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ABSTRACT. This paper examines the effect of applying symbolic computation and
graphics to enhance students’ ability to move from a visual interpretation of mathema-
tical concepts to formal reasoning. The mathematics topics involved, Approximation and
Interpolation, were taught according to their historical development, and the students
tried to follow the thinking process of the creators of the theory. They used a Computer
Algebra System to manipulate algebraic expressions and generate a wide variety of
dynamic graphics; thus 21st century technology was applied in order to “walk” with the
students from the period of Euler in 1748 to the period of Runge in 1901. We describe
some situations in which the combination of dynamic graphics, algorithms, and historical
perspective enabled the students to improve their understanding of concepts such as limit,
convergence, and the quality of approximation.

KEY WORDS: animation, approximation, CAS (Computer Algebra System), historical
perspective, interpolation, limit

1. INTRODUCTION

Euler’s book Introductio in Analysin Infinitorum (1748) was translated into
English for the first time in 1988. In the introduction, the translator notes
that the impetus for the translation was a remark by André Weil in 1979,
when Weil spoke at the University of Rochester on the life and work of
Leonard Euler. Weil said that he was trying to convince the mathema-
tical community that students of mathematics would profit much more
from studying Euler’s Introductio in Analysin Infinitorum than using the
available modern textbooks.

I followed Weil’s advice. In order to teach the central ideas in analysis,
ideas that are rather abstract, I decided to follow the intuitive thinking
of the founders of the theory. This was done by using original sources
that were enlivened and enhanced with laboratory experiments in a CAS
(computer algebra system) environment. This paper is based on a research
study (Kidron, 1999) that examined such an approach to teaching analysis
at the high-school level. Usually at this level, students are only taught
topics in analysis that were developed in the time of Newton and Leibniz.
However, by making use of a computer algebra system, Mathematica
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(Wolfram, 1999), it was possible to extend the coverage to introduce topics
from more recent periods of mathematics, focusing on two important
subjects: approximation and interpolation.

The linkage between CAS and the historical perspective becomes clear
if we recall that physics was the main driving force in the development
of analysis. In fact, the old masters developed methods that solved “real”
problems. They wanted to calculate explicitly, and thus they developed
well-defined algorithms. Nowadays, students can test those algorithms by
translating them into CAS programs. The founders of the theory pointed
out the importance of analyzing the error that occurs in applying a numer-
ical process. By analyzing the error, students can be introduced to the
topics of continuous calculus.

I believe that the combination of dynamic graphics, algorithms, and
historical perspective may lead to a more stimulating way of learning
analysis by means of numerical processes. My research has focused
on examining the extent to which this combination actually helped the
students in the transition from their visual, intuitive interpretation of
mathematical concepts to formal reasoning.

This paper deals specifically with the conceptual understanding of the
convergence process obtained by approximating a function by means of
polynomials. Key concepts in analysis such as limit and infinite sum are
closely related to approximation theory, and therefore I tried to clarify
the limit concept for students by means of polynomial approximations of
functions. A motivation for this is the fact that there is general agreement
in the research literature about the difficulties experienced by students in
learning some of the key concepts in analysis, especially those like the
limit concept that are related to infinite processes (Courant and Robbins,
1941; Davis and Vinner, 1986; Cornu, 1981, 1991; Tall, 1992; Cottril and
Dubinsky, 1996).

Whereas most of the studies in the literature deal with the conceptual
difficulties encountered in the notion of a limit of a sequence of numbers,
this study analyzes the students’ perceptions of the limit of a sequence
of functions. It also investigates students’ conceptual understanding of the
quality of polynomial approximation. In addition, I analyze the role played
by Mathematica in enabling the students to “walk the same paths” as the
founders of mathematical theory from Euler (1748) to Runge (1901).2

The research literature regarding CAS technology reports favourably
on the effects of the software in stimulating students to explore on their
own (Breuer and Zwas, 1993), in shaping students’ understanding by
providing (sometimes unexpected) feedback (Dreyfus and Hillel, 1998),
and in enabling students to develop visual intuitions before the formal
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statement of a theory (Tall, 2000a). The literature also provides some
warnings concerning the use of CAS (for example, Tall, 1993; Artigue,
2001). The complexity of the “instrumentation process” (i.e. how the tool
becomes an effective instrument of mathematical thinking for the learner)
involved in learning in a CAS environment is discussed in Artigue (2001).
Nevertheless, despite the complexity and the obstacles, this research was
undertaken with the belief that using a CAS system to investigate the works
of the “old masters” could indeed be rewarding.

One particular use of CAS in this study is to highlight the different
approaches of the founders of the theory. For example, there is a dialectic
between the modes of thought employed by Euler and those used by
Cauchy. Thus, in the laboratory the students were given the opportunity
to calculate “with Euler” and to visualize “with Cauchy”. On the one
hand, we wanted the students to use Mathematica’s symbolic capabilities
to perform Euler and Lagrange manipulations of algebraic expressions.
On the other hand, we wanted the students to use Mathematica’s dynamic
graphics to visualize properties like convergence that were the subject of
Cauchy’s analysis. In this way, we aimed to create an environment that
supports reasoning about formal calculation and reasoning by continuity.

2. HISTORICAL PERSPECTIVE, NEW TOOLS

In this section, I present the didactic design in two parts, devoted to the
historical and technological dimensions, respectively.

2.1. The Intuitive Ideas of the Founders of the theory of Analysis and the
Implementation of Their Ideas in the Laboratory

This historical review is divided into parts: the first is devoted to Approx-
imation theory and the second to Interpolation theory.

2.1.1. Approximation Theory: The works of Euler, Lagrange and Cauchy
In the preface to his Introductio in Analysin Infinitorum (1748), Euler hints
at the obstacles in learning Analysis, which according to him stem from a
lack of knowledge of Algebra.

The following is the English translation by Blanton (Euler, 1988):
“Often I have considered the fact that most of the difficulties which
block the progress of students trying to learn analysis stem from this:
that although they understand little of ordinary algebra, still they attempt
this more subtle art”. We also quote Euler’s reason for applying an algeb-
raic approach to subjects that are usually discussed in analysis: “in order
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Leonhard Euler (1707–1783)

Among his mathematical
achievements
The intuitive idea to express
non-polynomial functions as
polynomials with “an infinite
number of terms”.
Euler’s approach is via algebra:
Expansion of given functions
in power series by the method
of undetermined coefficients.

Our application in the laboratory
First, we used an analytical approach,
then following Euler’s experimental
thinking, we used his algebraic appro-
ach to represent infinite sums. We made
a graphical representation of the results.

Figure 1. Application of Euler’s ideas in the laboratory.

Figure 2. Euler’s Preface to Introductio in Analysin Infinitorum.

that the transition from finite analysis to analysis of the infinite might be
rendered easier”.

In the laboratory, the author (who was also the teacher) used two
different approaches to approximate a given function by polynomials:
analytical and algebraic. These approaches are demonstrated in Brown et
al. (1991).

The analytical approach introduced the notion of order of contact. We
examined two functions whose formulas are different but whose plots are
similar when approaching x = 0. For example, Figure 3 shows the graphs
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of f(x) = 1+2x
1−x−x2 (the dashed curve) and g(x) = 1 + 3x + 4x2 + 7x3. Both

curves pass through the point (0, 1) and the functions have the same first,
second, and third derivatives at x = 0.

Figure 3. f(x) (the dashed curve) and g(x) for −0.5 ≤ x ≤ 0.5.

