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Abstract. We consider production/clearing models where random demand for a product is generated by

customers (e.g., retailers) who arrive according to a compound Poisson process. The product is produced

uniformly and continuously and added to the buffer to meet future demands. Allowing to operate the system

without a clearing policy may result in high inventory holding costs. Thus, in order to minimize the

average cost for the system we introduce two different clearing policies (continuous and sporadic review)

and consider two different issuing policies (Ball-or-some^ and Ball-or-none^) giving rise to four distinct

production/clearing models. We use tools from level crossing theory and establish integral equations

representing the stationary distribution of the buffer’s content level. We solve the integral equations to

obtain the stationary distributions and develop the average cost objective functions involving holding,

shortage and clearing costs for each model. We then compute the optimal value of the decision variables

that minimize the objective functions. We present numerical examples for each of the four models and

compare the behaviour of different solutions.
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Production models

1. Introduction

We consider four versions of a production/clearing model where a single machine

produces a certain product into a buffer continuously and uniformly. Customers (e.g.,

retailers) generate the demand for the product and they arrive according to a compound

Poisson process with rate �. The demand sizes are independent and identically

distributed with distribution G(I) and mean 1/m. In the absence of any controls (i.e.,
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clearing rules), the content level is generated by reflection on the deterministic

production minus the demand process. Negative inventory is not allowedVthat is, there

is no backloggingVso that 0 is a reflecting barrier. Since production never stops, the

content level fluctuates as a reflected continuous time random walk process whose

sample path increases at rate 1 (without loss of generality) between negative jumps

which are the demands sizes. In two of our models we assume that each demand can be

either fully or partially satisfied (Ball-or-some^). This may correspond a situation where

it may be feasible for the customers to purchase the remaining units from a different

supplier. In the other two models the demand processes are of the all-or-nothing type

(Ball-or-none^). That is, a demand is either satisfied or completely unsatisfied if its size is

greater than the content level. This may correspond to a Bmission-critical^ situation

where the customers must receive exactly what they need, or they may go elsewhere. In

the language of stochastic insurance models such content level processes are generally

called risk processes.

Obviously, in the absence of any controls (clearing rules), the content level process of

the buffer is a regenerative process if and only if the constant production rate is less than

the demand rate, i.e., 1 < �/m. Furthermore, in the absence of any controls the content

level process can be interpreted as the conditional elapsed waiting time (EWT) process

of the basic G/M/1 queue given that the idle periods are deleted; for more details see

Perry and Posner (1990, 2002).

The four models studied in this paper are characterized by four different types of

controls according to the following possibilities assuming that the controller (e.g.,

inventory manager) has the option to sell the product to a large wholesaler:

1. Each time a pre-determined control limit level q is reached by the content level, the

buffer is cleared and transferred to the wholesaler. In the language of inventory

theory, the buffer is controlled under continuous review because the buffer is

observed continuously over time and the controller Bsees^ the content once level q

is reached. For this policy, q is the controller’s decision variable.

2. The wholesaler is not obligated to a fixed time schedule or to a fixed amount to

clear the buffer. He does this whenever he happens to be, by chance, on the spot.

Under this sporadic review control policy the buffer is cleared according to a

random arrival process of the controller. We assume it is a Poisson process with

rate x. For this policy, x is the controller’s decision variable.

Under the continuous review control policy the wholesaler must be continuously

available. This results in high running and transfer costs. The sporadic review control

policy enables the wholesaler to be Bunreliable^ in the sense that he clears the system

sporadically in accordance with his convenience.

We consider four different models. The first two models (which will be denoted as

Model I and Model II) correspond to the continuous review. The other two models

(which will be denoted by Model III and Model IV) correspond to the sporadic review.

In Models I and III we assume that the demand is completely or partially satisfied, i.e.,

the issuing policy is such that BAll-or-Some^ of the demand is met. In Models II and IV
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we assume that the BAll-or-None^ issuing policy results in either all or none of the

demand being satisfied. That is, each demand can be either completely satisfied or

completely unsatisfied depending on the content level present. See Table 1 for a

summary of the characteristics of the four models.

For the four models we assume the following types of costs: (i) Proportional holding

cost h per unit item and unit time [$/unit-time]; (ii) a proportional shortage cost � [$/

unit] for each unsatisfied demand, and (iii) a fixed cost K [$] of clearing the buffer.

For background on clearing models see Stidham (1974, 1977, 1986), and Serfozo and

Stidham (1978). Further uses of these models include the control of epidemics, in which

the quantity of interest is the number of susceptibles and the clearing corresponds to

mass vaccination; see, Perry and Stadje (2001). Another point of view of clearing models

has recently been developed in the queueing literature where, in addition to regular

customers, so-called Bnegative arrivals^ are also considered. A negative arrival has the

effect of deleting some amount of the workload from the queue. Such models were first

studied by Boucherie and Boxma (1996), Gelenbe and Glynn (1991) and Harrison and

Pitel (1993, 1996).

REMARK 1 It was indicated above that the demand sizes have a general distribution G(I).
The analytic results in that case can be found in a similar manner to that of Perry et al.

