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FOOTBALL PREDICTIONS BASED ON A FUZZY

MODEL WITH GENETIC AND NEURAL TUNING
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A model is proposed for predicting the result of a football match from the previous results of both

teams. This model underlies the method of identifying nonlinear dependencies by fuzzy knowledge

bases. Acceptable simulation results can be obtained by tuning fuzzy rules using tournament data. The

tuning procedure implies choosing the parameters of fuzzy-term membership functions and rule weights

by a combination of genetic and neural optimization techniques.

Keywords: football match prediction, fuzzy logic, fuzzy knowledge bases, genetic algorithm, neural

fuzzy network.

INTRODUCTION

Football is a sport game attracting the greatest number of fans. Predicting the results of football matches is interesting

from two points of view: demonstrating the usefulness of various mathematical methods [1, 2] and making money by betting

on one or another team.

Models and PC-programs for sport predictions have long been developed (for example, http://dmiwww.cs.tut.fi/riku).

Most of them employ stochastic methods to describe uncertainty: regressive and autoregressive analysis [3–5], the Bayesian

approach combined with Markovian chains and the Monte-Carlo method [6–9]. These models are complex, use many

assumptions, require large statistical samplings, and may not always be easily interpreted. Recently, neural networks have

come to be used to make football predictions [10–12]. They are considered as universal approximators of nonlinear

dependences, trained by experimental data. These models also require extensive statistical data and do not allow defining the

physical meaning of weights between neurons after training.

Football experts and fans frequently make predictions based on simple, common-sense assumptions, such as

IF a team T
1

won all previous matches

AND a team T
2

lost all previous matches

AND the team T
1

won the previous matches between T
1

and T
2

,

THEN it should be expected that T
1

would win.

Such a reasoning concentrates experts’ experience and can be formalized using fuzzy logic [13]. That is why it is

quite natural to use such a reasoning as a prediction model support.

A method for identiffying nonlinear dependences by fuzzy knowledge bases is proposed in [14, 15]. Its various

theoretical and practical aspects are considered in [16–19]. The aim of the present paper is to analyze the possible

applications of fuzzy knowledge bases and the method [14, 15] in the prediction of football matches.

A prediction model is constructed in two stages. The first stage is to determine the structure of fuzzy model that

associates the result of a football match with the previous results of both teams. To this end, we use the generalized fuzzy

approximator proposed in [14, 15]. At the second stage, the fuzzy model is tuned, i.e., its optimal parameters are determined

from experimental data available. The tuning procedure employs a genetic algorithm and a neural network. The genetic
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algorithm provides rough hit into the domain of global minimum of the discrepancy between the model and experimental

results. The neural approach is used for fine tuning of the model parameters and their adaptive correction as new

experimental data arrive.

FUZZY MODEL

Model Structure

The purpose of simulation is to predict the result of a match between teams T
1

and T
2

, which is characterized by a

difference y of goals scored and goals conceded. Assume that y y y� � �[ , ] [ , ]5 5 . To construct a prediction model, let us

define y at the following five levels:

d
1

is a high-score loss ( )big loss BL� , y � � � �5 4 3, , ;

d
2

is a low-score loss ( )small loss SL� , y � � �2 1, ;

d
3

is a drawn game ( )draw D� , y � 0 ;

d
4

is a low-score win ( )small win SW� , y � 1 2, ;

d
5

is a high-score win ( )big win BW� , y � 3 4 5, , .

Let the following factors influence the result of a match ( y):

x x x
1 2 5

, , ... , are the results of the five previous matches of the team T
1

;

x x x
6 7 10

, , ... , are the results of the five previous matches of the team T
2

;

x x
11 12

, are the results of the two previous matches between the teams T
1

and T
2

.

Obviously, x x
1 2

, , … , x
12

vary from � 5 to � 5. Hierarchical correlation between the output variable y and input

variables x x x
1 2 12

, , ... , is shown in Fig. 1 in the form of a tree.