The notion of order of contact was defined:

Two curves, y = f(x) and y = g(x) have an order of contact n at x = 0
if f(0) = g(0), f′(0) = g′(0), f′′(0) = g′′(0), . . . , f(n)(0) = g(n)(0).

In the example in Figure 3, the order of contact of f(x) and g(x) at x = 0
is 3.

As an application, the students were required to find the polynomials
Pn(x) of degree n (for different given values of n) that have the highest
possible order of contact with a given function at x = 0. The students were
asked to use Mathematica to solve the relevant system of equations.

In the algebraic approach, Taylor polynomials were introduced by
the intuitive idea of Euler to express non-polynomial functions as poly-
nomials with “an infinite number of terms”. Mathematica was used to
follow the original text of Euler (1748/1988). The students were asked to
follow Euler’s “experimental” thinking and to use his algebraic approach
to represent infinite sums. Euler wrote, “Since the nature of polynomial
functions is very well understood, if other functions can be expressed by
different powers of Z in such a way that they are put in the form A + BZ +
CZ2 + DZ3 + . . . then they seem to be in the best form for the mind to grasp
their nature, even though the number of terms is infinite”. The problem
posed in the lab was as follows: Let f(x) be a real function that is a quotient
of two polynomials f(x) = P(x)/Q(x). We seek a “polynomial with an
infinite number of terms” such that P(x)

Q(x)
= a0 + a1x + a2x2 + a3x3 + . . . .

The students were asked to work on the example, f(x) = 1+2x
1−x−x2 , which is

Euler’s example also. According to Euler’s instructions, there is an infinite
series such that 1+2x

1−x−x2 = A + Bx + Cx2 + Dx3 + Ex4 + . . . and the coef-
ficients A, B, C, D, . . . , which satisfy equality, are found by multiplying
both sides by (1 − x − x2) and comparing the coefficients. As a result,
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1+2x
1−x−x2 = 1 + 3x + 4x2 + 7x3 + 11x4 + . . . “which can be continued as
long as desired with no trouble”, according to Euler. Mathematica can
help the students perform the required calculations. The coefficients are
identical with the coefficients of the polynomials obtained analytically;
both approaches yield the coefficients of the Taylor series. The students
were asked to extract patterns from the calculations, exactly as Euler did
(Euler, 1988, p. 52). In addition, they were requested to make a graph-
ical representation of the results. The infinite sum was represented by a
“dynamic” plot: the animation of the static plots represented in the analyt-
ical approach. Figure 4 shows a dynamic plot that illustrates that in a
given interval, the higher the degree n of the approximating polynomial,
the closer are the function f(x) = 1+2x

1−x−x2 and the approximating Pn(x)

polynomial of degree n.

Figure 4. “Dynamic” (animated) plot of f(x) and the approximating polynomials.

The aim of using an animation was to enable the students to see the
dynamic process in one picture. For examples and further information, see
Example 1 of Kidron (2002).

Joseph Louis Lagrange (1736–1813)

Among his mathematical
achievements
Error Analysis. The Lagrange
remainder
Rn(x) = f(x) − Pn(x)

for any x0 in the domain of
f(x):

Rn(x0) = f(n+1)(c)xn+1
0

(n+1)!
for some c between 0 and x0

Our application in the laboratory
3-dimensional pictures of the upper
bound of the absolute value of the error.
Animation of those 3-dimensional pic-
tures to illustrate that
lim

n→∞Rn(x) = 0

lim
x→0

Rn(x) = 0

Figure 5. Application of Lagrange’s ideas in the laboratory.
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In Lagrange’s Oeuvres (1884, p. 85), in the “Leçons sur le calcul
des fonctions” (leçon neuvieme), Lagrange points out the importance of
evaluating the remainder:

toute fonction f (x + i) se développe dans la série f(x) + if′(x) + i2
2 f′′(x) + i3

2·3 f′′′(x) + . . .

lorsqu’elle va naturellement à l’ infini, à moins que les fonctions dérivées de f(x) ne
deviennent nulles, . . . tant que ce développement ne sert qu’à la génération des fonctions
dérivées, il est indifférent que la série aille a l’infini ou non . . . mais si on veut l’employer
pour avoir la valeur de la fonction dans les cas particuliers . . . il est important d’avoir un
moyen d’évaluer le reste de la série qu’on néglige ou du moins de trouver les limites de
l’erreur qu’on commet en négligeant ce reste.

I translate here freely Lagrange’s words: “every function f(x + i) is
expanded in the series f(x) + if′(x) + i2

2 f′′(x) + i3

2·3f′′′(x) + . . . , which
continues naturally to infinity unless the derivative functions of f(x) are
zero, . . . . as long as the use of this expansion is to generate the derivative
functions, it makes no difference if the series is continued to infinity or not
. . . but if we want to use the expansion in order to calculate the value of
the function in particular cases . . . it is important to have a way to evaluate
the remainder of the series that we neglect, or at least to find the limits of
the error one commits by neglecting the rest”.

In the laboratory, the expansion of sin (x) around x = 0 up to degree 5
was called P5(x). The error (f(x) − P5(x)), the remainder of Lagrange, is
f(6)(c)x6

6! for some c between 0 and the current x value. The absolute value
of the error as a function of x and c with −π ≤ x ≤ π , −π ≤ c ≤ π was
plotted. The c value in −π ≤ c ≤ π that corresponds to the exact error is
an unknown number; therefore, the students were requested to look at all
pairs (x, c) in the ranges −π ≤ x ≤ π , −π ≤ c ≤ π .

The following 3-dimensional plot (Figure 6) represents the error (in
fact, an upper estimate of the absolute value of the error) as a function of
the two variables x and c. (In this specific plot the upper estimate of the
error occurs at x = π and c = π

2 .)
By animating these 3-dimensional plots, the teacher illustrated that the

upper estimate of the error decreases when the degree of the approxim-
ating polynomial is increased. This animation of Lagrange’s remainder
(the approximated function is sin(x) and the animation is on the degree
of the approximating polynomial) is demonstrated in (Kidron, 2002,
Example 2). The animation illustrates that lim

n→∞Rn(x) = 0 for −π ≤ x ≤ π

and −π ≤ c ≤ π . (Rn(x) = f(n+1)(c)xn+1

(n+1)! for some c between 0 and x).
The students were asked the following question: “Suppose that the

degree of the approximating polynomial is fixed; could we obtain an
animation of Lagrange’s remainder with the domain as a variable?” The
teacher demonstrated how to use Mathematica as a programming language
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Figure 6. The error as a function of x and c.

to obtain the dynamic graphical output. The purpose of this was to
demonstrate that for values of x approaching 0, the upper estimate of
the error decreases. The animation (Kidron, 2002, Example 3) illustrates
lim
x→0

Rn(x) = 0.

Lagrange pointed out the importance of analyzing the remainder Rn(x)

and he established an expression for it, for the practical purposes of
applications to mechanics (Lagrange, 1884, p. 85). Cauchy (1821) further
investigated the notion of convergence; he stressed that to obtain a
convergent series the remainder must approach 0 (Kline, 1972).

Augustin-Louis Cauchy (1789–1857)

Among his mathematical
achievements
The formal definition of the
limit concept.

Our application in the laboratory
We visualized the formal statements
lim

n→∞Rn(x) = 0

lim
x→0

Rn(x) = 0

Figure 7. Application of Cauchy’s ideas in the laboratory.

