) (2.18)
y(n) Cx(n) + Du(n). ’
If we apply the right transform at value W to both sides of the first of equations
(2.18), we get

oo

3 x(n+1)(Z7IW)" = ZAME(W) + ZBuE(W).

n=0

Let x' € D'(C, M) denote the infinite sum on the left hand side of this equation.
From the definition of x"#(W) and the fact that x(0) = 0, it is easy to see that

x' - (Z7'W) = 2 "E(W). (2.19)
Hence we may rewrite the first of equations (2.18) as
x' = Rz1wLzax' + LzguFB(W).
We may then solve for x' to get
X' = (I = Rz-1wLza) ' Lygu"®(W).

Substituting this expression back into the second of equations (2.18) and remem-
bering (2.19) gives

Y (W) = [C(I = Rz-rwLza) *Rz-1wLlzs+ DluE(W)
and the theorem follows. [

Remark 1. The first and third author in [4] obtained a converse result on the
realization of the type (2.17) starting with any contractive element S of L(E,E,).
Here we shall arrive at a time-domain realization of the type (2.11) for a given
contractive S € £(£, £, ), from which will follow a realization of the type (2.17) by
the analysis above.
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Remark 2. Theorem 2.3 provides a time-varying analogue of the fact for the
time-invariant case that the Laplace transform of the output signal is equal to the
transfer function times the Laplace transform of the input signal (assuming zero
initial condition). In the time-invariant case, there is a second interpretation of the
transfer function, namely its role as the “frequency response function”, whereby
the steady-state output of the system resulting from a periodic input signal is a
periodic signal of the same frequency but with amplitude equal to the modulus of
the transfer function at the given frequency times the amplitude of the input signal
and with phase shift equal to the phase of the value of the transfer function at the
given frequency. A time-varying analogue of this property has been derived in [7]-

2.3. Preliminaries for connections with scattering. To conclude this section,
we derive a proposition concerning a parametrizing system trajectories which will
be needed in Section 3. In the derivation of the input-output operator given above
(for the (unaugmented) system ¥ (2.1)), we indicated how an arbitrary element
u € £*(Z, £) generates a whole system trajectory

(@, %, §) = (@, Cit, Ted)

for the system (2.1), essentially by running the system forward with the state
initialized to be 0 at time n = —oo. We now present another method for generating
trajectories also lying in the signal space S. For this discussion we assume that

each system matrix Uy, = [g” g:] is unitary rather than merely contractive, i.e.,
k
that
Ac Bl ..o [Ax BTN _[Ar G [Men]  [Ha
[Ck Dk] is invertible with [Ck D T|B DI |Ew | |el|

Fix a time n € Z; as free parameters for our trajectory, we consider an arbitrary
element (¥, z(n), @) in the scattering data space at time n, K,, given by

Kn=P(Zen,E.) ® Hn ® P(Z>p,E) (2.20)

From z(n) € H, and @ = {u(j)};>n, we determine z(j) for j > n and y(j) for
Jj = n from the recursion

#(j+1) = A;z(j)+ Bju(j),

yii) = Ci=(j) + Dju(j).

Similarly, from z(n) and § = {y(j)};<» we determine z(j) and u(j) for j < n from

the recursion
z(5) Ajz(j +1) + Cy(4)
u(j) Biz(j +1) + Djy(j).
In this way we generate biinfinite extended sequences
(e, Ze, Fe) = ({u(d) }iez, {2(5) Yicz, {y () }iez)-
From the assumed unitary property of each

A; B; H; Hit1
a-ft 8.9 1]
! [C:' D] | € &y
it is easy to see that the resulting triple (i, #, #) is in the signal space S given by

(2.7). Conversely, for each choice of time n € Z, it is clear that any system trajectory
of the system X (given by (2.1)) lying in S arises in this way from an element of

(2.21)

(2.22)
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the associated scattering space K, at time n. We summarize this discussion in the
following.

Proposition 2.4. Let T be the time-varying system given by (2.1) with essociated
signal space § and scattering space at time n equal to K, as given by (2.1) and
(2.20). Define the map 11, (the window map at time n) from S to K,, by

I: (4,2, 9) = (F: j<n}r (), @5 jon})-

Then the restriction of II, to system trajectories in S is bijective Jrom system
trajectories in S onto K, with inverse given by the two recursions (2.21) and (2.22).

3. TIME-VARYING SCATTERING SYSTEMS

We introduce here a time-varying version of a discrete-time Lax-Phillips scatter-
ing system. By a time-varying scattering system (TVSS) we shall mean a collection

of objects
Dgeat = {’C: {K:n};g = {gn}) Ga= {g“i}:u = {uﬂ}} (31)
such that, for each n € Z,

1. Each K, (called the scattering data space at time n) is a Hilbert space and
Uy, is a unitary operator from K, ;1 onto KC,,.

2. Each outgoing subspace G, is a closed subspace for /C,, such that U, : Gny1 —
G» and

Nl olnlhnyt . o Unik Gk = {0} in K,..

3. Each incoming subspace G.», is a closed subspace for K,, such that U2 : G,,, —
Gint1 and

ﬂilMU.i_l v -ur:_kgm—k = {0} in Kﬂ+l’
4. G, is orthogonal to G.,, in K, for each n.
We shall occasionally have need of the subspace
H.:=K,© {g*n @ gﬂ]‘:

called the scattering space and sometimes also the model space for the TVSS Eiont:
A convenient compact notation will be to define, for i and j any integers, the
operator U ;1: K; — K; by

I: i=j
Ui = Uk .. U1 i<,
u;_lu:_g..-u;: 3:’]
Note that U has the two-parameter semigroup property

Ui, 5 Uis e = Ui gy
and the unitary representation property
Ui 5)* = Upjq-

Axioms (2) and (3) may be expressed more succinctly as
Nz j2nlhin 5195 = {0}, 0: jenlhin,7Gs; = {0}
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for each n € Z. We shall say that the TVSS T,cqt is minimal if it happens that
Gun + Gn is dense in IC,, for each n, where we have set

§:" = clos. Ujzn U 51G5,
Gn = clos. Uj<n u[“‘_,-}g_,-.

As an example we now introduce the free TVSS £7 .. Let {£;}xez be any family
of Hilbert spaces indexed by the integers k € Z. Denote by £ the whole aggregate
of spaces £ = {&i}rez With associated £ spaces £2(Z,£), £2(Z>,, £) and £2(Zen, &)
as in Section 2. By the free TVSS £/, (associated with the family {&}), we mean

the TVSS {{k£}, {0/}, {6/}, (UI}} where
Ki = £(Z,&) (independent of n),
Gl = £(Z>n,8),
Gl = P(Zin,€), and
Uf: Kny1 — K, is equal to the identity operator.

(3.2)

Here of course we are identifying £2(Z>,,£) and £2(Z.,,, £) as subspaces of £2(Z, £)
in the canonical way. As K is in fact independent of n, it makes sense to use the
simpler notation X/ for this space. Thus we see that indeed uf =1: g,{ -6
since g,{H C Gf and that Uf* = I: G, — g{nH since G, C gf,m under our
canonical identifications. The rest of the axioms (1)—(4) for an TVSS are easily
checked and it is also clear that %7_, is minimal.

The next goal is to understand how to view a general TVSS as a “scattering”
between two free TVSSs. Let therefore {K,}, {Gn}, {Gun}, {Un} be a general TVSS.
For n € Z, define subspaces £, and &,, by

En gﬂ e ungn-l-l < Kn
Esn gtn+1 eu;g*n = Kn-l—l-

By using axioms (1)-(4) one can deduce that G, and G., have the internal orthog-
onal direct sum decompositions

On = @j>allpnjEj,

g*n - @jgnu[n,j+1]£*j.
Further application of the axioms (1)-(4) leads to the biinfinite internal orthogonal
direct sum decompositions for G, and G.,,:

Gn = @icrllin ;&

g*ﬂ — $jezu[n,j+1]£sj-

(3.3)

Let us define Fourier representations
8,: Kp = KN :=P(Z,E), Bun: Ko — K :=£(Z,8,)
by &n(kn) = {[nknl;}52 oo and Bun(kn) = {[@enknl;}32_, (for ky € K.,) by

[Prkn]; = milhjnkn

[¢tﬂkﬂ.]j - ?thuu+l_,n}kﬂ (34)

where we have set
Tn: Kn— &
Man - K:n—l—l = Etﬂ
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equal to the orthogonal projection operators. Then @, is a partial isometry from
Kn onto Kf = 2(Z, £) with initial space equal to G, such that

B(Gn) = Gf := P30, &)

while ®,,, is a partial isometry from K, onto K*/ = ¢2(Z,£,) with initial space
equal to G,y such that

(I'*n(g“;) =, g:ﬁ = fz(zm,&).

We next define the scattering operator at time n Sx,_,, » for the TVSS ;0 as
the operator

S%1catin = Bunpy: KF — K. (3.5)

As S3,.,.n 18 an operator between the £2 spaces £2(Z,€) and £2(Z,£,) one can
view Sx,.,..» as multiplication by a biinfinite block matrix [S7;]ijez- Our next
task is to compute these matrix entries.

Lemma 3.1. Let the scattering operator at time n, Sy, ., n, be defined as in (3.5),
and let
57 & =&, 4,jEL

be the matriz entries for Sy, ., n when considered as an operator from ¢*(Z, € )~
#(Z,E,). Then

o { 0: i<j

+ad ’Ir,iM{,‘+1,ﬁ?T;2 i Z j

In particular, Sy, .., 1= S5,.0n  independent of n and has a block lower triangular
matriz representation.