(2001). However, the expressions of the relevant functionals, which become the

components of the objective function in the optimization models, are completely

intractable for optimization purposes. In this study we therefore restrict our attention

to the case of G (x) = 1 j ejmx for x > 0. As will be seen in subsequent analysis,

the solutions of the steady state densities as well as the Laplace transform (LT) of

the clearing cycle can be quite complicated. Even the simple extensions beyond the

exponential case, namely, the expressions of the simple Coxian or hyperexponential

distributions become too cumbersome for optimization purposes. Nevertheless, there is

one case in which the general jump size is tractable, as will be seen in Section 4 below.

The remainder of the paper is structured as follows: In Sections 2, 3, 4 and 5 we

introduce the four models I, II, III and IV, respectively. In these sections, in addition to

the probabilistic analysis of the content level process that requires the (analytic or

numerical) solution of an integral equation, we also present optimization models to

minimize a suitable average cost function. The paper ends in Section 6 with a summary

and comparison of the four models.

Table 1. Four model types arising from different combinations of timing of the reviews (clearing policies) and

the way the demand is met (issuing policies).

Issuing Policy

BAll-or-Some^ BAll-or-None^

Clearing Policy Continuous Review Model I Model II

Sporadic Review Model III Model IV
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2. Model I: Continuous Review with Completely or Partially Satisfied

(BAll-or-Some^) Demand

We start by constructing the dynamics of the buffer process of Model I. Let N = {N(t):

t Q 0} be a Poisson process with rate � and S1, S2, . . . be i.i.d. random variables with mean

1/m which are also independent of N. The so-called risk version of the continuous time

random walk is the process X = {X (t) : t Q 0} where

X tð Þ ¼ t � S1 þ S2 þ � � � þ SN tð Þ
� �

: ð1Þ
As we indicated before, we restrict our attention to the case where Si õ exp(m) (but,

see Remark 3 below). Next, consider the reflected process W = {W (t) : t Q 0} where

W tð Þ ¼ X tð Þ � min
0� s� t

X sð Þ ð2Þ

and define the stopping time �q = inf {t : W(t) Q q} for some constant q. The content level

process of the buffer V1 = {V1(t) : t Q 0} is a regenerative process with cycle time �q

whose sample path is the stochastic replication of the family {W (t) : 0 e t e �q}. Typical

realizations of V1 and �q are depicted in Figure 1.

2.1. Stationary Distribution of the Content Level V1(t)

We are interested in the stationary distribution of the content level process and cycle

length �q which is the time between clearings.

Being a regenerative process with finite expected cycle length �q, the V1 process

possesses a steady state density f1 xð Þ � fV1
xð Þ whose KhintchineYPollaczeck integral

equation is given by

f1 xð Þ ¼ �
Z q

x

e�� w�xð Þf1 wð Þdwþ f1 qð Þ; 0 � x � q: ð3Þ

Figure 1. Sample paths for the inventory level in Model I [continuous review with completely or partially

satisfied (BAll-or-Some^) demand]. At epoch t2 the buffer is cleared and at epochs t1 and t3 some of the demand

at the buffer (indicated by the dotted lines) is lost. The cycle length is �q.

206 BERMAN ET AL.



The fact that the steady state distribution of V1 is absolutely continuous follows from

Level Crossing Theory (LCT); see, Cohen (1977) and Doshi (1992). Also, it follows

from LCT that the steady state density is the long-run average number of down-crossings

of level x > 0. In the sequel we assume that the limiting density has a derivative. This

assumption is verified by the numerical analysis since by the limiting theorem for

regenerative processes the steady state density f1(x) is unique. The steady state density

can also be interpreted as the long-run average number of up-crossings of level x. Thus,

the right hand side of (3) must be equal to the long-run average number of down-

crossings of the same level x (since, by assumption, V1 is an ergodic process). As a result,

the downward jumps consist of two types, Poisson jumps and clearing jumps. The

Poisson jumps occur whenever V1 2 (x, q) just before arrival and the conditional

probability to jump below x given V1 2 d w is ejm(w j x). Furthermore, the limiting

density of V1 just before a Poisson downward jump and the steady state density f1(I)
coincide by PASTA (see; Perry and Posner (1989, 2002) and Wolff (1989). The second

term on the right hand side of (3) is f1(q). Again, by LCT, f1(q) is the long-run average

number of clearings (by assumption the buffer is clear each time V1 reaches level q). But

each clearing is automatically a down-crossing for all x 2 (0, q).

In order to solve the integral equation (3) for f1(x), we differentiate (3) twice w.r.t. x

and obtain

f 001 xð Þ þ �� �ð Þ f 01 xð Þ ¼ 0: ð3Þ

Solving this second order linear ordinary differential equation (ODE), we have

f1 xð Þ ¼ ae� ���ð Þx þ b; 0 � x � q ð4Þ

for some constants a and b. To determine a and b note that by (4) we have f1 (0) = a + b

and f1 qð Þ ¼ ae� ���ð Þq þ b. Together with the normalizing condition
R q

0
f1 xð Þ dx ¼ 1 this

implies

a ¼ � �� �ð Þ
� 1� e� ���ð Þq½ � � �q �� �ð Þe� ���ð Þq ; ð5Þ

and

b ¼ � 1

�
a�e� ���ð Þq
h i

: ð6Þ

REMARK 2 When m = �, the second order ODE reduces to f 001 xð Þ ¼ 0 which gives

f1 xð Þ ¼ âaxþ b̂b as the steady-state density. To determine the constants âa and b̂b, we use

the integral equation (3) and the normalizing condition
R q

0
f1 xð Þ dx ¼ 1 and obtain

âa ¼ � 2

q

�

2þ �q

� �
; b̂b ¼ 2

q

1þ �q

2þ �q

� �
:
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At the endpoints, the stationary density assumes the values

f1 0ð Þ ¼ 2

q

1þ �q

2þ �q

� �
and f1 qð Þ ¼ 2

q

1

2þ �q

� �
:

