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ABSTRACT. The constraints of a computer algebra system (CAS) generally induce
limitations on its usage. Via the pedagogical features implemented in such a system,
“motivating constraints” can appear, encouraging advanced theoretical learning,
providing a broader mathematical knowledge and more profound mathematical
understanding. We discuss this issue, together with two examples from Calculus, which
show an important feature of an instrumentation process.
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INTRODUCTION

Computer algebra systems were originally designed in order to perform
technical computations to be used, for example, in situations where
tables of integrals, Laplace transforms, etc. were formerly used. This
usage was intended to replace hand-made computations. Over time, these
systems evolved, and educators discovered pedagogical applications and
implemented various educative activities based on their usage. In
mathematics education, purely technical usage is of minimal interest,
emphasis is put on mathematical meaning and conceptual understanding.

The functions of a computer algebra system (a CAS) as an assistant to
mathematical learning are placed into three levels:

1. A technical tool performing technical tasks

2. A tool whose performance helps to develop more conceptual
understanding

3. A technological aide to bypass a lack of conceptual knowledge, where
such knowledge is out of reach, at least in “the immediate future”.

The first level is the blackbox level and has no great pedagogical value,
beyond saving time and technical efforts. Maybe it allows the teacher to
save time for reflexion and theoretical understanding, but a perverse effect
is the loss of manual computation skills, as noted by (Herget, Heugl,
Kutzler, & Lehmann, 2000). This effect looks like the simple calculator
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(where only the so-called four operations are implemented) introduced in
primary schools, whereby mental calculation almost disappeared. For
high-school students and undergraduates, other abilities are about to dis-
appear, such as integration techniques, or techniques for solving equa-
tions, either linear or non-linear. Only “specialists” (those who program
the computers) will master the theory, and not only the know-how.

Atlevel 1 '/, the student uses the CAS for verifying results. There are
two kinds of verifications:

e Verify either a numerical result or a “closed” algebraic
expression.

e Perform the passage from nton + 1 in a recurrence, after the
CAS enabled conjecture of a formula (see Garry, 2003, p. 139).

For the first case, the mathematical correctness of the verification is
not always evident. For example, two different CAS or even two dif-
ferent commands of the same CAS, or a CAS and hand-work, can
provide different algebraic expressions, both valid. As inert expressions,
they are different, but when defining functions, which are dynamic
objects, different expressions can define the same function. This can be a
good opportunity to recall the definition of two equal functions. The
verification issue has been addressed by Lagrange (1999) and Pierce
(2001).

Steiner & Dana-Picard (2004) commented on aspects of level 2. Low-
level commands are important for cognitive processes attempting to
afford a good conceptual insight. A CAS command is called a low-level
command if it performs a single operation, while a macro is a command
programmed to perform a sequence of low-level commands. Perhaps we
should consider low-level commands as the atoms of every computerized
process aimed to solve a mathematical problem.

Because of the limitations imposed by the syllabus and also because of
time limitations, level 3 is less commonly considered. However, it can be
included close to the frontier of the syllabus, either for enriching
exercises, or for problem solving when the necessary theorems have still
not been taught (see Dana-Picard, 2005a).

In this paper we wish to show that a fourth level exists: a CAS is a
device whose performances sometimes Jorce the user to acquire more
mathematical knowledge. Perhaps there exists more than one command,
more than one algorithm, to solve a problem and a total freedom of
choice is left to the user. For the user to make an intelligent decision,
he/she must have a good knowledge of the mathematics implemented
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in these algorithms. Of course, there exist situations where a unique
algorithm is available, either because of the theoretical state-of-the-art
or because of the decisions of the developers. This limits the diversity
offered by the CAS; this issue is studied by Artigue (2002, p. 265).

In every case, the implemented mathematics has to be understood if
one desires to master what is at work there. In the next sections, we show
examples where the CAS commands are based on a theorem which does
not appear in a standard syllabus. In order to afford a real understanding
of the process, the user has to learsn new mathematics. We will call such
a situation a motivating constraint of the software. It pushes the user
towards a more profound mathematical insight.

Until recently, the choice of which feature of the CAS, which command,
to use was completely left to the user and no guidance was provided by the
CAS itself. This claim is not true anymore: pedagogical features have been
implemented into computer algebra systems. We will call such systems
pedagogy embedded CAS. For example, Derive 6 has a step-by-step
feature, run by a simple left-button click. Every step corresponds to what
we call low-level commands, either because it could have been
programmed as a single independent command, or because it implements
one theorem (an integration formula, an elementary operation on rows of
a matrix, etc.). We will show surprising situations. Let us only mention
that this step-by-step feature is still under development. Other systems
are also pedagogy embedded. For example Maple is pedagogy embedded
(with the Student package and other features, such as the tutorials of
version 10). Its functionalities work in a different way than those of
Derive, and the learning process induced by them develops otherwise.
We do not wish to compare here the two embeddings of pedagogical
features; the comparison deserves a special study.