Proof. From the explicit form of the matrix entries ¢, and ®,,, for  and @,, in
(3.4), we can compute explicitly that
S:j = [q)*ﬂ]i[(i’n];
= Teildliy1,n)(Upsm))* 75
= Teildlg 11,0 Ujn 575
= Maillisyr,57]

and hence in particular §; ; = S7; is independent of n and we have the formula
for S;; for i > j. It remains only to verify that this formula produces Si; =0 for
PE g

For i = j — 1 we have Sj_; ; = Tej—17;. This quantity being equal to 0 is the
same as the subspaces &,;_1 and &; being orthogonal in K;. But, by definition,
E.j1 C Gaj and &; C G where G.; and G; are orthogonal in K; by axiom (4) in the
definition of TVSS. Hence S;_, ; = 0 as asserted. For i < j — 1, we have

Si,j = W*iuli+}.,j]7r;
= Millipilhiye .. . Us a7
where
Uppiliyz .. . Uj 1 & C Uppalliys .. U 1G5
C Gipx
by an iteration of the first part of Axiom (2). Since £.; C Guip1 and Geip1 18

orthogonal to G;41, it again follows that S;; must be 0 as before. The lemma
follows. B
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4. OPERATOR MODEL THEORY: COORDINATE-FREE VERSION

We now discuss a time-varying version of the coordinate-free model theory as
developed in the work of Nikolskii and Vasyunin (see e.g. [28] and [29]). In place of
a single contraction operator T on a Hilbert space H, we are given a collection of
Hilbert spaces {H,: n € Z} and a collection of contraction operators T}, : H,, 1 —
Hn. In place of a unitary dilation ¢ of the single contraction operator T on a
Hilbert space K > H, we consider a collection of Hilbert spaces K, D H., (neZ)
and unitary operators U, : K, 41 — K, such that

TPt = Pivid, forall ne 2

Hn+1

where in general PJ is the orthogonal projection from X onto  whenever H and K
are Hilbert spaces with H C K. One way to construct such a unitary-family dilation
{Un: n € Z} of the contractive family {T},: n € Z} is to construct a Halmos unitary
dilation of T, for each n, namely, a unitary operator V,, of the form

e[z 8] [2] - [4
for appropriate defect spaces £., and &,. For example, one can take &, = Dr, and
Eun = Dr= to be the defect spaces given for a general contraction operator T' by
Dr = closure Ran Dy where Dy = (I — T*T)Jf
and then set
Bn = Drs: Drs = H,

Yo = Dr,,: Hny1 — Dr, (4.1)
b‘.n = '—T,:: DT; =¥ DTn-

One then defines K, by

2(Zen, E.)
K:n = Hp
P(sz“:)

where we have set £ equal to the aggregate {£,: n € Z} and &, equal to {£,,: n €

Z} and are using the notation (2.5) introduced in Section 2. Define the projection
operators (as in Section 3)

Maem fz(z{n_'_l, E._) —* g*n, Tn - 22(22,”8} —% Eﬂ
by
(=% ]

Tiri's

)

" €
—* €xn, n- ntl] — e,

€an—1

E€xn

with adjoints equal to the inclusion maps

* 2 ) =
Teng1® €n = | M, €n — 0

(=
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We then consider H, as a subspace of K, in the canonical way and define Uy, : Kpny1 —
Kn by

Sy 0 0

Up= |BTunt1 Tn 0

mb My Sa

where we have set
Smi (s¥n-29n1,¥0) = (-1 Yn—2,¥n-1)
Sni (Unt1, Uni2, Unt3s--- ) = (0, Ung 1y Uni2, Unys, ... ).
In more coordinate-free form, we simply assume that we have such a unitary-family
dilation {Z,}. For each n € Z set
Kin = closure U {U, H;: j >n}, K_, = closure U {Upn,3Hj: § <n}

and then define subspaces G,, and G.,, of IC, by

gn:K+ne?{n, g*n =K:-—n e?’fﬂ.
We may then define wandering subspaces

gn. = g'n =] u[nggﬂ-l: Etn == gtn—i—l e L’[:gtﬂ

and observe that we have the internal, orthogonal direct sum decompositions
On = OF lin 715y Gan = D71 Uin,j41)E45-

J=—o0

In short, it follows that {4,,G,,G..} is a TVSS as defined in Section 3. If the
contractive family {T},} is completely nonunitary in the sense that

HD = {bn € Hn: - = |[Ta_shal| = |hall = | T2hall = | T4 Tiball = ...} = {0}

and if the unitary-family dilation {#,} is minimal (as is the case if one uses the
above construction with the model Halmos dilation V,, as in (4.1) for each n), then
it can be shown that the associated TVSS is minimal, i.e.

Kn = closure [gtn + §ﬂ]
for each n € Z.
We then have Fourier representations ®,.: K, — £2(Z,€) and ®,,: K, —
#*(Z,£.) and a scattering operator

S%scar = Pun®}: 2(Z,€) = P(Z,E,)

as in section 3. In this context, the scattering operator is called the characteristic
operator for the contractive family 7 := {7},: n € Z} and denoted by O

Or =98 =855__,.
A functional model associated with a given lower triangular, contractive element
© of L(E,&,) is a method for constructing a particular contractive family 7/(8) in

such a way that we recover a given contractive family 7" from the model built from
its characteristic operator ©7 up to unitary equivalence:

T>T(0).
Generally there will also be a model for the associated TVSS incorporated in any
such construction. We shall return to this topic of models in Section 6
We have seen that operator model theory and scattering are closely connected,

and that by definition the characteristic operator ©. for a contractive family 7 is
equal to the scattering operator Sy, _,, for the associated scattering system %,.,;. In
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the next section we make explicit the connections between scattering /model theory
and the time-varying unitary linear systems discussed in Section 2.

5. EQUIVALENCE OF SCATTERING AND MODEL THEORY WITH UNITARY LINEAR
SYSTEMS
Given a unitary time-varying system (2.1) (where now we assume that each

U= {é: gﬂ is unitary), we associate a time-varying scattering system (TVSS)

Esmt = Escct(E) = ‘[K: - {Kn}nez-;g = {gn}nez-: g* = {gtn}nea'ﬁ!u = {z‘(ﬂ}ﬂé_ﬁ}
as follows. Define

Kﬂ = gz(z{rl:gt)ea%n&gz(ZZH-;g),
g-u = F(Z(ngé‘*), (51)
Gn = P(Z>n,E)
With 2y : Kny1 — Kn defined by
Un: TIny1 (7,7, ) — (4, 7, §) (5.2)

where II,,: § — K,, is the “window operator” at time n for the system ¥ defined
in Proposition 2.4, and where (&, Z,§) is an arbitrary system trajectory for the
system X in the signal space § (see (2.7)). To see that the expression (5.2) gives
rise to a well-defined unitary operator, it suffices to offer a more explicit alternative
representation for U,,. Indeed, note that

U1 (4,2,9) = §li: j<ny @z(n+1) @G jomy),
On(@,2,5) = §j: j<n} © 2(n) @ (. j>n)
where, in addition,
z(n) = Alz(n+1)+ Ciy(n)
u(n) = Biz(n+1)+ Diy(n).
Hence, a more explicit representation for I4,, viewed as a 3 x 3 block operator matrix

F(Z‘Eﬂyg*) E2(Z<ﬂy 54)
Un: Hﬂ-{-l — Ha
B(Z>n, ) B(Z>n, E)

5 4 0 0

un = C;ﬂ—*n A: 0 (53)
T Drmen B S,

where the operators

S_n: P(Lcn, &) — (Zcn, L)
Tm - BZ(ZSn,E‘-) =% gtn
Thin — L£(Zop,E)
Sn: fz(z>ﬂ18) = 82(22“’8)
are given explicitly by

S—,ﬂ: ('--1yn--2:yn——hyn} = (---ayﬂ—-?."yn—l)
Mam - ('--ayn—%yn—l: yn) = Un

Tnt uﬂ'_#(uﬂa{]?o‘roa“‘)
Snt (Unt1, Uni2, Un43y--- ) = (0 Ung1, Uni2, Unys, - - ).
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From this representation and the unitary property of g’: g’:} , it is easily checked
directly that 24, is well-defined and unitary from K, ; onto k... One can also check
that the TVSS axioms (1)-(4) hold for the system ,cqr = Byea:(E) as defined by
(5.1) for a given unitary system ¥ (2.1).

Conversely, given a scattering system .4 as in (3.1) (for which axioms (1)-(4)
are satisfied), we associate a unitary system

3 = B(Bpeat) = {Un = [é: gj ‘ [}8&] - [HE:l]}

by the following procedure. Define Hilbert spaces &,, £,, and H,, (equal to sub-
spaces of K,,) by

gﬂ = gn e ungn,+1s
E*n = g:rH—l e u.: G-n ]
Hn — K:n ] [gn & gtﬂ]}

_|4n Bn
and the operator U, = [ . Dn] by

Uﬂ- = p"‘n‘i-l@g-nurtiﬂn@gn‘ (5‘4)

where Py, @¢., is the orthogonal projection of K, ;1 onto H, 1 ® Eun. A conse-
quence of the scattering axioms is that in fact 2 (H, BE,) = Eun @ Hny1 from which
it follows that U, is unitary since U} is unitary. We may view the time-varying
unitary linear system associated with {Uy,}

B [ z(n+1) = A,z(n)+ Buu(n)
y= E(Exmt)' { y(n) = Cnl'(ﬂ) + Dn'u(ﬂ')

as being associated with our original TVSS X,.,;. Moreover, it is clear that
E(E‘sca:(z}) — Es Escat(z(zscat)) = Esmt

for any unitary time-varying system ¥ and TVSS X,..;. We have thus established
a one-to-one correspondence ¥ — Ycq¢(X) and yeqr — X(Z0at) between unitary
time-varying systems ¥ and TVSSs ¥,..:.