Euler and Lagrange employed algebraic methods. Cauchy’s approach was
different. In the introduction to his Cours d’Analyse de l’Ecole Royale
Polytechnique (1821), we read:

Quant aux méthodes j’ai cherché à leur donner toute la rigueur qu’on exige en géométrie,
de manière à ne jamais recourir aux raisons tirées de la généralité de l’algèbre. Les raisons
de cette espèce . . . tendent a faire attribuer aux formules algébriques une étendue indéfinie,
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tandis que, dans la réalité, la plupart de ces formules subsistent uniquement sous certaines
conditions, et pour certaines valeurs des quantités qu’elles renferment. En déterminant ces
conditions et ces valeurs, et en fixant d’une manière précise le sens des notations dont je
me sers, je fais disparaître toute incertitude.

I translate freely Cauchy’s words: “As for the methods, I tried to give them
all the rigor requested in geometry, so as to never resort to reasons drawn
from the generalization of the algebra. Such reasons . . . tend to attribute to
the algebraic formulas an indefinite validity while, in reality, most of the
algebraic formulas are valid just under certain conditions and for certain
values of the quantities they contain. By determining these conditions and
these values, and by fixing in a precise manner the meaning of the notations
that I use, any uncertainty will be removed”.

We can see here an allusion to the way Euler treated infinite series
like finite sums, a way which led to inconsistencies. Euler and Lagrange
considered the remainder as an expression. “The subjects of Cauchy’s
new analysis in 1821 were not expressions but variable quantities . . .

With Cauchy, analytical conclusions were drawn not from expressions but
from concepts or properties like convergence” (Laugwitz, 1994). Cauchy
is talking about the “form versus function” dialectic – formal identities
versus continuous variation. Thus, we notice the distinction between the
modes of thought employed by Euler (reasoning about formal calculation)
and those used by Cauchy (reasoning by continuity).

In Cauchy’s programme, the limit concept is taken as the one on which
all the others, such as convergence, derivative and integral, are based
(Kleiner, 1991). In the first pages of Cauchy’s analysis course, the notion
of limit is introduced as follows:

Lorsque les valeurs successivement attribuées a une même variable s’approchent indéfini-
ment d’une valeur fixe, de manière a finir par en différer aussi peu que l’on voudra, cette
dernière est appelée la limite de toutes les autres.

I translate here Cauchy’s definition: “When the different values
successively attributed to the same variable are getting indefinitely close
to a fixed value, in a way that they will differ from it as little as we want,
this fixed value is called the limit of all the others”.

Cauchy’s definition suggests continuous motion – an intuitive idea.
After Cauchy, a significant remaining task was to give a precise “algebraic”
definition of the limit concept to replace Cauchy’s intuitive “kinematic”
conception. This was achieved by Weierstrass with his “static” definition
of limit in terms of inequalities involving ε and δ (Kleiner, 1991).

In the laboratory, the teacher demonstrated visual representations of the
limit concept implied by the expressions lim

x→0
Rn(x) = 0, lim

n→∞Rn(x) = 0
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(where Rn(x) is Lagrange’s remainder). This was done by using anima-
tions, so as to visualize the “kinematic” viewpoint of Cauchy. The students
were asked to describe what they see and to relate it to the syntax of the
commands which generate the animations. Importantly, the syntax of the
animation commands has a direct relationship with the process described
by the definition of limit given by Weierstrass; thus the aim of the anima-
tion is to help the students to visualize the process described in the formal
definition.

Interpolation Theory: The Works of Lagrange, Cauchy, Chebyshev, and
Runge
The lessons on polynomial interpolation followed on from the discus-
sion of approximation using Taylor polynomials. The Taylor polynomial
approximation is limited to the points close to a specific point, and the
next task was to find a polynomial that provides a “relatively accurate
approximation” over an entire interval. The ideas of Lagrange, Cauchy,
Chebyshev, and Runge were applied in the laboratory to explain to the
students the meaning of a “relatively accurate approximation”.

The interpolation problem was formulated in the following way: given
the values of a function f(x) at the n + 1 points x0, x1, x2, . . . , xn, find a
polynomial of degree n at most, which coincides with the function f(x) at
these points that is, Pn(xi) = f(xi), (i = 0, 1, 2, . . . , n). This problem has
a unique solution. In 1795, Lagrange presented his representation of the
polynomial, the Lagrange interpolation formula, as it appears in Stieltjes
(1882):

Pn(x)=
n∑

i=0

ϕ(x)

(x − xi)ϕ′(xi)
f(xi), where ϕ(x)=(x − x0)(x − x1)(x−

x2) . . . (x − xn) and ϕ′(x) is the first derivative of ϕ(x).

By replacing ϕ′(xi)=(xi − x0)(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1)

. . . (xi − xn) in Pn(x), we obtain an alternate form of the Lagrange interpol-

ation formula: Pn(x) =
n∑

i=0

n∏

j=0
j�=i

(x − xj)

(xi − xj)
f(xi). This is the form that usually

appears in modern textbooks (Davis, 1975).
In the laboratory, the students were introduced to two different

approaches to solve the problem of finding the interpolating polynomial
through n + 1 points.

In the first approach, the students were asked to write the con-
ditions that must be satisfied in order that the polynomial Pn(x) =
a0 + a1x + a2x2 + . . . + anxn passes through the n + 1 interpolation points
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((xi, f(xi)) for i = 0, 1, 2, . . . , n. The conditions led to a system of n + 1
equations with n + 1 variables a0, a1, a2, . . . , an. Mathematica was used to
solve the system of equations for a given number of sample points and a
given function f(x).

The students were also requested to prove, in the particular case of n =
2, that there is a unique polynomial of degree n that agrees with f at n + 1
points.

The second approach used in the lab is described in Cauchy’s
Cours d’Analyse (1821, pp. 86–89): For x0, the students were required
to construct a polynomial p(x) such that p(x0) = f(x0) and p(x1) =
p(x2) = p(x3) = . . . p(xn) = 0. For x1, the students were required to
construct similarly a polynomial q(x) such that q(x1) = f(x1) and
q(x0) = q(x2) = q(x3) = . . . q(xn) = 0. The process was repeated with
the help of Mathematica for the numerical values of all the points
(xi, f(xi)), i = 0, 1, 2, . . . , n. Then the students added the obtained poly-
nomials p(x) + q(x) + . . . and could check that the sum of these poly-
nomials is equal to the interpolating polynomial obtained in the first
approach. Mathematica helped to generalize the result by using the
symbols x0, x1, x2, . . . , xn instead of numerical values. And Mathematica
was used to plot the function and the Lagrange interpolating polynomial
which they had generated. Readers can see in Kidron (2002, Example 6
– Lagrange’s Interpolation) the way that students simulated the clas-
sical method for finding the polynomial in Mathematica and also the
“generalized” method.

The next task was to address the question: how well does the interpol-
ating polynomial approximate the function? Kolmogorov and Yushkevich
(1998) report that the first person to estimate the remainder term
Rn(x) = f(x) − Pn(x) in the Lagrange interpolation formula was Cauchy
in 1840. In the laboratory the students were given Stieltjes’ proof (1882)
of Cauchy’s remainder formula: if a ≤ x0 < x1 < . . . < xn ≤ b then

f(x) − Pn(x) = f(n+1)(λ)

(n + 1)! (x − x0)(x − x1) . . . (x − xn),

where min(x, x0, x1, . . . , xn) < λ < max(x, x0, x1, . . . , xn), and λ de-
pends upon x, x0, x1, . . . , xn and f.

By investigating the quality of an approximation, the students were
introduced to Chebyshev’s work.