This tree is equivalent to the following system of relationships:

y f z z x x�
3 1 2 11 12

( , , , ) , (1)

z f x x x
1 1 1 2 5

� ( , , ... , ) , (2)

z f x x x
2 2 6 7 10

� ( , , ... , ) , (3)

where z
1

and z
2

are intermediate variables: z z
1 2

( ) is a predicted result for the team T
1

(T
2

) based on the previous

results x x x
1 2 5

, , ... , (x x x
6 7 10

, , ... , ).

We will consider the variables x
1

, x
2

, …, x
12

, z
1

, and z
2

to be linguistic variables [13], which can be estimated using

the fuzzy terms introduced above: BL , SL , D, SW, and BW.

To describe relations (1)–(3), we will use expert knowledge matrices (Tables 1 and 2). These matrices correspond to

IF-THEN fuzzy rules formulated based on common-sense reasoning. An example of such a rule for Table 2 is as follows:

IF (x BW
11

� ) AND (x BW
12

� ) AND (z BW
1

� ) AND (z BL
2

� )

OR (x SW
11

� ) AND (x BW
12

� ) AND (z SW
1

� ) AND (z D
2

� )

OR (x BW
11

� ) AND (x D
12

� ) AND (z BW
1

� ) AND (z SL
2

� )

THEN y d�
5

.
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Fig. 1. Prediction model structure.



Fuzzy Approximator

To apply fuzzy knowledge bases (Tables 1 and 2) we will use the generalized fuzzy approximator (Fig. 2) introduced

in [14, 15].

This approximator describes the dependence y � f x x xn( , , ... , )

1 2

between the inputs x x xn1 2

, , ... , and the output y

using an expert knowledge matrix (Table 3).

The matrix is associated with a fuzzy knowledge base:

IF [(x a
j

1

1

1

� ) AND … (x ai j

j
�

1

) AND … (x an n

j
�

1

)]

(with weight w j1) …

… OR [(x a
jk j

1

1

� ) AND … (x ai i

j k j
� ) AND …

(x an n

jk j
� )] (with weight w jk j

), (4)

THEN y d j� , j m� 1, ,
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TABLE 1. Expert Knowledge Matrices for

Relations (2) and (3)

x x1 6( ) x x2 7( ) x x3 8( ) x x4 9( ) x x5 10( ) z z1 2( )

BL BL BL BL BL

BW SL BL SL BW BL

SW BL SL SL SW

SL SL SL SL SL

D SL SL D D SL

SW D SL SL SW

D D D D D

SL SW SW D SL D

D D SW SW D

SW SW SW SW SW

D BW BW SW D SW

SL SW SW BW SL

BW BW BW BW BW

SL BW SW BW SL BW

BL SW BW SW BL

TABLE 2. Expert Knowledge Matrices for

Relation (1)

x11 x12 z1 z2 y

BL BL BL BW

BW D BL D d
1

SW BL SL SL

SW SL D SL

D SL SL D d
2

SW D SL SL

D D D D

SL SW SW D d
3

SL D SW SW

SL SW SW BW

D BW BW SW d
4

SL SW SW BW

BW BW BW BL

SW BW SW D d
5

BW D BW SL

Fig. 2.

Generalized fuzzy

approximator.

TABLE 3. Expert Knowledge Matrix

Rule No.

IF <inputs>
THEN

<output> Weight of

the rule

x
1

x
2

… xn y

11 a
1

11

a
2

11

… a n

11

d
1

w
11

12 a
2

1

a
2

1

… a n

1

w
12

… … … … … …

1k
1

a
k

1

1

1 a
k

2

1

1

… a n

k1

1 w
k1

1

… … … … … … …

m1 a
m

1

1

a
m

2

1

… a n

m1

dm

w
m1

m2 a
m

1

2

a
m

2

2

… a n

m2

w
m2

… … … … … …

mkm a
mk m

1

a
mk m

2

… a n

mk m w
mk m



where a
i

p
is a linguistic term evaluating a variable xi in the row p k j� ; k j is the number of conjunction rows

corresponding to the class d j of the output variable y; w jp is a number from the interval [0,1], characterizing the

subjective measure of expert's confidence as to a statement with the number p k j� .