Recall that we have associated an input-output operator Ty with any contractive
(in particular, unitary) time-varying system ¥ and a scattering operator 5%, cat
with any TVSS ¥,..;. The next result establishes that these objects are identical
if £ = X(Xcat), or equivalently, if ,cat = Zycar(X).

Theorem 5.1. Let X be a time-varying linear system as in (2.1) for which U, =
[g" 13)“} 1s unilary for each n, let Xyer be an TVSS as in (3.1), and suppose

n n

that ¥ and X,..; correspond to each other in the correspondence described above:

= E(Esmt)y Yseat = Uscat (E)

Let Ts; be the input-output operator associated with the system ¥ and let Ss.... be
the scattering operator associated with the TVSS Yecar. Then

Ty = Sy,...: P(Z,E) = F(Z,E,).

scat *

Proof. 1t suffices to show that Ty = Sx,_,, on £3(Z>,,&) for each n € Z. There-
fore we fix an n € Z, choose a @ = {u(j)}jon € (Z>n,E) and set Fyor =
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{yscat(i)}izn = Sv,.., 4 and § = {y(j)}j>n = Txil. The goal is to show that

Yscat (i) = y(i) for each i =n,n+ 1,.... First we note that
Yocat(i) = Tjp Siu(k)
= YheaT u'u[s+1,k1?r wu(k) (5.5)

= Yo Tadhf Uy . U TR u(K).
On the other hand, y(i) for i > n is determined by the recursion
z(i+1) = Aiz(i)+ Bu(i), z(n)=0

yi) = Cizli) + D). &)
In particular, by using (5.3) or (5.4), we see that
y(n) = Dnu(n)
= Tenllpu(n)

= [Snn]u(®) = yscat(n)

so the assertion holds for i = n. More generally a simple induction argument using
(5.3) and (5.4) gives that the solution of the recursion (5.6) satisfies

|: (y(z) )] = }JH*+1 @gﬁ.wu;_l .o ‘Z,{“u
for i =n,n+1,.... In particular it follows that

y() = Pe UL .. Uz
(where Pg,, is just another notation for ;). Comparison now with (5.5) shows
that ¥(2) = Yseas(i) as claimed, and the theorem follows. O

As a corollary we obtain the following.

Corollary 5.2. Let T ={T,: Hoy1 — Hy,: n € Z} be a contractive family. Let

. * Bn. Hn m-{-l

w=|d ) [#]-[E:
be a minimal Halmos unitary dilation of Tt and let Uy, : K1 — K, be the unitary-
famaly dilation of T associated with U, via the construction above. Then the char-
acteristic operator O for T coincides with the input-output operator T, for the
time-varying, unitary, linear system
z(n+1) = Tiz(n)+ Bau(n)
y(n) = Chz(n)+ Dyu(n).

6. MODEL TRANSCRIPTIONS

Let us consider an TVSS ¥,.,; as in (3.1). We have seen that there are then
two Fourier representations &,, and ®,,, which are partial isometries mapping K,
onto £3(Z,£) and £%(Z, £,) respectively. Furthermore, the initial space for ®,, is C.
while the initial space for &, is Gions and, if we assume that our TVSS is minimal,
we have that gu + G,m is dense in KC,,. Hence under this minimality assumption, if
we define a map @,: Gon + Gn — £2(Z, E)DP(Z,6) by

3, : Gan + Gn — [q‘:g"g*“] for g,n € Gun and gn € §,.,
ﬂgﬂ

then &, is a (not necessarily well-defined) linear mapping from a dense subset of KC,,
onto F(Z £.) ® £(Z,€). In the terminology of [28] (adapted to our time-varying
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setting), various model transcriptions then amount to a particular choice of linear
mapping (involving only the scattering operator S)

22 -

oM _ M

oY = [m¥ [ 2 S)J - KM(S)

where K™ (S) is a pre-model space for the model M. One then defines an inner
product on K} so as to make the composite identification map

Igfn = ﬁgf 0®,: G +G. > K.'M(S)

an isometry (where am L f;",, is considered with the inner product inherited from
Kn); furthermore, in all the examples this inner product turns out to be indepen-
dent of n. Then the scattering model space K¥ is obtained as the completion
(if necessary) of K in this inner product (after identification of elements of zero
norm with the zero element, if necessary). Then T, gfn extends uniquely to a unitary

operator (also denoted by Z¥' ) from K, onto K™ (S). One then defines the spaces
HM(S) = :rM M,
Gn(S) g*n
Gl(S) = Is nGn

and the operators
Usy =Ton KM(S),  T§, = Prse(s)lrse (s

to get a TVSS XM ,(8) = {U¥,},{GM(5)},{6M(S))}} with associated model
contractive family 73" = {T¥,: n € Z}.

We now illustrate instances of this construction with three popular examples (see
(28]), namely: (1) the Paviov model, (2) the Sz.-Nagy-Foias model and (3) the de
Branges-Rovnyak model. We first note the following general inner product identity
concerning TVSSs.

Lemma 6.1. Let X,c0t = {Un, Gn,Gun} be a TVSS with associated Fourier opera-
tors un, ®n and with scattering operator S. Then, for any pair of elements gy, g,
in G, and pair of elements Gens 6.y, 1 Gun, we have

I s q)*n Gan q:'*n g. 4
’ o St 1] | Pngn Onn |/ pa,e 00 me)

Proof. Recall that g., and g, are in the initial space of ®,,, that g, and g, are
in the initial space of ®,, and that S = &,,®}, (independently of n). Hence,

{Gen + In Gan + Indk, = (Gon, Gon) + (gon, gn) + (gns Gin) + (90, 4},)
== (q)*ﬂgﬂl: q)*ﬂgin) + ((I’:nq"f&g*ﬂ'}q):l@ﬂg:l)
+(¢’;¢ngn, (-T‘.:n“b*" tﬂ) + (@ﬂgﬂ? Q’ﬂg:z)
= (‘I’mg*m ®,, .n> + (S*'i)*ngtn: (I’ﬂg:;)
+<Sq’ngml Q*ﬂg!tn) + <¢ﬂgﬂ1 (I)‘ng;l)

(s Bt
S* I|| @ngn || ®udl, £2(Z,£.)DE2(L,E)

|
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6.1. The Pavlov model. The Pavlov model (see [28]) is the most convenient
model for studying scattering systems (as opposed to the study of models for a
contractive family 7). For this case we simply take K (S) to be equal to £2(Z,E,)®
£(Z,E) with ﬁ’S’ equal to the identity operator. As a consequence of Lemma 6.1,
we take the inner product on KF(S) to be given by

ELED- A D

with K (S) equal to the completion of K (S) in this inner product, where elements
of zero norm are identified to 0. Then the associated incoming and outgoing spaces
are given by

[ 0
G (S) = _eﬂ(zg,,,f)] (6.2)
GE(S) = gz(z%"’g*)]

with model space family HZ (S) given formally by
Pray_ [I 8] [B(Z>n, &)
Hn (S) — [ * I_ J:EQ!(Z(’HE)
with model contraction family equal to

P _
TS,n = Pug_n|ﬂgﬂ+,-

We will not compute T, more explicitly here.
By using the Pavlov model it is straightforward to see that there always exists
a TVSS with given scattering function S € £(£,£,). The result is as follows.

Theorem 6.2. Let S be a given contractive element of L(E,E,) (for given families
E = {Enkner and &, = {Ein}tnez). Let KE(S) be the completion of equivalence
classes of 0%(7,E.) ® P2(Z,£€) in the inner product (6.1) (independent of n) with
GF(S) and GE,(S) given by (6.2), and with UE,, equal to the identity operator on
KE(S) for all n.
(1) Then
2§ scat = {UE},{GF (9)},{GE(5)}}
s @ TVSS with scattering operator coinciding with S. More precisely, there are
unitary identification maps
in:€n =& =07 (S) 068, ()
itni &un 2o ‘E"t’;:. ‘O fn-i—l(‘s') e gfﬂ(s)
so that
?’:Sﬂgi = S-,
where i,: £2(Z,E,) — P(Z,EF) and i: P(Z,E) — 2(Z,EF) are obtained as
i, = diag {in}nez, = diag.{in}tncz.
(2) Then S can be realized as the input-output operator (or transfer function in
the time domain)
8= hﬁ(z) +C(I -rZA)"'ZB)
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(with A,B,C,D diagonal operators as in (2.8)) of the time-varying unitary system

$P. { z(n +1) A(n)z(n) + B(n)u(n)
R y(n) C(n)z(n) + D(n)u(n)

I

where U ; n= I:ggg g%:;] s given by

[g% ggﬂ - [g ig.] (P£§:?33}®£3|H£(S)e)£§) [é i{i }

Proof. We first verify that £f is a TVSS, i.e. that X£ satisfies Axioms (1)-(4) for a
TVSS as set forth in Section 3. The first axiom is trivial. Axiom (2) follows easily
from the fact the G, ;(S) C GF(S) for all n € Z and the fact that £2 spaces have
the property

() £(Z2n,€) = {0}.

nek

The second axiom follows similarly from the fact that GF, (S) < GF,,,(S) for all n
and the reverse property for 2 spaces that

() £(Zen,E.) = {0}.
nek
Finally Axiom (4) follows easily from the definition (6.1) of the inner product and
the assumption that S is a lower triangular element (S € L(£,£.,)) of X(£,£,).
It remains to compute the scattering operator for the TVSS BE. Tt is easy to
see that the spaces GZ(S) and GE,(S) can be identified explicitly as

GP(S) = [62(20,8*)} , GP(S) = [Ez(ij E)] independent of n.