In his Oeuvres, Chebyshev (1856, Volume 1, p. 239) points out the
fruitfulness of the results obtained as a consequence of making theory and
practice closely related. In Interpolation theory, both for the purposes of
theory and of practice, it is important to accomplish as much as possible
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Pafnuty Lvovich Chebyshev (1821–1894)

Among his mathematical
achievements
The quality of an approxima-
tion.
The best polynomial approxi-
mation (non-constructive exist-
ence theorem); Chebyshev poly-
nomials.

Our application in the laboratory
Laboratory activities precede the intro-
duction of theory: building visual pictures
in order to understand the formal state-
ment of the theory. Application of Che-
byshev’s theorem in the lab. Graph-
ical representations of the properties of
Chebyshev polynomials.

Figure 8. Application of Chebyshev’s ideas in the laboratory.

with a polynomial of a fixed degree. The question is: How do we choose
the n + 1 interpolation points such that the approximating polynomial of
degree at most n, which passes through these points, will give the best
approximation? Can we speak about “the best approximation”?

In the laboratory, the students followed Chebyshev’s ideas in order
to answer this question. The first task was to define what is “the best
approximation”. The notion of closeness of approximation over an interval
was clarified by taking the maximum deviation between the function and
its approximating polynomial. Different approximating polynomials Pn(x)

that pass through (n + 1) interpolation points correspond to different
choices of these (n + 1) points. The students were told that they have to
look for a polynomial Pn(x) for which the maximum deviation in a given
interval [a, b] is the smallest of all the maximum deviations of the different
interpolating polynomials. Thus, among the interpolating polynomials of
degree at most n, Pn(x) = a0 + a1x + . . . + an−1xn−1 + anxn was chosen
such that max

a≤x≤b
|f(x) − Pn(x)| would be minimized. Then, the following

question was asked:

Is there a special choice of interpolation points such that the maximum
deviation can be minimized?

The answer to this question is given in the formal statement of the
theorem known as Chebyshev’s theorem (Davis, 1975, p. 149). This
theorem enables one to identify whether a given polynomial is the best
approximation polynomial for a given function in a given interval.

The formal statement of Chebyshev’s theorem was preceded by labora-
tory sessions whose purpose was to help students build visual pictures that
would help them to understand the formal statement.

Although Chebyshev’s theorem enables us to identify whether a given
polynomial is the best approximation polynomial for a given function in a
given interval, it does not provide an answer to the question: how can the
best approximation polynomial be computed numerically?
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In the lab, the students applied Chebyshev’s criterion in specific cases.
Kolmogorov and Yushkevich (1998) point out that in specific problems
Chebyshev always sought a procedure that would enable him to construct
the solution, rather than merely to verify that a given function is a solution.
Thus, the students were requested to consider again Cauchy’s remainder
formula and to observe that the error has two factors, one that we have no
control over, namely f(n+1)(λ)

(n+1)! , and the other |(x − x0)(x − x1) . . . (x − xn)|.
Then the problem under consideration is how to choose the interpolation
points such that |(x − x0)(x − x1) . . . (x − xn)| will be minimized.

This choice does not necessarily lead to the best approximation poly-
nomial, but in many cases these “optimal” interpolations points give good
results.

That was the motivation for introducing next the Chebyshev poly-
nomials. The polynomials were defined for −1 ≤ x ≤ 1 as Tn(x) =
2−n+1 cos(n cos−1 x).

The following properties of the Chebyshev polynomials were demon-
strated graphically (Figure 9):

Figure 9. The first Chebyshev polynomials.

Tn(x) has n different zeros in −1 ≤ x ≤ 1. Tn(x) has (n + 1) alternate
maxima and minima in this interval. The Chebyshev polynomials possess
the “equal ripple property” (as termed by Breuer and Zwas, 1993, p. 154)
in the sense that the alternate maxima and minima are of the same size.

Chebyshev’s theorem was applied to demonstrate the following
important result: if we choose the n + 1 interpolation points x0, x1,
. . . , xn to be the zeros of the Chebyshev polynomial Tn+1(x) = (x − x0)

(x − x1) . . . (x − xn) then |(x − x0)(x − x1) . . . (x − xn)| will be minim-
ized for −1 ≤ x ≤ 1. It was shown how this follows from the fact that
the Chebyshev polynomials minimize the deviation from 0 on [–1, 1].
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The zeros xk = cos( (k+1/2)π

n ), (k = 0, 1, 2, . . . , n − 1) of the Chebyshev
polynomial Tn(x) were obtained in the laboratory directly by solving the
equation cos(n cos−1 x) = 0.

Carle David Runge (1856–1927)

Among his mathematical
achievements
Runge’s example:
The decisive influence of the
choice of the interpolation
points upon the quality of an
approximation.

Our application in the laboratory
Approximation of functions with equi-
distant interpolation points and non-
equidistant interpolation points.
The following question was asked: If the
number of interpolation points increases,
is the approximation necessarily better?

Figure 10. Application of Runge’s example in the laboratory.

In previous examples, the students noticed that some interpolating polyno-
mials of degree n through equidistant points approached better the given
function f(x) for larger values of n. The students might come to expect that,
no matter what f(x) represents, with interpolating polynomials of degree
n through equidistant points, the error would become small for suffi-
ciently large values of n. Runge’s example shows that this is not always
true, as was demonstrated in the laboratory as follows: The f(x) = 1

1+x2

function was defined on the interval [–5, 5]. The students considered the
sequence of interpolating polynomials Pn(x) for the equidistant points
x0, x1, x2, . . . , xn such that xk = −5 + ( 10

n )k, (k = 0, . . . , n).
Figure 11 shows f(x) (the black curve) and P12(x) (the dashed black

curve) and P24(x) (the gray curve). P12(x) and P24(x) are the interpolating
polynomials of degree 12 and 24, respectively. For |x| > 3.63, the poly-
nomial P24(x) (through 25 equally spaced points) does not approach f(x)
better than P12(x) (through 13 equally spaced points).

The sequence of polynomials Pn(x) was set up, coinciding with the
function at (n + 1) points of the interval. The students erroneously thought
that Pn(x) would converge to f(x) as n → ∞. The teacher demonstrated
by animation how the sequence of interpolating polynomials with equally-
spaced interpolation points does not converge to f(x) for increasing values
of n when |x| > 3.63 (Kidron, 2002, Example 4).

Another choice of the interpolation points gave a different result. The
interpolation points were chosen this time to be the alternate maxima and
minima of the Chebyshev polynomials (Schwarz, 1989, p. 99). Figure 12
shows f(x) (the black curve), P∗

12(x) (the dashed black curve), and P∗
24(x)

(the gray curve).
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Figure 11. f(x) = 1
1+x2 (black) and the interpolating polynomials P12(x) (the dashed

black curve) and P24(x) (the gray curve).

P∗
12(x) and P∗

24(x) are the interpolating polynomials of degrees 12 and
24, respectively, with the new choice of interpolation points. It is difficult
to distinguish between f(x) and P24(x) (the gray curve).

Figure 12. f(x) = 1
1+x2 (black) and the interpolating polynomials P∗

12(x) (the dashed

black curve) and P∗
24(x) (the gray curve).

The animation (Kidron, 2002, Example 5) demonstrates how the interpol-
ating polynomials, with this new choice of interpolation points, approach
the function f(x) on the interval [–5, 5] for increasing values of n. Runge’s
example thus underlines the importance of analytical considerations in
performing numerical processes.
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2.2. The New Tools: The Role Played by Mathematica in Enabling the
Students to “Walk the Same Paths” as the Founders of the Theory

In this section, we describe the different categories of use of Mathematica
and examine the respective part the different categories played in our
didactical design.