Finally, by LCT, the clearing rate is f1(q) so that the expected time between clearings,

i.e., the expected cycle time is

E �q

� �
¼ 1

f1 qð Þ : ð7Þ

Similarly, the rate of the unsatisfied demand is found as

f1 0ð Þ � f1 qð Þ ¼ 2�

2þ q�
ð7Þ

so that the expected time between two unsatisfied demands is (2 + qm) / (2m).

To compute the Laplace transform of �q we define for simplicity the process Y =

{Y (t) : t Q 0} where Y (t) = q j X (t). Then, we define the stopping time Tq = inf {t : Y (t)

= 0 or Y (t) Q q}.

To relate the Laplace transform of Tq to that of �q define

�* �ð Þ ¼ E e��Tq�1
Y Tqð Þ¼0f g

� �
and �* �ð Þ ¼ E e��Tq�1

Y Tqð Þ�qf g
� �

ð7Þ

and let �q �ð Þ ¼ E e���q
� �

be the LT of �q. Then,

�q �ð Þ ¼
�* �ð Þ

1� �* �ð Þ :

To see this note that if the event {Y(Tq) = 0} occurs, level 0 is reached by Y before

level q is up-crossed; thus, Tq = �q. If the event {Y (Tq) Q q} occurs, level q is up-crossed

before level 0 is reached by Y and the process V1 regenerates itself. In terms of LTs we

obtain the renewal equation

�q �ð Þ ¼ �* �ð Þ þ �* �ð Þ�q �ð Þ:

Solving for Gq (�) the result follows.

Thus, in order to find the LT of �q we only have to compute �*(�) and �*(�). To this

end, we use the Wald’s martingale

M tð Þ ¼ e��Y tð Þ

E e��Y tð Þ½ � � e��Y 0ð Þ
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as employed in Perry and Posner (1989) and apply the optional sampling theorem to the

stopping time Tq (obviously, the conditions for using the optional sampling theorem hold

because {Y (t) : 0 e t < Tq} 2 [0,q]). Thus, E [M(0)] = E [M(Tq)] yields

e��i �ð Þq ¼ E e��i �ð ÞY Tqð Þ��Tq

h i
; for i ¼ 1; 2: ð8Þ

Obviously, we have

�1 �ð Þ ¼
1

2
� �� �� �ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �� �ð Þ2 þ 4��

q� 	
; ð8Þ

and

�2 �ð Þ ¼
1

2
� �� �� �ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �� �ð Þ2 þ 4��

q� 	
: ð8Þ

By using the above results, we have

e��i �ð Þq ¼ E e��i �ð ÞY Tqð Þ��Tq

� �

¼ �* �ð Þ þ E e��i �ð ÞY Tqð Þ��Tq�1
Y Tqð Þqf g

� �
; i ¼ 1; 2:

ð9Þ

The fact that the jumps of Y are exponentially distributed implies that given the event

{Y (Tq) Q q}, the overflow above q is also exponentially distributed by the memoryless

property of the exponential distribution, and that Y (Tq) and Tq are conditionally inde-

pendent. Thus,

e��i �ð Þq ¼ �* �ð Þ þ �

�þ �i �ð Þ
e��i �ð Þq�* �ð Þ; i ¼ 1; 2: ð10Þ

The fundamental identity (10) represents two equations with two unknowns; �*(�) and

�*(� ). Solving for �*(� ) and �*(� ) we obtain

�* �ð Þ ¼
e� �1 �ð Þþ�2 �ð Þ½ �q �

�þ �2 �ð Þ
� �

�þ �1 �ð Þ

� �

�e��2 �ð Þq

�þ �2 �ð Þ
� �e��1 �ð Þq

�þ �1 �ð Þ

ð10Þ

and

�* �ð Þ ¼ e��2 �ð Þq � e��1 �ð Þq

�e��2 �ð Þq

�þ �2 �ð Þ
� �e��1 �ð Þq

�þ �1 �ð Þ

: ð10Þ

Since the Laplace transform Gq (� ) of �q is obtained in terms of the LTs �*(� ) and

�*(� ) for which we have explicit expressions, the moments of �q can be easily
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calculated by using Gq(� ). One can also determine the distribution of �q using numerical

techniques as suggested by Abate and Whitt (1995).

REMARK 3 The assumption Si õ exp (m) can be extended technically to some special

cases of phase-type distributions; for examples of hyperexponential and Coxian

distributions, see Boxma et al. (2001). More general cases have an importance only

from a theoretical point of view; see, Perry et al. (2001) for the analysis of the general

case. However, the expressions of the functionals obtained in the general case are too

cumbersome and intractable for optimization or sensitivity analysis.