As noted by Trouche (2004b), tools shape the learning environment.
The actual issue we wish to address here is one influence of the
computerized environment on the mathematical contents. We discuss
two examples from integral calculus at the undergraduate level. Please
note that the software follows general algorithms, starting from pattern
recognition, and whose sequential steps are based on the implementation
of general theorems. The human brain works less sequentially, therefore
intuition can lead to other pathways towards the solution of the exercise.
Comparing the two ways is very productive.

Should we temperate slightly the previous claim? Generally, the
human brain does not work sequentially, but in certain situations it is wise
to translate the solution process of a given problem into a flowchart, then
into an algorithmic process, as shown by Meyer & Dana-Picard (1997).
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This occurs when working with students having special difficulties with
problem solving. We do not deal with such a situation here.

Two DIFFERENT ACTIVITIES AROUND THE SAME EXAMPLE
OF A MATHEMATICAL TopIC

The Mathematical Situation

2

We consider the definite integral /, = Je g sin"x dx, where the parameter
n is a non negative integer. Asking the computer to compute 7, for
general parameter provides an output identical to the input, indicating
that the software failed to compute the given parametric integral.

Working with paper-and-pencil, we find a recurrence relation with /,
as a function of # and /, _,, namely, 7, = =1 J, 5. Detailed computations
are given in Dana-Picard (2004). The fact that the index increases by 2
shows that the sequence of integrals splits into two distinct subsequen-
ces: the terms with odd index, and the terms with even index.

Case Description: A Question in a Calculus Exam

2
Computation of /; = -[Dm ; sin’x dx was a question as part of an exercise in
a recent Calculus examination at Jerusalem College of Technology in-
volving 116 students. The students had to solve five exercises among
seven proposed. With respect to this question, the students dispatched as
follows:

54 students answered the exercise containing this question

* 10 of them gave a wrong answer, generally because of mistakes
in technicalities _

e The solutions were dispatched into three very different groups:

(i) A little less than two thirds of the students chose the following way:

/2 /2 /2
L= [ sindxdx= J sin’x-sin xdx = J (1 —cos?x)-sin xdx
0 0 0
/2 /2
= [ sinxdx— [ cos®x-sin xdx
0 0
! 3 /2

= [~ cos 2l + [} cos® ] =1 -3

=2,
-3

In this group, half of the students computed the integral as shown here,
the other half made an explicit substitution for the integral on the right of
the minus sign.
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About one third of the students began with the same decomposition
/2 /2
L= / sin’ x dx = / sin’ x* sin x dx,
0 0

then performed an integration by parts. This is allowed, but the
computation process is more complicated than in the previous way.
Together with other examples, students showed a preference for
integration by parts, rather than substitution, when dealing with a
definite integral.

(iii) Four students tried a substitution. Two of them had problems with

(iv)

the new boundaries of the integral, the other two computed an
indefinite integral using a substitution, then used the result to
compute the requested definite integral.

One student proved the general recurrence formula for 1, then
computed the first terms of the sequence and finally obtained the
desired value for /5. His motivation for this choice is easy to
understand: a similar exercise, deriving a general recurrence
formula, had been solved in classroom a short time before the
exam. We wish to point out that this student probably has a good
memory, but poor mathematical skills.

Educative Activities

Let

us now describe two different educative activities with Derive, based

on the computation of this parametric integral. The first one does not
include Derive’s step-by-step, but the second one uses it.

(@)

Without step-by-step: We use the standard commands with imme-
diate answer.

(1) Compute the integral /, for a possibly wide range of values of
the parameter. The VECTOR command fits.

/2

#4 VECTOR / SIN(x)"dx, n, 1, 10
0

45 [l T 2 37 8 5w 16 357 128 63'1]
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(ii) Try to find a general formula corresponding to the values that
have been obtained (In our current example, the first remark is
that they are actually two subsequences, one of rational
numbers, the other of multiples of 7 by rational numbers,
according to the parameter being either even or odd; therefore,
two formulas have to be conjectured).