Following Euler’s Algorithmic Thinking
One proposal in this study was to utilize Mathematica’s symbolic compu-
tation capabilities to allow students to do the calculations while reading
Euler (1988, pp. 50–54) directly. Reading Lagrange or Euler has been,
until now, difficult for all but the best students. In his Introductio in
Analysin Infinitorum (1748), Euler elevated symbol-manipulation to an art.
His “algebraic analysis” accepted as an article of faith that what is true for
polynomials, is true for power series (Kleiner, 1991). Solving the algebraic
equations that stem from Euler’s procedure is almost impractical without
a good Computer Algebra System.

The students were requested to translate Euler’s algorithmic thinking
into Mathematica commands. We wanted the students to take an active
part in the development of their mathematical knowledge. Euler’s style
is didactical: He explained his methods and shared with the readers of
his Introductio the “why” of his reasoning. The CAS can perform Euler’s
algebraic ideas but the students had to make Euler’s reasoning very explicit
for Mathematica to perform according to his ideas.

Generalizing Results: Writing Results in a Symbolic Way
We were also interested in using Mathematica’s symbolic computation
to enable students to generalize their results and to write them symbol-
ically. For example, Euler described his algebraic approach when the
different examples are written with symbols. Later, he assigned values to
the different letters in order to describe a numerical example. In the labora-
tory, we prefered to begin with the numerical example. Then, Mathematica
was used to shift from an example with numbers to an example with
symbols: the students had just to substitute symbols instead of numbers
into the Mathematica commands they had already written.

Gaining Insight about Infinite Computations
Mathematica’s symbolic computation capabilities were also used to gain
insight about infinite processes. Some of the Mathematica commands used
in following Euler’s “development of functions in infinite series” enable
one to get the impression of symbolic computation of an infinite number
of terms done immediately, requiring “no time”; Mathematica does this by
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developing a function into infinite power series at once, and usage of the
big O notation enhances the impression.

Supporting Alternative Representations of the Same Mathematical
Concept
Mathematica’s symbolic computation capabilities were also used to sup-
port alternative representations of the same mathematical concept, which
may help students to become more confident with the possibility of
examining a problem from different aspects. We have already mentioned
the analytical and algebraic approaches to the Taylor polynomial approx-
imation. As another example, we can cite the two approaches to the
problem of finding the Lagrange interpolating polynomial through n +
1 sample points: (1) the modern algebraic approach that led to a system
of n + 1 equations, and (2) the approach described in Cauchy’s Cours
d’ Analyse (1821). Mathematica enables applying these two different
approaches to obtain the same expression for the interpolating polynomial.

Visualizing the Process of Convergence
Dynamic graphics was used to illustrate the variable quantities that were
the subjects of Cauchy’s “new analysis”; in Euler’s book, there are no
pictures, nor visual representations of the functions. In the laboratory,
Mathematica’s dynamic graphical capabilities were used, for example to
represent the infinite process of the different approximating polynomials
approaching a given function. In this case the animation creates an illusion
of completing an ongoing, infinite process.

Animations were thus used to pave the way towards understanding
central concepts that involve infinite processes. One proposition in this
study was to use Mathematica’s dynamic graphical capabilities to help
students to visualize and analyze the dynamic process of convergence.

Algorithmic Reasoning Required to Generate Dynamic Pictures
Using animations demonstrated by the teacher, the students were required
to describe what they see in a dynamic picture. They were also asked to
understand the syntax of the animation and to translate visual pictures to
analytical language. The students were required also to construct their own
animations, and algorithmic reasoning is required to construct an anima-
tion command. Different functions may have different analytical properties
and in order to visualize their behavior the values of the variable of the
animation must be assigned carefully.
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Using Mathematica’s Programming Features in Interacting with Graphics
The students were asked to interact with the dynamic graphics, changing
parameters, choosing different functions, and changing the commands.
For example, they were asked to test the convergence of the Lagrange
Remainder (displayed as a 3-D animation) for different functions. The
possibility of interacting with the software and changing parameters was
used to help students realize that a process is being represented and not
just a specific case. Students were also asked to interact with the graphics
in order to build visual pictures that we believed would help them to under-
stand the formal mathematical statements. For example, in the laboratory
sessions that preceded the formal statement of Chebyshev’s theorem, the
students were asked to approximate a given function with a given number
of interpolation points. They were asked to explore different possibil-
ities of distribution of the interpolation points (equidistant or different
choices of non-equidistant interpolation points). They had also to calcu-
late the different interpolating polynomials. Then they were asked to plot
the graphs of the interpolating polynomials and the given function, and
to observe the way the different polynomials oscillate around the given
function.

3. STUDENTS’ REASONING IN THE LABORATORY
SESSIONS

High-school students (age 16–17, N = 84) were the participants in the
research. The author taught the students mathematics six hours a week;
two hours in the PC lab were devoted to the topics of Approximation and
Interpolation. The other four hours were devoted to standard subjects in
Analysis, Algebra, and Trigonometry.

Each year, one 11th grade class participated in the experimental course
during the entire academic year. The course was given four times, so that
altogether four classes (N = 84) participated in the experiment. The labora-
tory consisted of 20 PCs, each equipped with Mathematica and a hardware
system (called Classnet) that permits transmitting the content of the screen
of one computer to all the computers in the classroom.

In this section, I will try to describe what happened in the class by
inviting the reader to get a closer look at what students actually did as they
followed the masters. Some episodes describing students’ interactions and
discussions during the lab sessions, and some findings from a written test,
will be presented in order to investigate the two following questions:
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1. The students “followed” the masters, equipped with a CAS. To what
extent did they come to understand the formal statements of the
mathematical theory?

2. As the students experimented with the CAS, did they develop visual
intuitions that supported the formal theory?

3.1. To What Extent Did the Students Come to Understand the Formal
Statements of the Mathematical Theory?

3.1.1. Episodes Relating to the Interrelationship between Euler’s
Algebraic Approach and the Analytical Approach

Students’ questions and remarks during the sessions showed that the
interrelationship between Euler’s algebraic approach and the analytical
approach offered new paths to gain a deeper understanding of the mathe-
matical theory. The five episodes that follow demonstrate that when the two
points of view, the algebraic and the analytical, were applied with Math-
ematica, the students were helped in the transition from Euler’s intuitive
ideas to the formal statement of the theory.

Episode 1
Hanna: “We got the result 1+2x

1−x−x2 = 1 + 3x + 4x2 + 7x3 + 11x4 + . . . in
the analytical way when we approximated the function at x =
0 using the order of contact. Euler is doing approximation for
the entire line. How could this be possible? Where in Euler’s
procedure is it mentioned that the approximation is around x =
0?”

In Euler’s development of functions in infinite series the series are
A + BZ + CZ2 + DZ3 + . . . and in Euler (1988, pp. 50–54) series like
A + B(Z − Z0) + C(Z − Z0)

2 + D(Z − Z0)
3 + . . ., with Z0 �= 0 are not

mentioned. Hanna’s question relates to the notion of interval of conver-
gence. In Mathematica’s command “Series”, which generates the result of
Euler’s procedure, it is mentioned of course that the expansion is around
x = 0. The student’s question introduced the possibility of expanding
a function in a power series in (x − x0), where x0 is a fixed number.
The students were interested in substituting another value, for example,
2 instead of 0 in the Mathematica command. They obtained the expansion
of a function in power series in (x – 2), where

f(x) = f(2) + f′(2)(x − 2) + f′′(2)

2
(x − 2)2 + f(3)(2)

6
(x − 2)3 + . . .