2.2. Optimization of Model I

Having obtained the stationary distribution f1 xð Þ � fV1
xð Þ of the content level process

V1(t), we now present an optimization model to determine the optimal value of the

clearing level q that minimizes the average cost incurred by the system. In order to form

the objective function, we make use of the renewal-reward theorem (Ross, 1983) and

compute the average cost (i.e., the cost rate) C1(q) for Model I as

Average Cost : C1 qð Þ ¼ E cycle costð Þ
E cycle lengthð Þ :

For Model I, the expected cycle length is simply 1/f1 (q ) as indicated by (7). We now

develop expressions for the average cost which includes (i) holding cost, (ii) shortage

cost for unsatisfied demand, and (iii) fixed cost of clearing the buffer.

The expected holding cost in a cycle is obtained as

E holding cost per cycleð Þ ¼ E HCð Þ ¼ h

Z q

0

x f1 xð Þ dx

� 	
1

f1 qð Þ

� �
;

which is the product of holding cost per unit per time [$/unit-time] and expected

inventory level [unit] and expected cycle length [time]. Dimensional analysis reveals that

the dimension of E(HC ) is [$], as required.

To calculate the expected shortage cost first note that the effective rate of arrivals

whose demands are not satisfied is �
R q

0
1� G xð Þ½ � f1 xð Þ dx with dimension [arrival/time].

In this BAll-or-Some^ case, when demand exceeds the available number units in the

buffer, only the difference between the demand and available supply is lost (that is,

unsatisfied). Thus, the expected value of the unsatisfied demand given that demand

exceeds supply equals the Bovershoot^ 1/m from the memoryless property of the

exponential. Hence, the expected shortage cost is

E shortage costð Þ ¼ E SCð Þ ¼ � �

Z q

0

1� G xð Þ½ � f1 xð Þ dx


 �
1

�

� �
1

f1 qð Þ ;

with dimension [$].
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The expected cost of clearing the buffer in a cycle is simply

E clearing costð Þ ¼ E CCð Þ ¼ K

with dimension [$]. Combining the above results, we find the average cost per time (i.e.,

the cost rate) for Model I as

C1 qð Þ ¼ h

Z q

0

x f1 xð Þ dxþ ��
�

Z q

0

1� G xð Þ½ � f1 xð Þ dxþ K f1 qð Þ

with dimension [$/time], as required.

As a simple example consider the case with parameters (�, m; h,�, K) = (5,10; 1, 2, 4)

which gives rise to the strictly convex cost function C1(q) in Figure 2. Differentiating

C1(q) and solving C1
0 (q) = 0 we find the optimal solution as q* = 2.15 which results in a

minimum average cost of C1(q*) = 2.05. For q* = 2.15, the stationary density of the

buffer level is found as f1 (x) = j0.5 � 10j5e5x + 0.48 which is plotted in Figure 3 for

x 2 (0, q*).

The intuition behind the shape of f1(x) as displayed in Figure 3 is the following: When

the process is close to q* = 2.15, it will quickly jump away to zero with high probability

so that the density is small in the neighborhood of 2.15. Moreover, the density is

decreasing since the sojourn time is smaller for an interval of states that are located

farther away from zero.

Figure 2. Average cost function C1(q) for Model I when (�, m; h, �, K) = (5,10; 1, 2, 4). This function is

minimized at q* = 2.15 which gives C1(q*) = 2.05.
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3. Model II: Continuous Review with Completely Satisfied or Completely

Unsatisfied (BAll-or-Nothing^) Demand

In Model II the content level process V2 = {V2( t ) : t Q 0} of the buffer is no longer a

continuous time random walk. The demands are of the BAll-or-Nothing^ type in the

sense that each demand is either completely satisfied (if its size is smaller than the

content level); or otherwise, completely unsatisfied. For a sample path of the buffer

process, see Figure 4.

Figure 4. Sample paths for the inventory level in Model II [continuous review with completely satisfied or

completely unsatisfied (BAll-or-Nothing^) demand]. At epochs t3 and t5 the buffer is cleared and at epochs t1, t2
and t4 all demand at the buffer (indicated by the dotted lines) is lost. The cycle length is �q.

Figure 3. Stationary density f1 (x) of the content level process when q* = 2.15.
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3.1. Stationary Distribution of the Content Level V2 (t)

The V2 process possesses a steady state density f2 xð Þ ¼ fV2
xð Þ whose steady state

(KhintchineYPollaczeck) integral equation is given by

f2 xð Þ ¼ �
Z q

x

e�� w�xð Þ � e��w
h i

f2 wð Þ dwþ f2 qð Þ; 0 � x � q: ð11Þ

Again, the left hand side of (11) is the long-run average number of up-crossings of

level x. Thus, the right hand side must be the long-run average number of down-

crossings. The parameter � is the rate of the Poisson downward jumps and

Pr w� x � S < wð Þ ¼ e�� w�xð Þ � e��w ð11Þ

is the probability that the demand is completely satisfied (because it is greater than x but

less than the content level).

