

US005248899A

United States Patent [19]

Haronian et al.

[11] Patent Number:

5,248,899

[45] Date of Patent:

Sep. 28, 1993

[54] NEURAL NETWORK USING PHOTOELECTRIC SUBSTANCE

[76] Inventors: Dan Haronian, P.O. Box 1405, Efrat, Israel, 90962; Aaron Lewis, 18/14

Neveh Shaanan, Jerusalem, Israel,

93707

[21] Appl. No.: 832,912

[22] Filed: Feb. 7, 1992

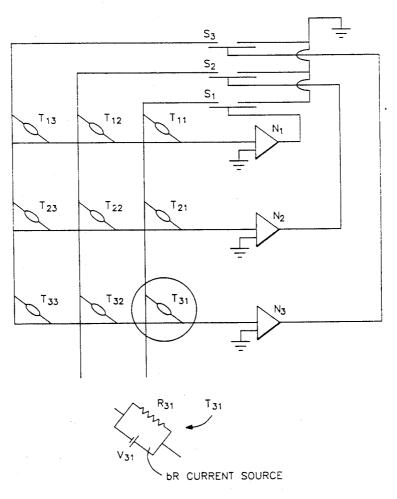
[56] References Cited

U.S. PATENT DOCUMENTS

4,660,166	4/1987	Hopfield	307/201 X
4,874,963	10/1989	Alspector	307/201
4,977,540	12/1990	Goodwin et al	307/201 X
4.994,982	2/1991	Duranton et al	307/201 X
5,130,563	7/1992	Nabet et al	307/201

OTHER PUBLICATIONS

Bushor, "The Perceptron-An Experiment in Learning" Electronics, Jul. 1960, pp. 56-59.


Joseph, "On Predicting Perceptron Performance" IRE Center Convention, no date given.

Primary Examiner—David R. Hudspeth Attorney, Agent, or Firm—Jacobson, Price, Holman & Stern

[57] ABSTRACT

A neural network, and a method of storing information and retrieving it by such network. The network comprises neurons, synapses and switches, and when required also rectifying means. The network is based on a substance which undergoes a reversible change from stable state A to stable state B, and this substance can also be changed from state A to another state C, which change is also reversible, where each change provides a measurable electrical pulse. The change of state is brought about by means of illumination for a predetermined period of time at a certain wavelength, it being possible to convert a desired part of the substance from one state to the other.

21 Claims, 18 Drawing Sheets