The same results, for a given function f(x), could be obtained using the
notion of order of contact at x = 2. The students used Mathematica
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to perform the computations, as well as to obtain the graphs of the
approximating polynomials to f(x) in the neighborhood of x = 2.

Episode 2
The following discussion underscored the importance of the notion of the
interval of convergence. The students were asked if the expansion:

1

1 − x
= 1 + x + x2 + x3 + . . .

holds for every x. They answered, “yes, except for x = 1 for which the
denominator is 0”. Then, they were asked to substitute x = 2

Guy: −1 = 1
1−2 = 1 + 2 + 22 + 23 + . . . Why not?

In the historical development of infinite series, such situations compelled
mathematicians to attempt the difficult task of establishing a rigorous
foundation underlying the Calculus (Eves, 1981). In our PC lab, a first
reaction was the following:

Michael: We need a graph of f (x) = 1
1−x

and the approximating polyno-
mials. Looking at the graph, we could see where the equality is
true.

Figure 13. f(x) = 1
1−x (the dashed curve) and P9(x) = 1 + x + x2 + x3 + x4 + . . . + x9

for −1.5 ≤ x ≤ 1.5.

Episode 3
Looking at the graph in Figure 13, the students noticed that the approx-
imation breaks down on the left and on the right. Miri and Guy tried to
overcome this “breaking down” at x = –1 by taking more and more terms
of the expansion. The graphical and numerical capabilities of Mathematica
were used in their argument.

Guy: The higher the degree of the approximating polynomial, the bigger
is the interval in which f(x) and the polynomial coincided; the order
of contact is bigger.
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Miri: We took polynomials of bigger and bigger degrees and looked at the
graph of f(x) and the approximating polynomials. Even the Taylor
polynomial of degree 72 breaks down at x = –1!

Episode 4
Some students expanded f(x) = 1

1+x2 into the series

1

1 + x2
= 1 − x2 + x4 − x6 + . . .

They thought that the equality is true for every x, since there is no x for
which the denominator of f(x) is 0 (they worked with real numbers). They
looked at the graph of f(x) and the approximating polynomials, and they
were surprised to see that even in this example “the approximation breaks
down” for |x| ≥ 1. (One year later, the students studied complex numbers
as part of an algebra course, and then they could learn the full explanation
for why 1

1+x2 cannot be represented by the series 1 − x2 + x4 − x6 + . . . at
the point x = 3, for example.)

Episode 5
The two modes of thought, analytic and algebraic, enabled the students
to generalize their results. The two approaches produce the coefficients
of the Taylor series in terms of the function and its derivatives in the
following way: A function f is expanded in a power series at x = 0 :
f(x) = a0 + a1x + +a2x2 + a3x3 + . . . + anxn + . . . Assuming that the
first n derivatives exist and that the polynomial of degree n Pn(x) =
a0 + a1x + +a2x2 + a3x3 + . . . + anxn has an order of contact n with f(x)
at x = 0, the students were asked to find a0, a1, a2, a3, . . . , an in terms of
the function and its derivatives. The students began with specific cases
(n = 3, n = 4, . . .) and then they generalized for n.

f(0) = Pn(0) = a0; f′(0) = P′
n(0) = a1; f′′(0) = P′′

n(0) = 2a2; f(3)(0) =
P(3)

n (0) = 6a3; . . .

Continuing this procedure, they found the general formula an = f(n)(0)

n! .
After the students obtained the formula f(x) = f(0) + xf′(0)+

x2f′′(0)

2! + x3f(3)(0)

6 + . . . they realized that they were not just working with
a specific case, but rather with a process – a general property:

Guy: I looked at the animation that represents the different polynomials
that approximate f(x) = 1+2x

1−x−x2 . You just have to substitute another
function instead of f(x) and you get directly its expansion in power
series and the animation representing the different polynomials that
approximate the new function.
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Episodes Relating to Error Analysis: Lagrange’s Remainder Formula and
Cauchy’s Remainder Formula
The founders of the theory pointed out the importance of analyzing the
error that occurs in applying the numerical process of approximation. In
this section, we will follow the students’ reasoning in the context of error
analysis.

When approximating a function f(x) by means of Taylor polynomials

Pn(x), the error f(x) − Pn(x) for a given value x0 of x is
f(n+1)(c)·xn+1

0
(n+1)!

(Lagrange’s remainder) for some c value between 0 and x0. I noticed
that the students were surprised that there exists a general expression
for the error f(x) − Pn(x), and they expressed some difficulties about the
unknown c.

The Unknown c in Lagrange’s Remainder Formula (Approximation
Theory): Episode 6
Hava: “What is the value of c? I want to know the value of the error at a

given point. Why did I need an upper estimate of the error?”

Hava observed the 3-dimensional graphics that represent the upper
estimate of the absolute value of the error as a function of the two variables
x and c and asked:

Did the value of the error at a given point x0 and a given n (f(x0) − Pn(x)) equal
f(n+1)(c)·xn+1

0
(n+1)! for a value of c that gives the maximal error? You can describe the error

at x0 as a function of different values of c (0 < c < x0). But the error at x0 is a single
numerical value. What is the value of c that gives this numerical value? Is it the value of c

for which
f(n+1)(c)·xn+1

0
(n+1)! has its maximum value? I look at the error at a given point not in

an interval.

Michaël: “No! It is not necessary the value of c for which the error gets
its maximum value”.

The students observed the animation where the degree of the Taylor
polynomial is varied (and the domain is fixed).

Itaï: “If the degree will be very big, could it be that there will be no error
in this fixed domain? I mean is there a degree of the polynomial for
which there is no error?”

Hava: “There is no error when the degree of the approximating polynomial
is infinite. The question is what is infinite? Infinite is not something
that can be defined. ‘The problem with Taylor’ is that the formula
says that there will be always an error”.
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The Unknown λ in Cauchy’s Remainder Formula (Interpolation Theory):
Episode 7
Cauchy’s formula is

f(x) − Pn(x) = f(n+1)(λ)

(n + 1)! (x − x0)(x − x1) . . . (x − xn),

(a ≤ x0 < x1 < . . . < xn ≤ b),

where x0, x1, . . . , xn are the n + 1 interpolation points in [a, b] and Pn(x)

is the Lagrange interpolating polynomial of degree n.
In the lab sessions the students began with cases of functions that

are polynomials of degree n + 1, so that f(n+1)(λ) is a constant. In these
cases, the students had no problem with the unknown λ; the students
concluded that the best approximating polynomial passes through inter-
polation points x0, x1, . . . , xn, such that (x − x0)(x − x1) . . . (x − xn) gets
its minimal value The difficulties arose with other functions that are not
polynomials of degree n + 1, so that f(n+1)(λ) is not a constant.

Hava: “For a given differentiable function f and for n + 1 given interpol-
ation points x0, x1, . . . , xn, we obtain λ that depends on f and on
the n + 1 points x0, x1, . . . , xn. As a consequence, f(n+1)(λ)

(n+1)! is one
single numerical value for this λ. My question is why, for a given f
and given x0, x1, . . . , xn the plot of f(x) − Pn(x) is not expected to
behave exactly as (x − x0)(x − x1) . . . (x − xn)”?