Moreover it is easily seen that

G oUGEn(S) = |7
o etene = ).

It is therefore natural to define identification maps i, and i, by

fup 2 Cay = |90 iaen— |9
#n - Esn 0|’ n: En el
Next one can check that the full incoming and outgoing spaces for the Pavlov model
GF.(S) and GP(S) work out to be
o P e fz (Z! E*) AP o 0 .
G.n(S) = [ 0 y Gr(8)= 2(,€) (independent of n.)
It is now easy to check that the Fourier operators 2, and ®F for the Pavlov model

satisfy

el [5{;‘ — g, for g, € (Z,¢E,)

it [g — g for g € #(Z,€).
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We are now ready to compute, for g and g, as above,
(#8prig, ) = (i10L, D7 *ig,g.)
= (@,f‘ig, @f;:i*g*),cp(s}

= (o) [5))...,
1R —

= (59,9:)r2(z.5)
and the first assertion follows. The second assertion is then a direct consequence of
Theorem 5.1. g

6.2. The Sz.-Nagy-Foiag model. For a full treatment of the time-invariant ver-
sion of the Sz.-Nagy-Foiag model, we refer to [27]. To obtain our time-varying
adaptation of the Sz.-Nagy-Foiag model, following [28] we set

RN¥F(8) = [ AZ.L.) ]

Ds#(Z,E)
(where Dy is the defect operator (I — $*S)% on £2(Z, £)) with
TINF _ I S
-l 5]

By again applying Lemma 6.1, we see that, for g,,,g., € G., and 9ns G € Gn,

<[I S] ['i'mgm] l‘bm —n]>
I | Pnga || Pugl 02(2,£.)DE(L,E)

s 3o 1slfo 1) [aer]-[5])
* 1|0 I-5*S||0 I|| ®ngn |’| Pnon

= (Zo 5 (gen + 9n), I3 E (9o + ) e@e)orwe)

and hence we define the scattering Sz.-Nagy-Foiag model space to be

KNE(S) = ["’ﬂ (%:*)]

(where Ds is the closure of the range of Dg) with inner product equal to that
inherited from £2(Z,£.) ® £2(Z,€). The Sz.Nagy-Foiag model outgoing, incoming,
and model spaces are then given by

(gen + G Gam + gn)

GNF(S) = gg] P(Zsn, E)
gur(s) = [Flembl],
HNF(S) E’(Z%:E,) o [DSS] P(Zsn,€)

with model contractive family given by
Tsin = Pryr(s)luys,(s)-

Conversely, one can derive an analogue of Theorem 6.2 for the Sz.-Nagy-Foias
model. Specifically, given a contractive element S of £(£,£,), it is straightforward
to check directly that

S seat = (U2} G T (S)} (GRS (S)}}
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is a scattering system with scattering operator coinciding with S:
iSpyr i=8 (6.3)
where this time

i =diag.{i,} with i,: e, — [S

€En
o (6.4)
?:; = d.lag{?-*n.} with ?:,ﬂ: Ean —F *Uﬂ} .

A consequence of Theorem 5.1 then is that S can be realized as the input-output
operator

8= Ty (6.5)
of the time-varying unitary system

SINF. { z(n+1) Anz(n) + Byu(n)
s - y(n) = Cnz(n)+ Dau(n)

where now UgF = [é," g"] is given by

I 0| ,knF I 0
Usin = [0 z':n] Pryroenrlnys,s)oeyr [0 ,;J :
This model for time-varying scattering (also known as “unitary coupling”) and
contractive families is discussed in some detail in [12], but from the point of view
of Kolmogorov decompositions of positive-semidefinite block matrices and Schur
parameters rather than directly from the point of view of dilation theory as is done
here.

6.3. de Branges-Rovnyak model. The original treatment of the de Branges-
Rovnyak model can be found in [11]. For our time-varying version, as suggested by
the transcription methodology from [28], we take

KiBR(g) = [.S{" ﬂ [ﬁ(%}%))]

~IBR _ I

Hgs - I:S* ﬂ *
Thus for gun, ¢}, € Gan and gn, g}, € Gn, We define the inner product on K4BE(S)
so that

I S apmg.,,] [I S] [qa,,,, ,,]) B ;
<[S* I] [@ngn ? L2 | ¢n9:. K4BR(g) {gt"‘i-gﬂ’ ggn_i_g;bcn

— <li[ S] Ii@tng-njl ]iétn tn:|>
I | Pagn || Png;, 02(2,£.)BE3(L,E)

where again we used Lemma 6.1. Upon analyzing the completion process, one sees
that one should take the de Branges-Rovnyak model scattering space to be

with transcription operator

K#BR(S) = Ran [SI ﬂ (6.6)
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with so-called lifted norm (or inner product) given by

(b ALl b L), = L2 D),

where () is the orthogonal projection from ¢3(Z, £,) @ £2(Z, £) onto the orthogonal
complement of the kernel of [ 5{* f] The outgoing, incoming and model spaces
for the de Branges-Rovnyak model then work out to be

gio%(s) = |]] £

GiBR(S) = SI] P(Zcnrl) (63)
5 (1 S|} [B(Z,E)] A [P, &)

HPHS) = g I] [F((Z,E)]n BZ(Z:;,,,.E)]'

An analogue of Theorem 6.2 for the de Branges-Rovnyak model with similar
proof holds; namely, given a contractive element S of £(€,£.), one can define

Z5ieat = {USETH GRS GRS

and check directly that $§5%, satisfies the axioms of a scattering system with
scattering operator coinciding with S:

*":S)Jgﬂﬂté =8 (6.9)
where this time
i = diag.{i, } with i,: e, — ?] én
7 (6.10)
i, = diag.{isn} With is,: €un — S*] €n:

A consequence of Theorem 5.1 again then is that S can be realized as the input-
output operator

8= ngmz (6.11)
of the time-varying unitary system
saBr. | #n+1) = Anz(n)+ Bau(n)
S y(n) = Chz(n)+ Dyu(n)
where now UgER = [é" g"] is given by
T ; 'y dBR dBR
UdEH [0 i‘? } P‘rlg;;:@g«_i,{m [0 10] : [’H (S)] [Hn+1 (3)]

(6.12)

Our next goal is the derivation of explicit formulas for the de Branges-Rovnyak
model unitary colligation U§2% (6.12). A first step in this direction is the follomng

more convenient form of the unitary identification map Z35F := M4BR 6 &, be-

tween the scattering space K,, and the de Branges-Rovnyak madel scattering space
K:a‘.BR( S)
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Proposition 6.3. Let X,cq; be a TVSS with scattering operator S = B,,8" €
L(€,E.) and let I"BR be the unitary identification map between K, and )CdBR(s)
as above. Then

T4BR = [‘%n} : K — KIBR(S)
for all n.

Proof. We check , for g., € Gun,

dBR —

D.n

= q’n ] Gsn

Similarly, for g, € G, we have
I 8 0
dBR _
IS,“, gn = S* I Ii@“g‘n]

= [P ®y

_ @

= |, |
The assertion now follows by linearity and continuity. O

From PI‘OpOSlthn 6 3 we are next able to get the following explicit formulas for
the restriction I',, 4BE|7,. of the de Branges-Rovnyak identification map to the
state space H, at txme n

Proposition 6.4. Let us suppose that

scnt {{L‘n} {gﬂ} {G*n}}

is a TVSS with scattering operator equal to S € L(£,£,) and with associated time-
varying unilary colligation

ol Ha] _ [Ha
- [C D. ] P"}gnﬂ@&nu I'H,,Gagn: !:sn] ¥ [8‘—:1]
and with Fourier transforms ®u: Kn — £2(Z,€) and ®un: Kn — 2(Z,E.). Then,
fﬂ‘l" hn & T'Lnx nhn {{thn}l }JGZ tlﬂd q:'=t|mh"n {{@tnhn}J}jez are gwan by

Oforj<n
étn j = =
{@unhn}; CjAj1...Aphy for j>n
Bj Aj Al b, forj<n
R §4+1 - n—1
{Pnhn}; = 0for3>n

Proof. Since My, L Gan, it follows that P’C"H,. L Gun. Since @un: Gup — B(Zcn, &),

we see that ,,: H,, C £2(Z,&,), or {CI'*,.;“:.,‘]-J = 0 for j < n. Similarly we see from
Hn L Gn and @y : Gy — £2(Zgen, £) that &, H, C £2(Zcn,E), or {®nhn}; =0 for
J =z n. To compute {®,,h,}; for j > n, we use the formula

{Ceahdy =P . UWha
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together with the relation

n 9 An
Pﬁﬂ::@g-n%|uﬂ$£n = |:C D::| i

In particular we see that
Pt UMy = Ca
and hence
{Bunbin}n = PertUnhp = Cohy.

For the general case, note the semiinvariance properties
P}Ckﬂurtﬂuﬂﬁk = ka+zu;+lp’ck+lu;|ﬂk

[ Exk+1 Hi41
Krtz 9+ . p’ck+2 * ’ék+1 *
Pu.k+3u};+1u}:|ﬂk = Haketa k+1P‘H.'k+1uk }Hk'

Thus for k > 0 we have
{Bunhn}use = ProtetUs PrrtUs,, ... PirtiUsh,

Eantk

= CoprAyp - Anhn

as asserted. A similar argument arrives at the formula for {®,h,}; for j > n, by
using the dual relations

4 Gy pK
[B; D,*j = Boslilnnoc.
K
Poithlholn, = PEUP Uiy,
plizy pk
P?’g:ukuk+lluk+2 = PPy Unialr,-

O

We are now ready to compute the de Branges-Rovnyak unitary colligation U fr
explicitly.