To solve for f2(x) we take the derivative in both sides of (11) and get

f 02 xð Þ ¼ ��e�x

Z q

x

e��w f2 wð Þ dw� � e�x � 1ð Þe��x f2 xð Þ; ð11Þ

or,

e��xf 02 xð Þ ¼ ��
Z q

x

e��w f2 wð Þ dw� � e��x � e�2�x
� �

f2 xð Þ ð11Þ

where f2
0(I) [ f2

00(I)] denotes the first [second] derivative of f2(I) w.r.t. x. Taking the second

derivative we obtain the following second order ODE

f
00
2 xð Þ þ � 1� e��xð Þ � �½ � f 02 xð Þ þ 2��e��xf2 xð Þ ¼ 0: ð12Þ

This ODE has two boundary conditions: (i) f2(0) = f2(q) since in the long-run the

number of hittings of level q is equal to that of level 0+, and, (ii) the normalizing

condition for the distribution, i.e.,
R q

0
f2 xð Þdx ¼ 1. Using these conditions equation (12)

can be, in principle, solved to yield the stationary distribution of the buffer level which

can be used in the optimization of the average cost function. To solve the second order

ODE with variable coefficients (12), we have used the computer algebra system Maple

(Char, 2002) and obtained the result in terms of two arbitrary constants and a

complicated expression involving an integral which cannot be evaluated explicitly.

Since the first boundary condition f2(0) = f2(q) itself is not predetermined and its value

must be chosen so that
R q

0
f2 xð Þ dx ¼ 1, we decided to implement a numerical scheme to

solve this ODE directly as will be discussed below.
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3.2. Optimization of Model II

For Model II, we again form the average cost objective function as the ratio of expected

cycle cost to the expected cycle length which is 1/ f2(0) = 1/ f2(q). As in Model I, the

expected holding cost per cycle is

E holding cost per cycleð Þ ¼ E HCð Þ ¼ h

f2 0ð Þ

Z q

0

x f2 xð Þ dx:

To calculate the expected shortage cost note that, as before, the effective rate of

arrivals whose demands are not satisfied is �
R q

0
1� G xð Þ½ � f2 xð Þ dx with dimension

[arrival/time]. However, in this BAll-or-Nothing^ case, when demand exceeds the

available content level (or alternatively, number of items) in the buffer, the total demand

is completely lost (unsatisfied). Thus, the expected value of the unsatisfied demand given

that demand exceeds supply equals the expected level of the buffer I2 qð Þ �
R q

0
x f2 xð Þ dx

plus the negative Bovershoot^ that from the memoryless property of the exponential

distribution is equal to 1/m. Hence, the expected shortage cost is

E shortage costð Þ ¼ E SCð Þ ¼ ��

f2 0ð Þ
1

�
þ I2 qð Þ

� 	Z q

0

1� G xð Þ½ � f2 xð Þ dx:

As in Model I, the expected cost of clearing the buffer in a cycle is simply

E clearing costð Þ ¼ E CCð Þ ¼ K:

Combining the above results, we find the average cost per time (i.e., the cost rate) for

Model II as

C2 qð Þ ¼ h

Z q

0

x f2 xð Þ dxþ �� 1

�
þ I2 qð Þ

� 	Z q

0

1� G xð Þ½ � f1 xð Þ dxþ K f2 0ð Þ:

The optimization of this cost function is substantially more challenging than the one

we encountered in Model I. Since the stationary density f2 (x) must first be solved to

calculate the average cost C2(q), we use the following procedure to find the optimal q: (i)

Start with a value of q that is likely to be near optimal, (ii) Guess a value of a and solve

the ODE (12) numerically to determine f2(x) for 0 e x e q, (iii) Since a may not have

been chosen correctly and thus the density may not integrate to 1, use the Bshooting

method^ (Roberts and Shipman, 1972) iteratively to determine the correct value of a

so that
R q

0
f2 xð Þ dx ¼ 1, (iv) Evaluate the average cost at the q value that was chosen,

(v) Use a line search method such as dichotomous search (Bazaraa and Shetty, 1979,

Ch. 8) and examine different values of q (and find corresponding values of a) to find the

optimal q.

Implementing this procedure we found the results as shown in Table 2 which gives the

optimal value as q* = 2.20 with C2 (q*) = 2.48. (All results are to two significant digits.)

The density f2 (x) corresponding to q* = 2.20 is shown in Figure 5.

The intuition behind the shape of f2 (x) as displayed in Figure 5 is the following: When

the inventory level is at a moderate range between (approximately) 0.5 and 1.5, it may
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stay in that range with high probability. This is so since the Ball-or-nothing^ type demand

faced in this model implies that even though there may be some inventory available, a

new demand may not be satisfied if it exceeds the available amount thus keeping the

inventory intact.

4. Model III: Sporadic Review with Completely or Partially Satisfied

(BAll-or-Some^) Demand

Consider now the reflected process W in (2) but under the random clearing policy � =

�(x ) õ exp ( x ) which is independent of {W (t) : 0 e t e �(x )}. The content level process

Table 2. Average cost function(s) for Model II evaluated at different values of q. For the a values indicated we

have
R q

0
f2 xð Þdx ¼ 1. The optimal values are underlined.

q a Average HC Average SC Average CC C2(q)

1.00 0.595 0.49 0.51 2.38 3.38

2.00 0.274 0.99 0.44 1.09 2.52

2.10 0.258 1.04 0.43 1.04 2.51

2.19 0.246 1.08 0.42 0.99 2.49

2.20 0.245 1.08 0.42 0.98 2.48

2.21 0.244 1.10 0.42 0.97 2.49

2.30 0.234 1.20 0.41 0.89 2.50

2.40 0.224 1.22 0.41 0.88 2.51

3.00 0.176 1.48 0.40 0.70 2.58

Figure 5. Stationary density f2 (x) of the content level process when q* = 2.20 with f2 (0) = f2 (q*) = 0.245.
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in the buffer V3 = {V3 (t) : t Q 0} is a regenerative process with cycle �(x ) whose sample

path is the stochastic replication of the family {W (t) : 0 e t e �(x )}. In this model variant

we extend the assumption of exponential jumps in the buffer. We assume that the jumps

are i.i.d. random variables having distribution G(I), density g (I), mean 1/m and LT

~gg �ð Þ ¼
R1

0
e��tg tð Þ dt . Typical realizations of �(x ) and V3 are depicted in Figure 6.