Classes d j , j m� 1, , are formed by quantization of the range [ , ]y y of the output variable into m levels:

[ , ] [ , ) [ , ) [ , ]y y y y y y y y

d

j j

d

m

d
j m

� � � � �
� �1 1 1

1

���

�

� �� ��

�

� �� ��

.

According to [14–16], the following object approximation corresponds to fuzzy knowledge base (4):

y �

y y y y y y

y y y

d d

m

d

d d d

m

m

� � �

� � �

1 2

1 2

1 1

( ) ( ) ( )

( ) ( ) (

� � �

� � �

�
�

� )

, (5)

� �
d

p k

jp
i n

jp

i
j

j

y w x( ) max min ( )

,

,

�
�

�
�

	



�

�



�

�

�

��
�

1

1

,
(6)

�
jp

i

i i

jp

i

jp

x

x b

c

( ) �

�

��

�

�

�

�

�

�

�

1

1

2

, i n� 1, , j m� 1, , p k j� , (7)

where �
d j

y( ) is the membership function of the output y in the class d y yj j j�
�

[ , ]

1

; �
jp

ix( ) is the membership

function of a variable xi in a term a
i

p
; b

i

jp
, and c

i

jp
are settings of membership functions with the following

interpretation: b is the coordinate of maximum, �
jp

i

jp
b( ) � 1; and c is the concentration (contraction–extension)

parameter.

Relations (5)–(7) determine the generalized model of the nonlinear function y f x x xn� ( , , ... , )

1 2

as

y F X W B C� ( , , , ) , (8)

where X x x xn� ( , , ... , )

1 2

is the vector of input variables, W w w wN� ( , , ... , )

1 2

is the vector of weights of fuzzy rules,

B b b bq� ( , , ... , )

1 2

and C c c cq� ( , , ... , )

1 2

are the vectors of parameters of membership functions, N is the total

number of rules, q is the total number of fuzzy terms, and F is the inputs-output operator corresponding to formulas

(5)–(7).

Fuzzy Model of Prediction

Using the fuzzy approximator (8) (Fig. 2) and the derivation tree (Fig. 1), we can describe the prediction model as

y F x x x W B C W B C W B Cy� ( , , ... , , , , , , , , , , )

1 2 12 1 1 1 2 2 2 3 3 3

, (9)

where F y is the inputs-output operator corresponding to formulas (1)–(3), W w w w w
1

1

11

1

13

1

51

1

53

� (( , ... , ), ... , ( , ... , )),

W w w
2

2

11

2

13

� (( , ... , ) , …, (w
2

51

, … , )w
2

53

) , and W w w
3

3

11

3

13

� (( ... , )

,

, …, ( , ... , ))w w
3

51

3

53

are the vectors of rule

weights in relations (2), (3), and (1), respectively;

B b b b b b
BL SL D SW BW

1

1 5 1 5 1 5 1 5 1 5

�
� � � � �

( , , , , ) ,

B b b b b b
BL SL D SW BW

2

6 10 6 10 6 10 6 10 6 10

�
� � � � �

( , , , , ) ,

B b b b b b
BL SL D SW BW

3

11 12 11 12 11 12 11 12 11 12

� ( , , , , )

, , , , ,

are the vectors of the centers of membership functions of the variables x x x
1 2 5

, , ... , , x x x
6 7 10

, , ... , and x
11

, x
12

in the

terms BL , SL , …, BW;
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C c c c c c
BL SL D SW BW

1

1 5 1 5 1 5 1 5 1 5

�
� � � � �

( , , , , ) ,

C c c c c c
BL SL D SW BW

2

6 10 6 10 6 10 6 10 6 10

�
� � � � �

( , , , , ) ,

C c c c c c
BL SL D SW BW

3

11 12 11 12 11 12 11 12 11 12

� ( , , , , )

, , , , ,

are the vectors of concentration parameters of the membership functions of variables x x x x x x
1 2 5 6 7 10

, , ... , , , , ... , and

x x
11 12

, in the terms BL SL BW, , ... , .