(iii) Extra help may be needed for a formula to be conjectured. Here
the Online Encyclopedia of Integer Sequences provides this
help. ‘

(iv) After a formula has been conjectured, it should be checked for
other values of the parameter, possibly using the VECTOR
command once again, with another range for the parameter
values.

(b) With step-by-step: Steiner & Dana-Picard (2004) show one case
where Derive can compute a parametric integral for general
parameter. Nevertheless, the software cannot always compute such
an integral for general parameter. Therefore we propose the
following canvas.

(i) Compute the integral 1, for-a few small values of the parameter,
say n = 1,2,3,4, as in Appendix 1.
(i) Note that in each of the corresponding sessions, the same
theorem is applied.
(iii) Use this central formula in order to find the recurrence relation
quoted above.
(iv) Find a closed form for 1, using factorials. )
(v) Check the correctness of this form for a large range of values of
the parameter using, for example, the VECTOR command of
Derive.

Discussion

The first activity provides a proof of a combinatorial expression for the
given integral. It is a nice opportunity for the educator to have students
search a question, propose a conjecture, and try to verify it. Creative
activities of this type are a plus in the face of the imitative processes
most frequently met in regular curricula.

P
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The second activity also provides a proof of the formula which has
been discovered, but it has an added value: the discovery of a non-
standard theorem. A Derive 6 session for computing /5 is displayed in
Appendix 1. Pay attention to the following row:

_SIN(a-x+ by~ '.COS(a-x + b)
a-=p

/ SIN(a-x + bYPdx —

+p—;—1ﬁ-/sm(a-x+b)f"2ca

This formula is obtained by integration by parts, exactly in the way the
recurrence relation of the first activity has been obtained. Generally this
theorem does not belong to the Calculus syllabus. At most, computation
of parametric integrals is given as an advanced exercise for advanced
students, definitely not within the course’s mainstream. If the theorem
did not appear explicitly in the computerized process, it would probably
not have been shown, a fortiori not be proven in classroom. We discuss
this point in the last section. Note that the core influence of the CAS lies
in points (i) and (ii).

We should mention that, during the examination, only one student
chose the way the software computes the integral for pencil-paper work.

SECOND EXAMPLE: COMPUTATION OF A PARAMETRIC INTEGRAL FOR GENERAL
PARAMETER VALUE

The example here is more striking. We consider the improper integral
L = [ /*s——-dx, where r is a non negative real parameter. This
integral is equal to 7/4 for any non negative real value of the parameter.
It can be computed by hand, in a small number of steps (see Steiner and
Dana-Picard, 2004). Steiner proposed this in a Calculus exam, with »
equal to the year’s number.

In most situations, a CAS does not work with general parameter. The
student/mathematician has to make computations for various values of
the parameter, then conjecture a formula, and finally prove the
conjecture, as already mentioned in the previous section.

When computing this specific integral, Derive works otherwise: it
computes the improper integral as a definite one, using a pathway totally
different from the hand-work pathway mentioned above. The Derive
session is displayed in Appendix 2. During the exam, no student solved
the question in the way the computer uses here.
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Herget et al. (2000) list the important skills and abilities that a student
must have when trying to solve an exercise, either manually or using a
CAS. We mention here what is relevant to our goal:

Finding expressions
Recognizing structures
Visualizing

Properly using the technology

Both for manual computation and computerized work, the core item is
the recognition of the rth power of the tangent function. This power is
transformed by Derive into an exponential and the rest follows. This
recognition, very different from the human recognition, explains why
the computation is feasible by the computer for any real value of the
parameter, without need of an explicit substitution. It seems that the
same theorem has not been implemented into other packages. This does
not mean that technology has not been programmed properly: a proper
usage of technology does not require the technology to mimic human
actions. Conversely, the human mind does not have to work algorithmi-
cally. Therefore, comparison between the two ways is an enriching task.

The computation step which drew our attention is explained by the
computer with the following formula (the complete Derive session is
given in Appendix 1):

b b
[1was=3 [ 0@ +r@rs-0) @

This formula is not trivial; comments and examples are given in Dana-
Picard (2005b). When looking at these examples, an experienced teacher,
not working in the author’s College but at a distant University, told the
author: “I would not dare to ask my students to know such a theorem.”
Therefore we wished to check the reactions of a student, named Eytan,
what he thought about the situation, and whether to teach or not to teach
this integration formula.

At the start, the integral /, = 0“/ 2'1‘-'.%@7 dx has been proposed to
Eytan with general parameter. After a few seconds of reflection, he says:
“Let’s try with a small parameter value.” Eytan writes: j;'/ 2ﬁ;ﬁ-};dx =
fo Z o Eeosxdx. Then he says: “I would try a substitution.”
Interviewer: Which substitution?