Interestingly, despite the simplicity of the result in the next Lemma, it is impossible (to

the best of the authors’ knowledge) to obtain it analytically. The result is obtained by an

educated guess.

4.1. Stationary Distribution of the Content Level V3 (t)

The next Lemma provides an explicit expression for the distribution of the content level

process.

LEMMA 1 The content level process of V3 in steady state is exponentially distributed with

parameter 	 
ð Þ i; e:; f3 xð Þ � fV3
xð Þ ¼ 	 
ð Þe�	 
ð Þx

� 

where h = h(x) is the unique root of

the equation

	 � � 1� ~gg 	ð Þ½ � þ 
 ¼ 0:

Proof: The appropriate steady state (PollaczekYKhintchine-type) equation of Model III

is

f3 xð Þ ¼ �
Z 1

x

1� G w� xð Þ½ � f3 wð Þ dwþ 

Z 1

x

f3 wð Þ dw: ð13Þ

The left hand side of (13) is the long-run average number of up-crossing of level x. Thus,

the right hand side must be equal to the long-run average number of up-crossing. The

Figure 6. Sample paths for the inventory level in Model III [sporadic review with completely or partially

satisfied (BAll-or-Some^) demand]. At epochs t2, t3 and t4 the buffer is cleared and at epoch t1 some of the

demand at the buffer (indicated by the dotted lines) is lost. The cycle length is �(x).
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parameters � and x are the rates of the Poisson demand arrivals and the Poisson clearing

arrivals, respectively. The conditional probability to down-cross level x given V3 2 dw

by a regular demand is

Pr S > w� xð Þ ¼ 1� G w� xð Þ ð13Þ

and at a moment of clearing is Pr (S > x). Finally, by PASTA, the density f3 (I) appears

both in the left hand side and in the right hand side of (13).

We now try the Beducated guess^

f3 xð Þ ¼ 	e�	x ð14Þ

for some positive h. Substituting (14) in (13), multiplying both sides by e	x, and then

subtracting x, we get

	 � 
 ¼ �	
Z 1

x

e�	 w�xð Þ 1� G w� xð Þ½ � dw: ð15Þ

But

Z 1

x

e�	 w�xð Þ 1� G w� xð Þ½ � dw ¼ 1� ~gg 	ð Þ
	

: ð15Þ

Thus

	 ¼ � 1� ~gg 	ð Þ½ � þ 
: ð16Þ
To show that h is unique define the functions ‘(h) = h j x and h 	ð Þ ¼ � 1� ~gg 	ð Þ½ �: It is

easy to see that h (0) = 0, h (V) = � and that h (h) is concave increasing in h. Also,

‘(0) = jx and ‘(V) = V. Thus, by equating ‘(h) = h (h) there must be a unique match

point h 2 (0,�). By the limit theorem for regenerative processes the stationary

distribution is unique. Thus, according to the educated guess (14), the stationary

distribution of V3 is exp(h) and by PASTA the amount cleared is also exp(h). The proof

is complete. Í
It is worth noting that in a recent paper Kella and Miyazawa (2001) also use an

Beducated guess^ to show that the steady state law of the conditional G/M/1 queue in

which the idle periods are deleted is exponential. However, despite the similarity of the

guess used, the model presented here and Kella and Miyazawa’s (KYM) model are not

exactly the same implying that the parameters of the exponential distributions found by

KYM and by us are not the same.

4.2. Optimization of Model III

To develop the average cost function for Model III, we use essentially the same

arguments that were used in the development of the average cost function for Model I in
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Section 2.2. Noting that the expected cycle length is now 1/x [rather than 1/ f1(q)], we

obtain the objective function for Model III as

C3 
ð Þ ¼ h

Z 1

0

x f3 xð Þ dxþ ��
�

Z 1

0

1� G xð Þ½ � f3 xð Þ dxþ K
; ð17Þ

where the density f3(x) is a function of the decision variable x.

Consider again the data values that were used in previous models, i.e., (�, m; h,�, K) =

(5,10;1,2,4). With these values we find the LT as ~gg 	ð Þ ¼ 10= 	 þ 10ð Þ, and solving (16)

for h gives

	 
ð Þ ¼ 1

2

 � 5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 30
 þ 
 2

p� �
� 0;

so that f3 xð Þ ¼ 	 
ð Þe�	 
ð Þx. Substituting f3(x) into (17) we obtain a convex function

C3 
ð Þ ¼
2 40� 89
 þ 81
2 þ 4
3 þ

ffiffiffiffiffiffiffiffiffiffi
� 
ð Þ

p
�4þ 21
 þ 4
2ð Þ

� 


15þ 
 þ
ffiffiffiffiffiffiffiffiffiffi
� 
ð Þ

p� 

�5þ 
 þ

ffiffiffiffiffiffiffiffiffiffi
� 
ð Þ

p� 




where D(x) K 25 + 30x + x2; see Figure 7 for a plot of C3(x). The value that minimizes

this average cost function is found as x* = 0.34 for which the minimum average cost is

C3(x*) = 2.97 and h(x*) = 0.64.