Theorem 6.5. The de Branges-Rovnyak colligation
U4BR _ [Af.” B“BR] : [HS’:(S)] . [Hgfi’il]

S cisr DEBR i
(see (6.12)) is given explicitly by
f;

AdBR. [n] . [ Jn = {fn}nbn }
" Gn (Sgn _‘S"RS(‘(;S-%{fn}n
- .ﬂ-;
BgBR: €n —7 {(I s S‘SAR(O))TF;] €n (613]
otEm; |14 <)
DEBR = Gpp = TunS*R(O) = o ST
with adjoint given by
dBR\+ . a1 iy fny1— Sr:i.{g‘n}ﬂ,
(A= [9n+1] ( [SQS,::’:(_) {)Sn}n
- I— 0)*)ms,
(C::[BR) - €ap — (g% SAR(O)')’JT:“:[ €n (614)

el L R A

(DEBR)® = 82, = M SA(0) mt, = TS,
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where by, is the Kronecker delta ({6n}; =1 for j # n and 0 otherwise), and where
Ty, 18 the canonical injection of €, into F2(Z,E) and %, is the canonical injection

Of g*n into F(Z, gt)-
Proof. 1t is convenient to assume that we are given a TVSS

Esmt - {{un}r {gﬂ}? {g*n}}

with scattering operator equal to S and with associated time-varying unitary col-
ligation
_|An B,
= e 5

as in the hypotheses of Proposition 6.4. Let us use the notation T, for the restriction
of the de Branges-Rovnyak identification map ZBE to the scattering space H,,.
Thus, by Proposition 6.3 we may write

- [P:] = [q;:] lie. (6.15)

By definition, the de Branges-Rovnyak colligation UZZ2% is determined by the in-
tertwining condition

Tni1 0] [An Ba] _ [A4BR B4BR] [T, o (6.16)
0 1||Cn D,| |C3BR pdBE| g ‘
where, by Proposition 6.4 we have, for h, € H,,
_ CjAJ—i(-)- . Aﬂ.h'ﬂ} fOr j 2 n
{Thhn}; = 0 ' (6.17)
BIAS,, .. -A;_lhn] for j < n.

Let us write a generic element of HiPR(S) as

] =[]

where hy, is a generic element of H,. As elements of the spaces HB®(S) and
HIBE(S) are block columns with two components, it will be useful to have a nota-
tion for the finer decompositions of the de Branges-Rovnyak colligation operators:

dBR Aﬁﬂﬁz dsf; dBR BiAR C4BR BR dBR
A" = Adbz.;z Ad%}; , Bt = Bd};ﬂ y Lp =[C§,1 Cn,z ]
Ty m, n,
From (6.17) we see that

CjAj1 .. Any1Anhy for j > n+1
0 otherwise

{fﬂ}j forj>n
0 otherwise

This combined with (6.16) gives us
ARET: fu = fa— Unbabn, AZBE=0.
Next we use (6.17) to see that

CiAi 1... A 1Brep fori>n+1
0 otherwise.

{an+ 1Anhn}j =

lint1Bnen = {
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From this combined with (6.16) we see that
BiERe, = (S — §"R(0))Then.
Similarly, from (6.16) and the formula (6.17) for ', 4; we have
BiBRe, = Tny1Bnea

i A1 AsBpey for j<n (6.18)
0 otherwise.
On the other hand by Theorem 5.1 we see that
[I‘“ SSAR(D)]g:' = 5,-jI—S;iDj
Ofori>j
= I-DiD;fori=j
BJA;...A3,C}D; for i < j. (6-19)

From the fact that U,, = [ G" g"] is unitary we get the relations
T k4]

I-D;D;=B;B;, C;D;=A;B;.
Hence (6.19) becomes

Ofori>j
[T - S§"*(0)lyy = { BfB:fori=j o
B A} ... A7 A]B; fori < j.

Comparison of this with (6.18) now gives
o en = (I~ S*SM(0))mren

as wanted.
From (6.17) and (6.16) we get C4BET,,h,, = Crhy = Co{fa}n and then also

Caiiffa = {faln, CaBR=0.

From (6.16) we read off DZBE = D, = §,,,, as asserted.
Next we use (6.17) to see that

BiA: .. . ArAh,forj<n
.= ke b 0 | n .
{Tnt14nhn}; { 0 otherwise (6.20)
We now use the remaining relations coming from the fact that [Cﬂ g"] is iso-
n n

metric, namely:
A%A, = I—C:C,
B:A, = —D:C.
Hence (6.20) becomes
B Anhy = —D;Cphy, for j=n
{Cni1dnhn}; = BjAj,, ... AL ha —BjA},, ... A% CiCuhy forj<n
0 otherwise.
Recalling now that Cphn = { fn}n, the definition of g, = I';h, and the intertwining
condition (6.16), we arrive at
Aflf}z? Ja— _S*Wz{fn}m Agig gn = gn
and all the formulas (6.13) hold as asserted.
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The adjoint formulas can be proved by the computations done with the roles of
the inputs and outputs interchanged and working with the adjoint system matrix,
which by construction is also isometric. O

This time-varying de Branges-Rovnyak model is also discussed briefly in [12]
from the point of view of Kolmogorov decompositions and Schur parameters.

7. SCATTERING SYSTEMS AND MODELS IN AUGMENTED FORM

7.1. The coordinate-free version. In Section 2.2 we associated a certain time-
invariant system X*“¢ with a time-varying system X whereby the input to the
system at time n was taken to be a diagonal matrix u(n) € D}¢(C, £) supported
on the n** diagonal below the main diagonal (if n is positive) and the input-output
operator of this augmented system T%,, operates on Hilbert-Schmidt operators
as an operator of left multiplication by the input-output operator of the original
(nonaugmented) form of the system (Tx,, = Lg,). We shall now present this
system X%"¢ in a somewhat different form which is more convenient for establishing
the connections between systems and scattering at the augmented time-invariant
level.

We next present our reformed definition of the augmented time-invariant system
Y99 associated with a given time-varying system

5. { z(n+1) = A,z(n)+ Buu(n)
. y(n) = Cuz(n)+ Dyu(n).

associated with the time-varying colligation

= e 2] [10] - 2]
" Cﬂ DH ’ Eﬂ g*ﬂ ’

We define the input space £2“¢ and the output space £ for £%%9 to be spaces of
diagonal operators (always supported on the main diagonal, unlike in Section 2.1)

£%% = Dyg(C,E), £ =Dys(C,E.).

We take the state space H**9 for £ to be the Hilbert space direct sum of the

spaces Hy,, but with elements arranged as block row vectors rather than as block
column vectors:

H““ngﬁ(z,?{):{[... h_y hy ..‘]:hneﬂnwith i |[hn||2<oo}.

We then define the time-invariant colligation U/*¢ (not to be confused with the
U"9 used in Section 2.1)

i Acug  paug Houg Heug
U = [Caug Daug] : [g:mg:f — [gfuﬁ] (7.1)
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by
Aug [ S A | T . ] — [ » A_z.'.r__z A_l;r_l A(]Zo - ]

U_1
Boug . —»[ B ou_5 Boug }
uy
C._]_:E__]_
C™: [« @ @, il (7.2)
Clxl
U_1 D_lu_]_
Deva . @ — Dyug
Uy D]UI

Next we define an analogous augmented time-invariant scattering system b3 e
associated with a given TVSS

Esmt =; {{un: K;n+l = K:n}: {gﬂ}r {gﬂ’l}} >

We define the scattering data space K*“¢ for 22 to be the row £2 direct sum of
infinitely many copies of Kp:

(= =]
jCoug — {[ ks ke ] i kn € Ko with Y [[knl? <oo}
n=—oo
with unitary operator U**¢ on K®“9 given as the backward bilateral shift:

U . [ k y ]—»[ ko [ki] ks ]

or, more succinctly,
U™ = Ry,

the right multiplication operator associated with the lower triangular bilateral shift
operator Z on £2(Z, C). The outgoing space G**9 and incoming space G¢"¢ are then
defined by

G*e = [ UG 1 UGy ]
g9 = [ UTGi 1 |Guo| UG ]
From the axioms (1)—(4) satisfied by the TVSS ¥,..; one can check that
Tocar = {U™ on K™9,G8, Gouo} (7.3)
satisfies the axioms for a time-invariant scattering system, namely:

1. The scattering data space K°“9 is a Hilbert space and U is a unitary
operator on %%,
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2. Each incoming subspace G**9 is a closed subspace for K such that I4*%9 : G¥9 —
guug aud nzo;n(uaug)ngaug = {0}

3. The outgoing subspace G*“9 is a closed subspace for £*“9 such that (24%*9)*: G&*9 —

imy and n?‘lu(uuug)-g:ug = {0}
4. G**8 is orthogonal to GZ"9 in eus,

We then define the wandering subspaces £%%9 and £2*¢ by
gaug — gaug Fe) uauggaug, Simg — g‘ aug Py (’uaug)tg:ug‘

Then £°%9 and £;™ have the explicit representations

gauy:[... U £, e, ]
s:“‘g:[... U Eu s Ues .|

where {£,} and {£.,} are the wandering subspaces associated with the TVSS ¥ GanE
gn 2] gn ean£n+]g gtn. — gn+1 eZ»{;gﬂ,.

Then we have that the outgoing and incoming subspaces G%*9 and G**9 have the
internal direct sum decompositions

gous — Ga;;m:u (utmg )NE1 gf.ny - (B;.i ol (ucmg)n (L(““Qé‘f“g)

and the spaces G°% := closure UXy (U9)*G*8 and Go™ := closure Ul o
(U*"9)"GE™ have the internal orthogonal direct sum decompositions

G0 = O o (U™O)E™S, G20 = @ (U (U 9ES).