Eytan: sin x. But it doesn’t work.
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Interviewer: Computing I, would help?

Eytan makes the computation. “I get 7/4.”

Eytan: 1 try Iy in order to try afterwards an induction. I try positive
integers, afterwards we’ll see other numbers... First let’s see what
happens, we decide later...

Eytan tries to perform an integration by parts, unsuccessfully.
Interviewer: Maybe you should try /,?

Eytan: It looks easier.... (he computes)... I get m/4. Wow, interesting!
(wondering a while) It’s the same result. I can try /3. No, it’s too hard,
I'll try I,

Eytan writes /s = [;/? —"—gx and stops.

Interviewer: Should 1 show you a solution?

Eytan: I’ll read only one row, and then I'll try alone. Actually Eytan
looks at the substitution u = m/2 — x and proceeds to computation for
general parameter. He obtains: /, = [ / zﬂ—}:—o?;dr and stops.
Interviewer: Do you know any connection between tan x and cot x?
Eytan: Yes! 1/tanx and 7/2 — x.

Interviewer: Which one do you intend to use?

Eytan: Yes! w/2 — x.

And he triesl /tanx.

Finally, Eytan reads the entire solution. “Interesting...I would not have
thought like that alone...”

Then the interviewer shows the solution with Derive (the step-by-step
session). Eytan points out the formula

b b
[1wae=3 [ (50 +s@+b-x) e

and says: “That’s something that he (the computer) has stuck there!”

He thinks a while, draws a graph (Figure 1) in order to visualize what
happens (he makes some gestures with his hands, leftwards and
rightwards, in order to “feel” the area beneath the graph in both
directions, and to visualize what it means to substitute ¢ + » — x instead
of x) and then writes his own proof of the formula, using a substitution
(Figure 2). And he says: “this formula is very interesting. And useful....
I’ll use it!”
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Figure 1. Eythan’s graph.

Interviewer: Suppose that you read Mathematics alone and that you meet
such a new formula, what do you do?
Eytan: When 1 learn, I try to understand processes. I would have read
Wwhat is written, and then I would have tried to make the work by myself.
A couple of days later, the interviewer proposed to Eytan the
following integral: / = j; 7 +‘/E 7—dx. Eytan said immediately “it’s the
same situation as last time” and computed the integral quickly using
the above formula, with the exclamation “really interesting, indeed!”.
At the beginning, Eytan’s approach is classic, trying the computation
for small values of the parameter. His intuition tells him that substitution

t{hodx : fh) ) « ff(cuﬂ ~y)dy
o

H=O\*L~«x

Figure 2. The substitution made by Eythan.
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should be a good start, but does not succeed. For him, the presentation of
a written solution is not the end of the session, he wants to work by
himself. Actually, that’s exactly the behavior that an educator would
expect from a student, to be active, not to receive a solution in a passive
way only.

As a side remark, note that Eytan starts with small integer values of
the parameter. He intends to check with other numbers afterwards. This
is a classical attitude with respect to parameters, as most parametric
exercises proposed to undergraduates involve non negative integers for
parametric values,

The central point in this working session seems to be Eytan’s positive
reaction when discovering the usefulness of the proposed formula. At
first he is somewhat skeptical, but briefly afterwards expresses enthu-
siasm: “wow, interesting!”. The decision to use it beyond this working
session is the most important one. Were the formula not shown by the
computer, he would not have discovered it in a regular textbook.

GENERAL Discussion

Instrumentation

Balacheff (1994) defines the computerized transposition (transposition
informatique):

Je parlerai de transposition informatique pour désigner ce travail sur la connaissance qui
en permet une répresentation symbolique et Ia mise en oeuvre de cette représentation par
un dispositif informatique, qu'il s’agisse ensuite de la montrer oy de la manipuler (I'll
talk about computerized transposition to call this work on knowledge. which provides a
symbolic representation and an implementation of this representation by a computerized
device, no matter whether the aim is to show it or to manipulate it).

The situation in the second example is one where the knowledge is
shown, and then manipulated. In Eytan’s working session, manipulation
comes partly when he proves the new formula, and more completely
with the second integral.

At the beginning, we expected Derive’s step-by-step to provide the
student with “a posteriori assistance”, in order to understand what (s)he
would have been required to do. This behavior looks like backwards
differentiation when checking correctness of an indefinite integration,
with a noticeable difference:

e Backwards differentiation checks a result which has been
completely computed.
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e Here the software provides “post-mortem help” in understand-

ing what should have been done.
Actually, the usage of the step-by-step feature of the software can be

considered as an “a priori” usage, in one of the following fashions:

o The software user can discover a way of solving the problem
different from his/her way.

o If the student did not determine how to solve the problem, the
CAS opens a pathway. This is based on general theorems that
the student does not automatically know.