In constructing model (9), we assumed that the fuzzy terms BL, SL BW, ... , have identical membership functions for

each of the variables x x x
1 2 5

, , ... , . The same assumption is made for the variables x x x
6 7 10

, , ... , , x
11

, and x
12

.

FORMULATION OF THE PROBLEM OF FUZZY MODEL TUNING

Let a learning sample as M pairs of experimental data of the form

� � �
�

, � , ,X y l Ml l 1 ,

be composed from the tournament data, where

�
( � , � , ... , � ), ( � , � , ... , � ), ( �X x x x x x xl

l l l l l l
� {

1 2 5 6 7 10

x x
l l

11 12

, � )} are the results of

previous matches for the teams T
1

and T
2

in the lth experiment, and �yl is the result of a match between the teams T
1

and T
2

in the lth experiment.

Essentially, tuning of the prediction model is to select the parameters of the membership functions (b-, c-) and weights

of fuzzy rules (w-) so as to provide minimum discrepancy between theoretical and experimental data:

l

M

y

l l l

i i i l
W

F x x x W B C y

i�

� � �

1

1 2 12

2

( ( � , � , ... , � , , , ) � ) min

, ,

, , ,

B Ci i

i � 1 2 3. (10)

To solve the nonlinear optimization problem (10), we combine a genetic algorithm and a neural network. The genetic

algorithm provides rough off-line hit into the domain of global minimum, and the neural network is used for on-line

improvement of parameter values.

GENETIC TUNING OF THE FUZZY MODEL

Structure of the Algorithm

To implement the genetic algorithm for solving the optimization problem (10), it is necessary to define the following

main concepts and operations [15, 20]: a chromosome means a coded version of the solution; a population means the initial

set of versions of the solution; fitness function means a selection criterion; crossover means generation of daughter

chromosomes by parent chromosomes; and a mutation means random change of chromosome elements.

If P t( ) are parent chromosomes, and C t( ) are daughter chromosomes at the tth iteration, then the general structure of

the genetic algorithm is as follows:

begin

t : � 0 ;

Specify the initial value of P t( ) ;

Estimate P t( ) using the fitness function;

while not( termination conditions) do

Cross P t( ) to produce C t( ) ;

Mutate C t( ) ;

Estimate C t( ) using the fitness function;

Select P t( )� 1 from P t( ) and C t( ) ;

t t: � � 1;

end

end
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Coding

Let us define a chromosome as a row vector of binary codes of the parameters of membership functions and rule

weights (Fig. 3).

Crossover and Mutation

The crossover operation is defined in Fig. 4. It consists in exchange of chromosome parts in each of the vectors of

membership functions (B C B C B C
1 1 2 2 3 3

, , , , , ) and each of the vectors of rule weights (W
1

, W
2

, W
3

). The crossover points

shown by dotted lines are selected arbitrarily. The superscripts (1 and 2) in the parameter vectors refer to the first and second

parent chromosomes, respectively.

The mutation (Mu) provides a random change (with some probability) of chromosome elements:

Mu w RANDOMjp( ) ([ , ])� 0 1 ,

Mu b RANDOM y y
i

jp
( ) ([ , ] )� ,

Mu c RANDOM c c
i

jp

i

jp

i

jp
( ) ([ , ])� .

Here RANDOM x x([ , ]) is the operation of finding a random number uniformly distributed over the interval [ , ]x x .

Selection

Selection of parent chromosomes for the crossover operation should not be random. We used the selection procedure

giving priority to the best solutions. The greater the fitness function of some chromosome, the higher the probability that this

chromosome will generate daughter chromosomes [15, 20]. As a fitness function, we take criterion (10) with minus sign, i.e.,

the greater the degree of chromosome adaptability to the optimization criterion, the greater the fitness function. While the

genetic algorithm is running, the population size remains constant. Therefore, after performing the crossover and mutation

operations, it is necessary to delete the chromosomes with the worse values of the fitness function from the population

obtained.
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Fig. 4. Structure of the crossover operation.