Hava’s question enables us to get a deeper understanding of the meaning
of the sentence λ depends on x, on f, and on the n + 1 points x0, x1, . . . , xn.
Even in the case where x0, x1, . . . , xn are given, f(n+1)(λ)

(n+1)! has not a single
numerical value. It has different values as a function of x and as a function
of f. It depends on both!

Testing Cauchy’s Remainder Formula
The following test (Figure 14) was used to check the students’ ability to
use Mathematica’s numerical and graphical capabilities to estimate the
maximal error that is created when we replace a given function f(x) with
the Interpolating Polynomial Pn(x).

Were the students able to use Cauchy’s remainder formula (with the
help of Mathematica) in order to give a numerical value to the maximal
error? In contrast with Chebyshev’s theorem, which was taught in an
experimental way (as we will see later in Episode 8), Cauchy’s remainder
formula was taught in an analytical way (it was proved by means of Rolle’s
theorem) and afterward the students applied it in the lab. In the previous
episodes we observed the students’ difficulties with the unknown λ. The
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following test examines the students’ understanding of the notion ‘an upper
estimate of the error’ and their ability to overcome difficulty with the
unknown λ in Cauchy’s remainder formula. Moreover, the students were
required to use this formula and Mathematica to give a numerical estimate
for the maximal error.

Question:

Let f(x) = sin(x) be defined for 0 ≤ x ≤ π
2 .

The x-values of the interpolation points are x0 = 0; x1 = π
10 ; x2 = π

5 ; . . . ; x5 = π
2

and P5(x) is the interpolating polynomial that passes through these points.

What is the maximal error created when we compute P5(x̄) instead of sin(x̄) for
0 ≤ x̄ ≤ π

2 ? In order to answer the question:

1. Use Cauchy’s remainder formula.

2. Use the graph of the error function P5(x) − sin(x) for 0 ≤ x ≤ π
2 . Compare your

results.

Figure 14. Test 2.

This test was given each year for two years, and two classes (N = 40)
attempted it. The results of the two classes were almost identical, so we
will discuss the results of the two classes together.

Most of the students (87.7%) were able to use the software in order to
get the interpolating polynomial that approximates the given function.

Moreover, 80.3% were able to use the graphical capabilities of Mathe-
matica to find the maximal error expressed by the difference between the
function and the interpolating polynomial.

Figure 15. The graph of the error function P5(x) − sin(x) for 0 ≤ x ≤ π
2 .

The students wrote that the maximal error is approximately 0.0000175.
A smaller number of students (67.5%) succeeded in overcoming the diffi-
culty with the unknown λ in Cauchy’s remainder formula: these students
found that in the specific example, f(x) = sin(x), the different deriv-
atives are bounded by 1 and the term f(n+1)(λ)

(n+1)! in Cauchy’s remainder

satisfies the inequality f(n+1)(λ)

(n+1)! ≤ 1
(n+1)! ; therefore, the estimate of the
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maximal error is given by 1
6!x(x − π

10)(x − π
5 ) . . . (x − π

2 ). Then, using
graphical or analytical considerations, the students gave a numerical
estimate for the upper bound for the maximal error. Some students gener-
ated the plot of the function (or the absolute value of the function)
e(x) = 1

6!x(x − π
10 )(x − π

5 ) . . . (x − π
2 )

Figure 16. The graph of 1
6!x(x − π

10 )(x − π
5 ) . . . (x − π

2 ).

and wrote that the maximal error is approximately 0.00002. Other students
applied analytical considerations: they were helped by Mathematica to
solve the equation e′(x) = 0 and obtained the five solutions corresponding
to the five extrema. They computed the value of e for the solution x =
1.46506 and obtained 0.0000225671.

Only those students (67.5%), who made analytical considerations
(estimating f(n+1)(λ) without knowing λ), were able to apply the theory
in the laboratory and to use the graphical capabilities of Mathematica in
order to assign a numerical value to the maximal error given by Cauchy’s
remainder formula. We observed that the students (32.5%) who did not
overcome the difficulty with the unknownλ by applying analytical consid-
erations also did not use the graphical capacities of Mathematica to find
the upper estimate of the error.

Although no-one did, it is worth remarking that the students
could have worked in a way similar to the way the upper estimate
of Lagrange’s Remainder formula was obtained, using 3-dimensional
graphics. The error (f(x) − P5(x)), that is Cauchy’s remainder formula,
is ( f(6)(λ)

6! )x(x − π
10)(x − π

5 ) . . . (x − π
2 ) for some λ value between 0 and π

2 .
Thus the students could have plotted the following 3-dimensional graphics
(Figure 17) that represents the absolute value of the error as a function of
x and λ with 0 ≤ x ≤ π

2 , 0 ≤ λ ≤ π
2 . The λ value in 0 ≤ λ ≤ π

2 that corre-
sponds to the exact error is unknown; therefore, they could have looked at
all pairs (x, λ) such that 0 ≤ x ≤ π

2 , 0 ≤ λ ≤ π
2 and obtained 0.00002 as

an upper estimate of the error (Figure 17).
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Figure 17. The error as a function of x and λ.

3.2. Did the Students Develop Visual Intuitions that Supported the
Formal Theory?

Visualization of the Chebyshev Theorem: Episode 8
As a consequence of experimenting in the lab, it was evident that the
students could visualize theory before a formal statement was given, for
example in the laboratory sessions that dealt with the quality of approx-
imation where the formal statement of the Chebyshev theorem was given
afterwards.

In trying to find the best polynomial approximation, the students invest-
igated whether there is a special choice of interpolation points and they
were led in an experimental way to the best polynomial approximation (cf.
Breuer and Zwas, 1993).

In the laboratory, the students were asked to approximate f(x) = sin(x)
in the interval [–1, 1], based on 9 interpolation points. As a first choice,
the students worked with equidistant interpolation points. They plotted the
remainder Rn(x) = f(x) − Pn(x) and noticed that the maximum deviations
occurred at the ends of the interval. So, they decided to take more points
at the ends of the interval, and fewer at the center. They observed the
way the polynomials oscillate around f(x) and reached the conclusion that
the polynomial that oscillates around f(x) in a way that smears the error
uniformly will minimize the deviation. For example, by plotting the graph
of the absolute value of the error (Figure 18), Michael suggested:

the biggest error is at the ends of the interval . . . if we will choose more points at the ends
and less points at the center, the graph will be balanced. In the next plot [Figure 19] the
biggest error is 1.5 × 10−8.
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Figure 18. sin(x) – p(x) for –1 < x < 1 (equidistant interpolation points).

Figure 19. sin(x) – p(x) for –1 < x < 1 (non-equidistant interpolation points).

Michael concluded: “The graph of the error for the optimal polynomial
will have the same maximal height for all the tops”. (Figure 20)

Figure 20. The graph of the error for the optimal polynomial.

Another student gave a similar answer:

Giora: “When the interpolation points are equidistant, we see in the graph
that the error at the ends of the interval is bigger than the error at
the middle of the interval. Our aim is to change the distribution of
the interpolation points so that they will be denser toward the ends
of the interval in such a way that the graph of the error will have
the same height in the whole domain”.

The following figure (Figure 21) represents the pictures that other students
proposed for the error f(x) – p(x) where p(x) is the best interpolating poly-
nomial, in particular regarding the way that p(x) oscillates around f(x).
Note that these figures were developed before the students were given the
statement of Chebyshev’s theorem.
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Figure 21. The “equal ripple” property of the error: alternate maxima and minima of the
same size.