Moreover, it is easily seen that the time-invariant augmented system $°%, is min-
imal (i.e. GI™ + G is dense in K**9) if and only if the TVSS ¥, .., is minimal,
i.e. Gup, + Gy, is dense in K, for each n € Z.

We next introduce the Fourier transforms ® and @, for the time-invariant scat-
tering system X579 which is suitable for our purposes. Recall that the TVSS £,car
has Fourier representation operators ®,,: K, — £(Z,€) and ®.,,: K,, — £2(Z,£,)
given by (3.4). We use only the case n = 0 of these to define Fourier operators

¢ and ®L™ for the augmented time-invariant scattering system $°%, by

seat

3 [ ks kl...]—»[... Bok_1 [Doko] i’gkl.‘.]
3, : [ ks kl...]—»[... B0k q:*[.k}...].

As each entry ®ok; is itself an element of £2(Z,£), we can view the image space of
®°9 as the space of Hilbert-Schmidt operators Xy s(C, £) and similarly the image
space of 8" as X5 (C, £,). With these conventions straight, it is easy to identify
the images of G*“9 and Gi™ under ®*“9 and ®{™ respectively:

@dﬂg(gﬂﬂy) = Lus (l[‘,,f,‘), Paus(gaus) =U_pus(C, %2
with the images of the wandering subspaces £%*¢ and £2“9 equal to the main
diagonal in X5(C,£) and the first diagonal above the main diagonal in the space
Xus(C, E,) respectively:

B2 (£949) = Dys(C,£), BI(£29) = DL(C, E,).
Moreover the scattering operator

See 1= BIM(B*U)*: Xyo(C,E) — Xus(C, &)
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works out to be simply multiplication on the left by the scattering operator Sseq:
for the TVSS 2,0
Sgnug = L

scat sEl:ﬂt .

The scattering space for the time-invariant scattering system X529, by definition
is the subspace

Haug = K:nu.g e [g:ﬂg @ guug]
and the model operator for X5.%, is the operator T5.?  given by

cat
1w g
Tgsit — P-'{.?nug Rz-l I'H‘Mlﬂ

and associated (time-invariant) unitary colligation

Acug ug Hovg Houg
ug - Etcai seal -
i = g g [52] - [T
is given by
aug a *
U2, = Phavoggsns (U™™)*|pavsoe.

scat Havag

We leave it as an exercise for the reader to check that the colligation Us.?,
nothing other than the augmentation described in (7.1) and (7.2) applied to the
time-varying unitary colligation

Usscarin = Pril..Un

Ha@En
associated with the TVSS ¥,..; as in Theorem 5.1.

Remark. As this is the scattering operator for a time-invariant system, it
should have some sort of Toeplitz structure corresponding to commuting with time
translation. In our context here, time translation on the input space Ly (C,&)
corresponds to the operator Rz-: of multiplication on the right by the backward
bilateral shift. Hence the expected commutativity property

Ssees Rz—1 = Rz-1Spous,

does hold, since it is always the case that a left multiplication operator commutes
with a right multiplication operator by associativity of operator composition. In
the “sparse embedding” procedure from [18] on the other hand, the Toeplitz oper-
ator §°¢ corresponding to the input-output operator for the time-invariant system
2% obtained as the sparse embedding of ¥ arises from the non-Toeplitz matrix
S (the input-output operator for a time-varying linear system X) as follows: if
S = [Sijlijez € L(E,E.), write S as the entrywise-convergent infinite sum of its
diagonals § = 3% _'s; where s; € D¥(E,£,) (so s; = 0 for j < 0) and then
write S°¢ = [SFf]; jez with 5% = si—j. Then the block-Toeplitz structure of S
is clear, but at the cost of introducing a lot of sparsity. Our representation us-
ing Hilbert-Schmidt operators for the input space rather than a space of the form
2(Z,(Z,E)) gives a more compact way of reducing the time-varying case to the
time-invariant case.
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7.2. Equivalence of scattering, model theory and unitary systems at
the augmented level. In Section 5 we associated a time-varying unitary system
Y(Xscqt) (and corresponding time-varying unitary colligation {Un(Eseqt fnez) with
each TVSS X,cqt, and conversely, a TVSS y..¢(X) with each time-varying unitary
system ¥ in a canonical way so that the scattering operator of the scattering sys-
tem matches up with the input-output operator of the time-varying unitary system.
In addition, there is also a model operator associated with each of these objects,
whose characteristic function in turn matches up with the scattering /input-output
operator. Let us now apply these ideas at the time-invariant, augmented level.
Starting with a TVSS Xscq, we have associated the time-invariant augmented

scattering system X% as described in the preceding paragraphs. We may then
scatl v

define a unitary, linear system £(X$%,) in the standard way (for the time-invariant
case, as in [9]) as the time-invariant system associated with the unitary colligation

= A B Haug Ha.ug
U(Escft) = [C } : [Sa.ug] =¥ [&z:uy}
by
A B o
U = [C D] = P‘?E“"Fe}sf“” a ug] E‘H_’nug@gang.

We leave it for the reader to check that this time-invariant system %(3%%,) is noth-
ing other than the augmentation [Z(Zscqt)]**¢ of the time-varying unitary system
Y (Escat) associated with the TVSS X,.q: as in Section 5, and where the augmenta-
tion of a time-varying system is defined as in the beginning of Section 7 (see (7.1)
and (7.2)). Conversely, if one starts with a time-varying unitary colligation {U,}
defining a time-varying unitary system Y and embeds its time-invariant augmen-
tation ¥ into a time-invariant scattering system Tscat(X%9) in the standard
way for the time-invariant case (see [9]), then one can check that the result is
nothing other than the scattering system angmentation [5,.,,(X)]%*¢ (where this
augmentation process is as in (7.3)) of the TVSS X,..:(2) obtained via the standard
embedding of the time-varying unitary system X (see (5.3)).

The same correspondences hold with respect to the operator model theory.
Namely, if we start with a contractive family of Hilbert space operators T =
{T%: Hny1 — Hy,}, we may form a single contraction operator 7°“¢ on a single
Hilbert space H*% by defining

H‘““’:{[.“ h_y hl]:hneﬂnwith i |[hn|F2<oo}

N=-—00

and

o8 s | = [ Toho Tyhs)|

We may then study the standard time-invariant Sz.-Nagy-Foiag model theory for
T**9 and the associated dilation and scattering theory, together with the associated
time-invariant unitary system. Alternatively, instead we may consider the TVSS
Yscat and associated time-varying unitary dilation associated with the contrac-
tive family 7 as described in Section 5, together with the associated time-varying
unitary system, and then take the time-invariant augmentations of these various
objects. We leave it to the reader to check that in the end one arrives at the same
place.
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Remark. We do not examine explicitly the the reverse procedure of recovering
a time-varying system (or TVSS or contractive family) from its augmented time-
invariant version; this is analogous to the “stripping” process which undoes the
“sparse embedding” procedure for associating a time-invariant system with a time-
varying system in [18]. This may be an interesting topic for future work.

7.3. Model transcriptions at the augmented level. We are now ready to
discuss model transcriptions at the time-independent augmented level. The general
procedure is as follows. Define a map

3 Aau, T XHS(C E:)
Houg . gaug aug 3
g* +g - [XHS(Cag*)
by

aug

= au, A CI)* g*
D gy + gn = {q,.mgg]
and compose this with a model transcription map

M. oug | XHS(Cag*)
fiMeus.,

XualC.E. )} — KMes(S)

where KM:a49 ig g pre-model space for the model M. In practice one takes this
model transcription map I[M %9 to be simply left multiplication by the transcrip-
tion map used in Section 6 for the associated time-varying model M

g = Ly

From this we see that KM-aug (S) is simply the row-£2 direct sum of infinitely many

copies of the pre-model space }COM (S) arising in the time-varying case (see Section
6):

KMaug _ {[ B ,t;_l ky ] k= Ig,fu?‘;n with Z [|En!|2 < 00.}7--4)

The inner product on KM-2%9(S) is arranged so as to make
Igf,aug i ﬁgﬂg 5 aau_q: g:mg +Gou9 EM,ang(S)

an isometry. The model scattering space for the model M is then defined to be
the completion of the space K%“9(S) in the norm from this inner product with
elements of zero norm identified to 0. It then follows that the map Ig"‘“‘g has
a unique unitary extension, also denoted by Zg"*", from K¢ onto KM-aus(g).
From (7.4) and the fact that the action of T M.aus gplits with respect to projection
on columns, we see that the space KM:aug (S) has the same form (7.4) as KM-eug(S),
but with ?CM{S ) in place of KM:2us(S)

EMang _ {[ E ki ] ko €KM(S)and ) |y <oo.(} 2

n=—oo

and that the map Igf’m‘g is given simply as

g L. ko= [ Tk [THoke| TR ..
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We then define the model time-invarient augmented scattering system
{uM.aug on K"M,nug (S), gM,aﬂg (S), gikf,nug(sr)}

as UM%9 = Rz on KM2u9(S):

YMsaug. [ ko ks ]—’[ ko by ] on KM-aus ()
GHma(§) = T5heu(Gous)
i\d’,nug(S) — I;{,aug(g:ug). (76)

We note that U/**%9 can be expressed more succinctly simply as multiplication on
the right by the lower triangular shift operator Z on £2(Z,C):

UMau9 — R, with My =Ry,
Then the model space for the model M at the time-invariant augmented level is
HMeu9(8) = Tghono (o)
with model operator

M oaug
T5 0 = Prissaus(sy Ra[H10(S)

and the associated unitary colligation for the augmented model M is given by

A aug
M.aug _ (S) -
U PT'KI':M‘AMH (3)983"““9 RZ E HM.ﬁug(S') @gM.nug ’

It is interesting to note that UM:%"9, after appropriate identifications are imposed
between the incoming space and the input space and between the outgoing space
and the output space, is exactly the same as the augmentation (as defined by (7.1)
and (7.2)) of the time-varying unitary colligation
Un(zscul) - P-;fn_{_lg;g_nu:

.