Fig. 3. Structure of a chromosome.
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NEURAL TUNING OF THE FUZZY MODEL

Neural Fuzzy Prediction Network

For on-line neural tuning, we implanted the IF-THEN fuzzy rules into a special neural network constructed using

elements from Table 4 [18].

The neural fuzzy network obtained is shown in Fig. 5.

Relationships for the Tuning

For tuning neural fuzzy network parameters, we used the following recurrences:

w t w t
E

w t
jp jp

t

jp

( ) ( )

( )

� � �

�

�

1 � ,
(11)

c t c t
E

c t
i

jp

i

jp t

i

jp
( ) ( )

( )

� � �

�

�

1 � , (12)

b t b t
E

b t
i

jp

i

jp t

i

jp
( ) ( )

( )

� � �

�

�

1 � (13)
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TABLE 4. Neural Fuzzy Network Elements

Node designation Node name Function Node designation Node name Function

Input � � u

Class of rules � �

�

�

i

l

i
u

1
Fuzzy term � ��

T
u( )

Fuzzy rule � �

�

�

i

l

i
u

1

Defuzzification

(d
j

is the center of

class d
j

)

� �

�

�

�

�

j

m

j j

j

m

j

u d

u

1

1

Fig. 5. Neural fuzzy prediction network.

u
1

�

u
l

�

�
u

1

�

um

�

�

�

u

u
T

u
1

�

u
l



minimizing the criterion

E y yt t t
� �

1

2

2

( � ) ,

used in neural network theory. Here y yt t( �
)

is the theoretical (experimental) difference between the goals scored and

goals conceded at the tth step of learning; w tjp ( ) , c t
i

jp
( ) , and b t

i

jp
( ) are the rule weights and membership function

parameters at the tth step of learning; and � is a learning parameter selected according to the guidelines from [21].

Models of the derivatives appearing in (11)–(13) are presented in the Appendix.

EXPERIMENTAL RESULTS

For tuning the fuzzy model, we used the tournament data for the championship of Finland, characterized by a

minimum number of sensations.
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Fig. 6. Membership functions after tuning.

TABLE 6. Rule Weights in

Relation (3)

Genetic tuning Neural tuning

0.7 0.926

0.9 0.900

0.7 0.700

0.9 0.954

0.7 0.700

1.0 1.000

0.9 0.900

1.0 1.000

0.6 0.600

1.0 1.000

0.7 0.700

1.0 1.000

0.8 0.990

0.5 0.500

0.6 0.600

TABLE 7. Rule Weights in

Relation (1)

Genetic tuning Neural tuning

0.7 0.713

0.8 0.782

1.0 0.996

0.5 0.500

0.5 0.541

0.5 0.500

0.5 0.500

0.5 0.522

0.6 0.814

1.0 0.903

0.6 0.503

1.0 0.677

1.0 0.515

0.5 0.514

1.0 0.999

TABLE 5. Rule Weights in

Relation (2)

Genetic tuning Neural tuning

1.0 0.989

1.0 1.000

1.0 1.000

0.8 0.902

0.5 0.561

0.8 0.505

0.6 0.580

1.0 0.613

0.5 0.948

1.0 0.793

0.9 0.868

0.6 0.510

0.6 0.752

0.5 0.500

0.5 0.500

TABLE 8. Membership Function Parameters after Tuning

Terms

Genetic tuning Neural tuning

x x x
1 2 5

, , ,� x x x
6 7 10

, , ,� x x
11 12

, x x x
1 2 5

, , ,� x x x
6 7 10

, , ,� x x
11 12

,

b- c- b- c- b- c- b- c- b- c- b- c-

BL � 4160. 9 � 5153. 9 � 5 037. 3 � 4 244. 7.772 � 4 524. 9.303 � 4 306. 1.593

SL � 2 503. 1 � 2 212. 5 � 3 405. 1 � 1468. 0.911 � 1450. 5.467 � 2 563. 0.555

D � 0 817. 1 0.487 7 0.807 1 � 0 331. 0.434 0.488 7.000 0.050 0.399

SW 2.471 3 2.781 9 2.749 7 1.790 1.300 2.781 9.000 2.750 7.000

BW 4.069 5 5.749 9 5.238 3 3.000 4.511 5.750 9.000 3.992 1.234



The learning sampling consists of the results of 1056 matches over eight years from 1994 to 2001. Tables 5–8 and

Fig. 6 show the results of fuzzy model tuning.