Note that the exponential stationary density f3(x) = 0.64ej0.64x implies that in this

model there is a very small probability that the inventory level will be very high since

Figure 7. Average cost function C3 (x ) for Model III when (�, m; h, �, K) = (5,10; 1, 2, 4). This function is

minimized at x* = 0.34 which gives C3 (x*) = 2.97.
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either the buffer will be cleared by the controller at random intervals or the inventory

will be depleted by Ball-or-some^ type demands. Also note that since h is increasing in x,

and the expected cycle length is decreasing in x, higher values of x result in a lower

average inventory since the buffer is cleared more frequently by the controller.

5. Model IV: Sporadic Review with Completely Satisfied or Completely

Unsatisfied (BAll-or-Nothing^) Demand

In Model IV the content level process V4 in the buffer is no longer a continuous time

random walk. The demands are, as in Model II, of the BAll-or-Nothing^ type in the sense

that each demand is either completely satisfied (if its size is smaller than the content

level); or completely unsatisfied, otherwise. Clearly, level 0 can be reached by V4 only at

moments of clearings that arrive in accordance with a Poisson process of rate x. That is,

V4 is a regenerative process whose cycle �(x) õ exp(x) is independent of {V4(t) : 0 e t <

�(x )}. For a sample realization of the content level process see Figure 8.

Let L1, L2, . . . be the exp(�) interarrival times and Z1, Z2, . . . be the exp(m) jump sizes.

We describe the dynamics of V4 in the first cycle as follows:

V4 tð Þ ¼ �t; for 0 � t < min L1; � 
ð Þð Þ;

V4 min L1; � 
ð Þð Þð Þ ¼
0; if � 
ð Þ � L1

�L1 � Z1�1 Z1��L1f g; if � 
ð Þ > L1:

(

If {�(x) e L1}, the cycle is terminated. If {�(x) > L1} the cycle is not yet terminated and

V4 tð Þ ¼ V4 L1ð Þ þ � t � L1ð Þ; for L1 � t < min L1 þ L2; � 
ð Þð Þ;

V4 min L1 þ L2; � 
ð Þð Þð Þ ¼
0; if � 
ð Þ � L1 þ L2

V4 L1ð Þ þ �L1 � Z2�1 Z2�V4 L1ð Þþ� L2f g; if � 
ð Þ > L1 þ L2:

(

With these preliminaries, we now turn to the analysis of the buffer level distribution.

Figure 8. Sample paths for the inventory level in Model IV [sporadic review with completely satisfied or

completely unsatisfied (BAll-or-Nothing^) demand]. At epochs t3 and t6 the buffer is cleared and at epochs t1, t2,

t4 and t5 all demand at the buffer (indicated by the dotted lines) is lost. The cycle length is �(x).
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5.1. Stationary Distribution of the Content Level V4(t)

The steady state (KhintchineYPollaczeck) integral equation for the density f4 xð Þ � fV4
xð Þ

of V4 is given by

f4 xð Þ ¼ �
Z 1

x

e�� w�xð Þ � e��w
h i

f4 wð Þ dwþ 

Z 1

x

f4 wð Þ dw ð18Þ

where the intuitive explanation of (18) is similar in nature to that of the previous section.

The stationary density of the buffer’s content level, f4(x), is found as the solution of the

following second order ordinary differential equation

f 004 xð Þ þ � 1� e��xð Þ þ 
 � �½ � f 04 xð Þ þ 2��e��x � �
ð Þ f4 xð Þ ¼ 0 ð19Þ

with the initial/boundary conditions f4(0) = x and
R1

0
f4 xð Þdx ¼ 1.

We now solve the ODE in (19) to find the stationary density f4(x) which is obtained in

terms of some special functions. First, we write (19) as

f 004 xð Þ þ ke��x þ ‘ð Þ f 04 xð Þ þ ue��x þ vð Þ f4 xð Þ ¼ 0 ð20Þ

where k K j�, ‘ K � + x j m, u K 2�m and v K jmx are constants (for a given x). Solving

the ODE in (20) with the help of the computer algebra system Maple (Heal et al., 1998)

we obtain

f4 xð Þ ¼ c1 exp
1

2�
�x �� ‘ð Þ þ ke��xð Þ

� 	
WW

k �� ‘ð Þ þ 2u

2� k
;

1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � 4v

p
;

1

�
ke��x

� �

þc2 exp
1

2�
�x �� ‘ð Þ þ ke��xð Þ

� 	
WM

k �� ‘ð Þ þ 2u

2�k
;

1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � 4v

p
;

1

�
ke��x

� �
;

ð20Þ
where c1 and c2 are the arbitrary constants to be determined using the conditions f4(0) = x
and

R1
0

f4 xð Þ dx ¼ 1, and the independent solutionsWW a; b; xð Þ andWM a; b; xð Þ are the

BWhittaker W^ and BWhittaker M^ functions, respectively. [To check this solution, we

substituted it in (20) and found that it does indeed satisfy the ODE.] These special

functions are given as

WW a; b; xð Þ ¼ e�x=2x1=2þbK 1

2
þ b� a; 1þ 2b; x

� �
;

WM a; b; xð Þ ¼ e�x=2x1=2þbH 1

2
þ b� a; 1þ 2b; x

� �
;

with the Kummer function K a; b; xð Þ being one of the independent solutions of another

2nd order ODE [i.e., xy00(x) + (b j x)y0(x) j ay(x) = 0] and the hypergeometric function

H a; b; xð Þ ¼
X1

n¼0

� aþ nð Þ=� að Þ
� bþ nð Þ=� bð Þ

xn

n!