Ha®En
associated with the TVSS X,.,; as in Theorem 5.1.

We now spell out the remaining specifics of the model theory for our three
examples.

1. The Pavlov model. For the case of the Pavlov model, we have Z5** =

$°49 and

KPe49(S) = completion of equivalence classes of [ Xus (C, €)

Xus(C, E]

in the [ s '?] — inner product

0
F,au, e
GPaus(§) = Lus(C,6)
o) = [PraasCE)
pesspey — |1 8] [Las(C:E)
HO=(8) = 5+ 1| |U_ns(C,E) (formally).
with wandering subspaces
P,aug o [ 0 ] P,aug = 9&;31)((:, E-}:'
£ Pus(C,£)|’ & [ 0 ‘
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The augmented Pavlov model unitary colligation

[ Paug AF.aug  pPaug ) HP““‘Q(S) . HP,aug(S)
CP,aﬂg DP,MI-Q T gP,cmg Sf'ﬂug

is then given by
UFiena = Pw’f;‘:::(s)esﬂnaRz—l IHP’MQ(S) @ EPous,
2. The Sz.-Nagy-Foiag model. In this case we have
-NF, = Tau
Ty "= L[I S] o ™9

0 I
and
errma(s) ~ [*ar(GE)
i g
N g ) ) ) Xus(C, &,
GNFaug(gy = _I] Lys(C, ) with norm inherited from [Xii((C,S))]
iVF, aug (S) i u—- ,H.S’D(Cy g&)
i Lus(C, &) s
NF,au = i
H 9 = _dos.{I—S‘S)%XHS(C:S)] 2 [I] Fanin)

with wandering subspaces given by

5 (-1)
gNFaug _ [f] Dys(C,E), ENFow = [DHS ((]Q 5*)] .
and model unitary colligation
UNF,cmg [ AN F,aug BN F,ang] [HN F,a.ug( S}] N [HN F,aug ( S')J

CNF,aug N Fiaug : gN F.aug SNF,aug
given by
UNF,E“Q — Pg:;.:::(g)egxﬂaug.ﬁz— 1 |HNEE“9 (S) @D SNF?an .
3. The de Branges-Rovnyak model. Finally, for the de Branges-Rovnyak

case we have th&t
IdBR,aug |¢=ﬁ
5

Paug —
and 1
dBR,au _ [ T * xHS(Crg')
K Q(S) S -S* f:[ [: xhs(cs E)
ngR.ﬂ-ﬂQ (S) = f:l CHS (CJ 8)
gorens(s) = |4 uscen
dBR,au wes :I S% XHS(Cig*) EHS(C’E*)
H °08) = 8+ 1| [xusc,e)|" U _nms(C,E)|"

The model time-invariant unitary colligation

UdB’R'ﬂug _ I:AdBR‘aug BdBR,cmgj] ]tHdBR,nug (S)] N [HdBR,ang (S}

ciomens pisnans|* |'Dy(C.e) | | Dis(crt) (1)
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is then given by
ULBRANS = Pl o ras(s)0g bR ans Rz -1 [HIBRAY(S) @ £3BRiaug
By using the explicit formulas in Theorem 6.5 for the de Branges-Rovnyak model
time-varying unitary colligation and applying the augmentation formulas (7.1) and
(7.2), we arrive at the following explicit formulas for the associated augmented de
Branges-Rovnyak model (time-invariant) unitary colligation

BRaug, [HIBRau(S)]  [HdBRaus(g)
Ud R,oug, [ DHS(Ca g) ] ['DHS(C, g*) :[ ! (78)
namely:
BRaug. |f = L
ki | ([ég —Sf;)f)wnZ"lJ
BdBRaug. g _, [(I a S’S(OJ] EZ-L (7.9)
CdBR.aug. ; - £(0)
DiBRaug gy S(0OE
with adjoint given by
e, [£] . [£2—S(22)(0)
ey [ [ e

(Biananay: |1l — (g2)(0)
(DFBR.augy*: B, — S(0)*E,.

Here, in general for a given element h € Xy5(F, G), h(0) refers to its zero diagonal
in its diagonal expansion

h= )" h(n) where h(n) € D}s(F,G),
and similarly, for § € L(€,£.), S(0) refers to its zero-diagonal part in its diagonal
expansion

§=Y"S(n) with S(n) € D*(£,&.)
n=0
(but with convergence only in a weak operator topology rather than in Hilbert-
Schmidt norm).
The model space H*#%:2*9(S) and this model unitary colligation (7.8)~(7.9) (but
with conventions regarding lower versus upper triangular interchanged), together
with its two projected versions

Hi(S) = {f: [; € D(S) for some g € U_ y5(C,E,)}
Hi(S*) = {g: ﬂ € Dy (8) for some f € Lys(C, )}

and the coisometric and isometric model colligations associated with these, form
the topic of earlier work of the first and third authors (see [4]): there the authors
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introduced these model spaces from the point of view of de Branges’s theory of
minimal decompositions (see [5] and [10]) and studied in detail their reproducing
kernel structure with respect to the generalized right point evaluations £ — fAR(W)
mentioned in Section 2.2. Their formulas for the operators in the model colliga-
tions are somewhat different from our formulas (7.9) and (7.10) since their space
H1(S*) is Lz times our space H(S*) (so as to sit inside Uyg (€, ,) rather than
inU_ ys(€,E.)).

8. THE ABSTRACT INTERPOLATION PROBLEM

A high-level interpolation problem with slick solution procedure incorporating
much of classical and modern matrix-theoretic interpolation theory as special cases
has been formulated by Katsnelson, Kheifets and Yuditskii (see [25] and [23] for
a recent survey) and termed by them the Abstract Interpolation Problem (AIP).
Here we formulate the time-varying analogue of the AIP and show how the time-
varying version of matrix bitangential Nevanlinna-Pick interpolation problem re-
cently studied in the literature (see [19] and [18]) can be captured as a special case
of this time-varying Abstract Interpolation Problem (TVAIP). Preliminary results
in this direction have already appeared in [16].

The data for the TVAIP is as follows. We assume that we are given a family of
linear spaces {X}} and families of Hilbert spaces X = {X,}, £ = {€.}, & = {Eun}
(n € Z) together with linear operators

Tl,ﬂ.: X,? —>(tn
Tom: Xf — X1
Mp: X0 = &,
Ma: 2258,

These data are assumed to satisfy the time-varying version of the so-called Potapov
identity given by:
IT1nZnl%, + | MaznlZ, = [ Temallk, ., + | Manzall2,, (8.1)

for all z,, € X0. We now state the TVAIP in coordinate-free form: given a TVAIP
data set

WrvAIP = {{Xno}sx = {Xn}:g = {gu}:'g* = {gm}: {Tl,n}a {T2,u}= {Mn}a {M-(ﬂ'é}z})
satisfying the hypothesis (8.1), find a minimal TVSS as in (3.1)
Escnt = {{L‘n}: {g“}-: {gm}} (83)
with &y = Gn O UnGnt1 and Eun = Guny1 © U Gsn and contraction operators
Fﬂi & —* Hn = Kﬂ,e[gtﬂ @gn]
so that the identity
(FnTl,n + Mn)zn = un(Fn+1T2,n + M*n)xn (8-4)

holds for all z, € X2 for all n € Z.

The de Branges-Rovnyak model version of the TVAIP is as follows: given a
TVAIP data set wrvaip as above satisfying (8.1), find a contractive element S
of L(€,€&,) and a family of contraction operators F,, from the space X, into the
appropriate de Branges-Rovnyak model space

Fo: X, > HIBE(S) forne Z
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so that the identity

*
Filinit = FigaTh a0 — [ L f] [ ;E'ﬂf:‘"] T (8.5)
holds for all z,, € X2.

The mapping IgﬁR between a TVSS X,.q: and the de Branges-Rovnyak model
TVSS with scattering operator S implements the equivalence between these two
formulations of the TVAIP, as was shown in [9] for the time-invariant case.

For some purposes it is useful to have the augmented version of the TVAIP. We
shall now state this only for the de Branges-Rovnyak model version of the TVAIP.
Given a data set wrv arp asin (8.2), let Dy(C, X°) be the space of diagonal matrices
with j** diagonal entry x; an element of A:’_,? and all but finitely many of these z;’s
equal to 0. Define operators T, T, M, and M, by

Ty = diag {T1 n}nez: Ps(C, &%) — D(C, X)
T2 = diag.{Tgm_l}ﬂez: p_f(c._. A’") =% D(C, X{_l))
M =diag.{Mp}nez: ‘DI(C,X“) — ‘D(C,S]
M, = diag { Mup }nez: Dy(C, X°%) — D(C,£).

Then the TVAIP in augmented de Branges-Rovnyak model form can be formulated
as: given a TVAIP data set wrvarp (8.2) with associated operators Ty, Ty, M
and M, as in (8.6), find a contractive element S of Lis(€,£,) and a contraction
operator

(8.6)

F=[.. F,y F F ..]:Dys(C,X)— HiBRaus
so that

FTiz = F(RzT)z — [ I, f{[ [%:[ T (8.7)
for all z € Dy(C,&?). Verification of the equivalence of this augmented version
with the nonaugmented de Branges-Rovnyak model version of the TVAIP is a
simple consequence of the general correspondence between the nonaugmented and
augmented versions of the de Branges-Rovnyak scattering models.