In Figure 21(a) we see the graph of the remainder Rn(x) = f(x) − Pn(x);
this has a minimum-maximum absolute value that is spread uniformly on
the interval. In (b), we see how Pn(x) oscillates around f(x) in a way that
distributes the error uniformly.

By plotting these graphs, the students demonstrated that they under-
stood the importance of the “equal ripple” property (alternate maxima
and minima of the same size) of the error for the best approximation.
The students built visual pictures and tried to translate those pictures
into mathematical expressions, and this helped them to understand the
formal statement of the Chebyshev theorem. They called Pn(x) the best
approximating polynomial to the function f(x) in the interval [a, b] and
they translated the description “points with alternate maxima and minima
deviation of the same size” into the expression f(xj) − Pn(xj) = (−1)jê
for j = 0, 1, 2, . . . and ê = max

a≤x≤b
|f(x) − Pn(x)|. They could not answer the

question about how many points xj with alternate maximum and minimum
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deviations there are (the answer is n + 2). Some students thought there
are n such points, and others thought n + 1. As a consequence of one
student’s question, “how do you know if the first deviation is positive
or negative?”, they modified their expression f(xj) − Pn(xj) = (−1)jê to
f(xj) − Pn(xj) = α(−1)jê with α = ±1.

4. DISCUSSION AND CONCLUSIONS

In this section we examine how our didactical choices influenced students’
mathematical reasoning. We observed the students’ ability to use tools
provided by a CAS, Mathematica, in order to implement the ideas of the
founders of the theory of approximation and interpolation. The students
had to translate the mathematicians’ reasoning into explicit Mathem-
atica commands to perform their ideas, and this historical approach was
introduced as another representation in addition to modern representations.

In Kidron (2001) we analyzed the students’ ability to ascertain that the
algebraic and analytical approaches are two different representations of
the same subject. The comparison of Euler’s historical algebraic approach
and the analytical approach enabled the students to ask important ques-
tions about the intuitive idea of developing a function in infinite series.
Questions about the interval of convergence (described in Episodes 1, 2,
and 3) indicated that Eulers’ Introductio in Analysin infinitorum did not
contain this concept. Realizing this was the beginning of the students’
transition from intuitive ideas to the formal statement of the theory.
However, we could not give complete answers to the students’ questions,
since a complete understanding of the formal theory must come later,
in university-level mathematics. In the visual representations, there were
hints about results that will be proved later. The CAS helped introduce the
concept of interval of convergence, and the graphical representations could
be used to find where “the approximation approximately breaks down on
the left and the right” (Episodes 3 and 4). The theoretical justification for
this will come at the appropriate time when the students study a course on
“complex variables”. In the meantime, it is evident they were motivated
to learn more about the mathematical theory. Episode 5 demonstrates that
there is a possibility to interact with the software, to change parameters, to
help students to generalize their results, so that they can appreciate that a
process is represented and not just a specific case.

Tall (2000b) points out that computer environments are particularly
valuable in encouraging experimentation that helps, before any formal
theory is developed, to give a sense of a given phenomenon and to suggest
what kinds of properties are involved. This was the case with the labora-
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tory sessions dealing with the quality of approximation that preceded the
formal statement of Chebyshev’s theorem (Episode 8). Experimenting in
the lab, the class had to find the nodes that minimized the error in the
Lagrange interpolation, and from this they developed the visual intuitions
necessary to understand the formal statement of the theorem. Although the
“cancelling out” of the deviations from the graph had a powerful visual
impact, the purpose of the task was really to minimize the error given
by Cauchy’s formula f(x) − Pn(x) = f(n+1)(λ)

(n+1)! (x − x0)(x − x1) . . . (x − xn).
Therefore, we were interested in observing the way that the students
managed with the unknown λ in Cauchy’s formula. In Episodes 6 and 7,
we observed the students’ difficulties with the unknowns c (in Lagrange’s
remainder formula) and λ (in Cauchy’s remainder formula). The remainder
formula tells us that there “exists a c (respectively, a λ) such that
. . .”. It also tells us that c is located between 0 and x (respectively,
min(x, x0, x1, . . . , xn) < λ < max((x, x0, x1, . . . , xn)), and that is all it has
to say. The students understood that they were concerned not only with
the existence of the c or the λ, but also that they had to give numerical
answers for the error analysis. This was a source of difficulties. Moreover,
the students had to understand the importance of estimating the error even
if the c (or the λ), which gives the exact error, remains unknown.

In Episodes 6 and 7, we realized that the students became sensitive to
very important questions and that they could get some ideas about possible
answers to these questions. In the test that deals with Cauchy’s remainder
formula, we investigated the students’ ability to apply the theory in the
laboratory. More specifically, we investigated the students’ ability to use
the knowledge about the existence of the unknown λ in order to calcu-
late Cauchy’s remainder. In contrast to Chebyshev’s theorem, Cauchy’s
remainder was introduced before the lab sessions, and we examined how
the students applied Cauchy’s formula in the lab. The test was designed
in such a way that the students were forced to apply both numerical and
graphical considerations, and to think analytically (in order to estimate an
upper bound for f(n+1)(λ) without any calculation); the results showed the
students’ ability to use Mathematica’s numerical and graphical capabil-
ities, but we observed that the ability to use these capabilities did not help
much those students who had not succeeded in performing the analytical
reasoning.

By experimenting in the lab, visual intuitive ideas are formed. It is
evident that intuition is important, but it must be accompanied by careful
control, based on analytical reasoning. As Tall (2000b) mentions, “students
learn by building up mental images in ways that are consistent with what
they do and what they observe using the technology”. The students experi-
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mented in the lab using different cases of approximating a function in a
given interval by means of interpolating polynomials through equidistant
points. They noticed that in their examples the interpolating polynomials
better approached the given function for bigger n values. Therefore, they
could have erroneously concluded that “the more equidistant points that
are used, the better is the approximation”. In order to overcome such
misleading insights, the students should be given different, well-chosen
examples (sometimes with conflicting images), in order to help them
build new “mental images that will also be consistent with what they do
and observe using the technology”. Applying Runge’s historical example
in the laboratory exemplifies how to overcome misleading insights. The
students compared different choices of interpolation points using dynamic
graphics. Applying different discrete methods enabled the students to
better understand the continuous methods.

The history of mathematics provides examples of intuitive ideas that
are confusing because they were not established rigorously. Nevertheless,
those intuitive ideas paved the way for establishing the foundation of
the formal theory. Euler’s intuitive idea in 1748 to express functions as
polynomials with “an infinite number of terms” is such an example. The
history of mathematics shows that Euler’s use of the infinite was eventually
proved to be consistent. Weierstrass’ approximation theorem of 1886 (i.e.,
a continuous function is, on a closed interval, equal to a uniformly conver-
gent series of polynomials) makes precise the analytical expressions of
Euler, reviving his polynomials of infinite degree (Laugwitz, 1994).

In a technology-equipped calculus laboratory we attempted to learn
from the historical process: intuitive ideas were formed and the students
gained informal insight into the mathematical theory. The history of math-
ematics whispers into the students’ ears the message: Your mental pictures
are valuable. They may need to be refined, but you can build on them.
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NOTES

1 This paper was prepared whilst the author was a postdoctoral fellow at the Department
of Science Teaching, Weizmann Institute of Science, Rehovot, Israel.
2 My approach of using primary sources is not new; see Arcavi et al (1987), Van Maanen
(1997), Arcavi and Bruckheimer (2000).
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