For model testing, we used the results of 350 matches from 1991 to 1993. A fragment of the testing sample and

prediction results is presented in Table 9, where T T
1 2

and are team names; �
�y dand are real and experimental results; yG and

dG are predicted results after genetic tuning; and yN and d N are predicted results after neural tuning. The symbol * denotes

noncoincidence of the theoretical and experimental results.

The efficiency indices of the fuzzy model tuning algorithms for the testing sample are presented in Table 10. The best

prediction results are provided for extreme classes of decisions, i.e., high-score win and loss (d
1

and d
5

). The worst

prediction results are for low-score win and loss (d
2

and d
4

).

627

TABLE 9. Fragment of Prediction Results



CONSTRAINTS OF THE PREDICTION MODEL

The model proposed is constructed according to the time-series ideology [1, 2], which implies that the past completely

determines the future. As compared with classical time series, fuzzy rules [15] have been used, which significantly decreases

the number of experimental data due to expert knowledge. The input factors (x x x
1 2 12

, , ... , ) provide a convenient model

tuning based on the information from the Internet. Therefore, it is expedient to apply the proposed model to football league

championships. To illustrate the simulation by an example, we used the championship of Finland, which is characterized by a

minimum number of sensations. However, the results obtained can hardly be applied to world championships since the

model did not take into account the following important factors.

1. Number of injured players. In formalizing this factor, it is necessary to take into account the importance and

performance of the injured player, who may influence the match result.

2. The number of booked and benched players.

3. Refereeing objectivity. This factor is determined by the first- and second-kind errors. A first-kind error (false

alarm) is indicative of the referee’s prepossession to a team (unfair warnings). The second-kind error (skip of a fault) means

that the referee does not notice incorrect actions of one of the teams.

4. Weather and climatic conditions. This factor determines that a technique advantage may be lost in a game played in

unfavorable conditions.

Allowing for these factors may be the subject of a special analysis and construction of a special knowledge base.

However, information about such factors become available just before a match. Therefore, the proposed model can be used

for a preliminary prediction, which should be specified later, accounting for current data about the injure level, referee

characteristics, and climatic and psychological factors. A fuzzy knowledge base, which takes into account these factors, may

be the next level of simulation; however, tuning of such a model is a challenge due to the absence of objective learning

samples.

CONCLUSIONS

The model proposed makes it possible to predict the result of a football match using the previous matches of both

teams. The model is based on the method of identifying a past-future nonlinear dependence by a fuzzy knowledge base.

Acceptable simulation results can be achieved by tuning fuzzy rules based on tournament data. Tuning consists in

selecting the parameters of membership functions of fuzzy terms and rule weights by combining the genetic (off-line) and

neural (on-line) optimization algorithms. The prediction model can be further improved by accounting for additional factors

in the fuzzy rules: home/away game, number of injured players, and various psychological effects.

The model can be used for creating commercial programs of predicting the results of football matches for bookmaker

offices. Moreover, the technique for constructing and tuning the fuzzy model presented in the paper can be used for design

and tuning of fuzzy expert systems in other domains.
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Efficiency indices Genetic tuning Neural tuning

Tuning time (minutes) 52 7

No. of iterations 25,000 5000

Probability of

correct prediction

for different

decisions

d
1

— a high-score loss 30/35=0.857 32/35=0.914

d
2

— a low-score loss 64/84=0.762 70/84=0.833

d
3

— a drawn game 38/49=0.775 43/49=0.877

d
4

— a low-score win 97/126=0.770 106/126=0.841

d
5

— a high-score win 49/56=0.875 53/56=0.946

TABLE 10. Efficiency Indices of Tuning Algorithms



APPENDIX

The partial derivatives appearing in relations (11)–(13) characterize the error sensitivity (Et ) to the variation of

parameters of a neural fuzzy network and can be calculated as follows:
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