As is the case for the time-invariant case, the solution of the TVAIP is rather
straightforward. It would appear the more difficult part for applications is to
determine how to determine the TVAIP data set wpy azp which gives rise to a
given concrete interpolation or extension problem in an applications setting. The
main consequence of the hypothesis (8.1) is that the family of partial operators
Vi DV“ — RV,., with

e Tln Xn
Dv" = Ran Mﬂ] C [ 8]
28 Tf?n. xn+1
Rv, = Ran Mm] C [ ‘. ]
given by
Vi [i}"] Tp — [;2"] z, for z, € X, (8.8)
n *71

consists of isometries:

[Vadnl 2,1106.. = lldnllx, a6, for z, € X,.
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The main result concerning the solution of the TVAIP is that solutions of the
TVAIP correspond in a simple way to unitary-family extensions of the partial-
isometry family {V,,}.

Theorem 8.1. Let wryarp be a TVAIP data set as in (8.2) and let {V,} be the
partial-isometry famaly of operators given as in (8.8) Then solutions of the TVAIP
with data sel wpyarp are in one-to-one correspondence with unitary-family exten-
stons of the partial-isometry family V. : Dy — Ry . Indeed, let
s An Bn = Hﬂ Hn+1

w=la ) [2]-[E ®
(where X, C H, and A"f'n+1 C Hny1) be any unitary-family extension of V,, (so U,
is unatary for each n and Up|p,, =V, for alin). Then:

(1) Let Ecar be the TVSS system associated (as in Section 5) with a time-varying
unitary colligation {Un}ncy (8.9) which extends the partial isomelric colligation
{Va} (8.8), let B335 (with scattering model space H™™ C ‘., ) be the minimal part
of Bycar and define F,: X, — H™" by

Fn= P2z .
Then (X7 {F,}) solves the coordinate-free version of the TVAIP, and every so-
lution of the coordinate-free TVAIP arises in this way.

(2) Let S € L(E,£.) be the input-output operator of the time-varying unitary
system

. z(n+1) = A,z,+ Bhu(n)
’ y(n) = Cpzn+ Dpu(n)
assoctated with the time-varying unitary colligation {U,} (8.9) exztending V, (8.8),
and define the map Fy: Xn — HIPR(S) by

= P
F:z, - Thz, = [I‘:J Tn
(where T'n 1s as in (6.15) and is given explicitly in Proposition 6.4). Then (S, {Fy,})
is a solution of the de Branges-Rovnyak model TVAIP, and all solutions of the de
Branges-Rovnyak model TVAIP arise in this way.

Proof. The proof is a straightforward consequence of the correspondence between
a TVSS Yscqr with unitary scattering family {2, }ncz and time-varying unitary
colligations {Up }nez according to the formula

B = P?,f:::aasmu: Ho@E,
The details for the time-invariant case can be found in [9]. O

There has recently been a lot of activity on extensions of tangential Nevanlinna-
Pick interpolation and of the Nehari theorem on approximation of an L™ function
by an H* function in the infinity norm to the time-varying setting; for details
we refer to the recent books [19], [18] and [14]. It is our contention that all these
problems can be put into the framework of the TVAIP. Rather than attempting a
formulation of the most general problem, for illustrative purposes we shall restrict
ourselves to an informative special case, namely the time-varying right tangential



TIME-VARYING SCATTERING 43

Nevanlinna-Pick interpolation problem (TVRIP). The TVRIP is as follows. We are
given families of Hilbert spaces

E= {gﬂ}ﬂ629 8& = {&n}nez
together with families of uniformly bounded, linear operators defined on C

Un:C— &y Va:C—o&ny, wn:C-C. (8.10)

(Thus U, amounts to a vector in &,, V, corresponds to a choice of vector in &,,
and w, amounts to a complex number.) Associated with these families of operators
are the block diagonal operators
U = diag {Un}nez: £(Z,C) — £2(Z,€)
V = diag.{Va }nez: £2(2,C) — 2(Z,€) (8.11)
W = diag{wn}nez: £2(Z,C) — £(Z,C).

We assume that the operator Z—'W on £2(Z, C) has spectral radius r,(Z 1 A) less
than 1. The TVRIP then is: find (if possible) all contractive elements F of L(E, £.)
such that

(FUY W) =V
where the right point evaluation f — f"%(4) is as in (2.16). The solution is: Let
A = diag{An}nez € D(C,C) be the unique solution of the time-varying Stein
equation

Z7\Z - A*ANA=U*U - V*V. (8.12)

Then solutions to the TVRIP exist if and only if A > 0 (i.e. A, > 0 for each
n € Z). When solutions exist, there are procedures and formulas for constructing
one solution or for parametrizing the set of all solutions under various hypotheses
in various places in the literature (see e.g. [19], [14], [16] and [17]), but we shall not
get into the details of this aspect; our purpose is to make the connection with the
TVAIP.

To see how the TVAIP can be applied to the TVRIP, we must do two things:
(1) specify how to associate a TVAIP data set wyy 47p With an admissible TVRIP
data set

wrvrip ={U ={Un}, V= {Vo}, W = {w,}} (8.13)

where Uy, V, and wy, are as in (8.10), and (2) indicate how a solution (S, {F,,}) of
the TVAIP for wrv arp generates a solution of the TVRIP for wrvRrIp, and vice
versa.
As for (1), we assume that we are given a TVRIP data set (8.13) such that the
associated numbers A,, are all nonnegative. We let X2 = C, we let X, equal C with
the inner product induced by the positive number A,,_; if A,_; >0 and X, = {0}
if An,_1 = 0, and we take &, and &,, for wyy o7p the same as in wrvrrp- Then
define operators

Tl,n = [‘wﬂ]: (‘:3 — .:ﬂ,

Tz,u — [I] X‘E —F Xn+l

M, =U,: Xg — &

Mtn — Vﬂ.: X,E' S Etﬂ‘
(Here the brackets in the definition of T} ,, indicate that one takes Ti,n to be zero
in case &, degenerates to the zero space, and similarly for 73 ,,.) Note that these
definitions give us a data set wpy 47p which satisfies the time-varying Potapov
identity (8.1) since A = diag.{A,}ncz satisfies the time-varying Stein equation
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(8.12). In this way we have associated a TVAIP data set wpy a7p with any TVRIP
data set wryvrrp for which the solution A = diag.{A,}nez of (8.12) is positive
semidefinite.

As for (2), suppose next that (S, {Fy, }nez) solves the TVAIP for wry s p, where
we use the augmented de Branges-Rovnyak model formulation. Thus we write
F=|: F_1 F{; F]_] :XHS(C,C)—DXHS(C,S*@S)
and (S, {F,,}) being a solution of TVAIP problem for data set wpy 4;p means that
condition (8.7) holds. For our situation this means that
F: Dyg(C,C) — H4BR.aug(§) and

I S||-V
FRwz=FRzz — {S" I] [ U ] z for all z € Dy (C,C).
Since by assumption r,(Z W) < 1, it follows that Z — A is invertible on #2 and
we can solve uniquely for F in terms of S:

) I S|[-V
F= [S_ I] [U ] ) - (8.14)
Thus S uniquely determines F if (S, F) solves the augmented de Branges-Rovnyak
model TVAIP for this case, and furthermore, for any such § it is always the case
that the corresponding F satisfies
] I S| (Xxs(C,&)
F: DHS{C: @) = [S* I [XHS(Crg) .
The only issue then is whether the image of Dyg (C,C) under F is also con-
L : F
tained in Lys(C, &) ®U_ ps(C,E). Let us write Fz = {Fm] Tz C Xys(C, &) &
Ays(C, E). Then from (8.14) we see that

Fg = (SU-V)z(Z — A,
FOz = (U-8*V)z(Z - A)L.

The condition that (S, F) solve the TVAIP is simply that F(Vz € Lyg(C, £,) and
that F@)z ¢ U_ us(C,E) for each € Dyg(C,C). As U, V and z are diagonal, S*
is upper triangular and (Z — A)~' = (I — Z~'A) ' Z 1 is strictly upper triangular,
it is clear that F(*)z is strictly upper triangular for any such S (no interpolation
conditions required). On the other hand, it is well known (see e.g. [2]) that the
value of the right point evaluation (SUz)"%(W) is characterized as that diagonal
operator D such that

(8.15)

[SUz - D|(Z - W)_l € Lus(C,E.).
We thus see from (8.15) that F(z € LysC, £,) exactly when Vz = (SUz) B(W).
Another easy property concerning right point evaluations is that
(8Uz)" (W) = (SU)"E(W)z for z diagonal.

We conclude that (S, F) solves the TVAIP if and only if (SUY"B(W) =V, ie., if
and only S solves the TVRIP, as expected.

Remark 1. In the time-invariant case, it is possible to see the Nehari problem
as an instance of the AIP (see [9] and the references there). Recent work of Kheifets
[24] formulates a more general abstract interpolation problem whereby axiom (3) of
a scattering system (the orthogonality between the outgoing and incoming spaces) is
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removed; this gives a more natural framework into which to fit the Nehari problem.
It should be possible to pursue this idea also for the time-varying setting.

Remark 2. The time-invariant version of the Abstract Interpolation Problem
has applications to many other types of interpolation problems, such as 2-block and
4-block interpolation, boundary interpolation and the Hamburger moment problem
(where one must use a linear-fractional change of variable to convert the original
continuous-time setting to a discrete-time setting—see [22]). A possible line of
future research is to understand a time-varying analogue of boundary interpolation
by using the TVAIP formalism.
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