� �
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where � að Þ ¼
R1

0
e�tt a�1dt is the gamma function evaluated at a > 0; (Abramowitz and

Stegun, 1965, Ch. 13).

It is important to point out that although these special functions are defined in terms of

infinite sums and solution of a differential equation, they have been implemented in

many computer algebra systems such as Maple (Heal et al., 1998) which makes their

computations relatively straightforward.

5.2. Optimization of Model IV

To develop the average cost function for Model IV, we use arguments similar to those

that were used in the development of the average cost function for Model II in Section

3.2. The objective function for Model IV is found as

C4 
ð Þ ¼ h

Z 1

0

x f4 xð Þ dxþ �� 1

�
þ I4 
ð Þ

� 	Z 1

0

1� G xð Þ½ � f4 xð Þdxþ K


where I4 
ð Þ �
R1

0
x f4 xð Þ dx since the form of f4(x) depends on the choice of the decision

variable x.

Consider again the problem with parameter values (�, m; h,�, K) = (5,10; 1, 2, 4).

Solving the ODE with these parameters and the initial/boundary conditions for a given x,

we can find the density f4(x) exactly in terms of the Whittaker function as discussed above.

However, since the density f4(x) is obtained only after specifying the decision variable x, as

in Model II, we need to perform a line search to determine the optimal x value. The results

(to two significant digits) of this analysis are summarized in Table 3 where we observe that

the optimal solution is x* = 0.17 with the minimum average cost of C4(x*) = 6.84.

For the optimal value of x* = 0.17, the density f4(x) of the buffer is plotted in Figure 9.

The form of the stationary density f4(x) implies that in this model there is a very small

probability that the inventory level will be very high or very low. This is so since the

buffer will be cleared by the controller at random intervals (thus reducing the possibility

of very high inventory). At the same time, there is a low probability that the inventory

will be very small since the Ball-or-nothing^ type demand faced in this model implies

Table 3. Average cost function(s) for Model IV evaluated at different values. The optimal values are

underlined.

x Average HC Average SC Average CC C4(x)

0.10 5.10 2.13 0.40 7.63

0.15 3.48 2.81 0.60 6.89

0.16 3.27 2.95 0.64 6.86

0.17 3.08 3.08 0.68 6.84

0.18 2.92 3.21 0.72 6.85

0.19 2.78 3.34 0.76 6.88

0.25 2.14 4.12 1.00 7.26
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that even though there may be some inventory available, a new demand may not be

satisfied if it exceeds the available amount thus keeping the inventory intact.

6. Summary and Conclusions

We examined four models arising from different combinations of review timing

(continuous vs. sporadic) and the amount of demand satisfied (BAll-or-Some^ vs. BAll-

or-Nothing^). We first determined the integral equations for the stationary distributions

of the content level process for each model using arguments from level crossing theory.

The integral equations were solved analytically in the case of Models I and III, and

numerically in the case of Models II and IV. After determining the stationary

distributions, we formulated optimization models for each case and found the optimal

value of the decision variables (q or x) to minimize an average cost objective function.

Figure 9. Stationary density f4 (x) of the content level process when x* = 0.17.

Table 4. Summary of the average holding, shortage and clearing cost expressions. The sum of these costs gives

the total average cost.

Model Average HC Average SC Average CC

I h
R q

0
x f1 xð Þdx ��

�

R q

0
1� G xð Þ½ � f1 xð Þdx K f1(q)

II h
R q

0
x f2 xð Þdx �� 1

�þ I2 qð Þ
h iR q

0
1� G xð Þ½ � f2 xð Þdx K f2(0) = K f2(q)

III h
R1

0
x f3 xð Þdx ��

�

R1
0

1� G xð Þ½ � f3 xð Þdx Kx

IV h
R1

0
x f4 xð Þdx �� 1

�þ I4 
ð Þ
h iR q

0
1� G xð Þ½ � f4 xð Þdx Kx
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We summarize the average holding cost (HC ), shortage cost (SC ) and clearing cost

(CC ) terms for each model in Table 4.

Table 5 includes summary information on the numerical examples we presented. Note

that as we move from Model I to Model II, the Brisk^ in the system increases as any

shortage results in a total loss of all demand. To compensate for this, the optimal solution

in Model II takes a value that is larger than that found in Model I. Similarly, as we move

from Model III to Model IV, the Brisk^ of demand losses again increases. We thus find

that in Model IV it is optimal to use, on average, a longer review period (1/x* = 5.88)

than that found for Model III (1/x* = 2.94).
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