Suppose that such a situation occurs in the classroom: the teacher builds
various kinds of activities, which enrich by a large amount the
mathematical knowledge and culture of the learners. If at the beginning
the student influenced the software’s behavior in order to obtain the
needed result, in the second scenario the software forces the educator to
teach and the student to learn a new topic, a new theorem. As A. Rich says:

The transformation rules Derive displays are those if uses to simplify an expression. They
may or may not be the same as those currently taught to students. However, if teachers
see an advantage to an unfamiliar rule used by Derive, they may want to ask their
students to verify the validity of the rule and then the students will have an additional
tool in their arsenal (Béhm et al., 2005, p. 36).

We have here elements of an instrumentation process, which is part of an
instrumental genesis (Lagrange, 2000; Artigue, 2002, p. 250: Trouche, 2004a):

Les potentialités et les affordances d’un artefact (en occurrence le CAS) favorisent le
développement de nouveaux schémes (ou font évoluer les schémes antérieurs) de
résolution d’un type de tiches (ici le calcul d’une intégrale deéfinie) (Trouche, 2005;
private e-mail).

Briefly:

Instrumentation is precisely this part of the process where the artifact prints its mark on
the subject (Trouche, 2004b, p. 290).

Of course, this genesis is not reduced to the acquisition and inter-
nalization of one single theorem. The present examples are only one
occurrence of the mechanisms involved in the process.

The Constraints of the CAS : Limitations and Motivating Effects

Following Balacheff (1994), Guin & Trouche (1999) distinguish three
types of constraints of the artifact called internal constraints (linked to
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hardware), command constraints (linked to the existence and syntax of
the commands), and organization constraints (linked to the interface
artifact-user). We deal here with a specific appearance of a command
constraint, in a very special fashion.

Generally, the word constraint evokes a limitation, an impossibility to
g0 beyond a certain borderline. For a software package, this can be a
limitation on the size of numbers, on the number of successive
parentheses, etc. Among the most documented internal constraints are
the finiteness of the screen for graphical applications, and the fact that
the real numbers are always approximated by rational numbers. The
constraint that we meet here is of a totally different nature: instead of
limiting the user within the borders of a certain topic, the CAS demands
the user go further, to learn a new theorem or a new technique. It is @
motivating constraint, which leads to a broadening of the student’s
mathematical landscape. After its apparition, the mathematical knowl-
edge is not supposed to be shown anymore, the student is incited to learn
the new theorem, and then become able to manipulate this knowledge,
either with or without the help of the technology.

Another occurrence of a motivating constraint sometimes appears: it
occurs that the usage and the non-usage of the step-by-step feature yield
different outputs, both valid. The student has to perform the transforma-
tion of one output into the other. This also broadens mathematical
landscape and deepens conceptual understanding. As mentioned by
Artigue (2002), this happens already when using a TI-92: the input can
be transformed before any command is used, for example, when entering
an expression involving the tangent function. The Windows version of
Derive does not perform such an automatic transformation, enabling
better tracing of the mathematical argument. For example, when looking
for an oblique asymptote to the graph of a given function f in a
neighborhood of infinity, we need to compute the limit at infinity of
f(x)/x. These computation steps can be totally traced with the CAS.

Contribution to the Institution’s Culture

Following Artigue (2002), we use the word “institution” in a very broad
sense. Every educative community with precise rules determining the
educative way is an institution: a class is an institution, a course
involving several classes is an institution, a College is an institution.
Each institution has to decide whether to introduce the usage of a CAS in
Mathematics courses or not to do so. Not to deal with this issue is also a
kind of decision. For example, the institution named JCT decided to
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teach MatLab and to use it in every engineering course. In a small subset
of classes, which can also be viewed as an institution, the author and one
of his colleagues, 1. Kidron, adopted other packages. For example, a
course in Ordinary Differential Equations has been given last year for the
first time together with practice sessions based on the usage of
Mathematica and Maple.

After a decision to use a CAS has been made, which CAS has to be
chosen? Maybe more than one CAS, in order to reap the benefit of more
features? In this second case, two different systems will not be used in
the same way, students should be acquainted with the usage of one of
them, only afterwards with the other one. Which CAS is the first one and
which is the second one? This choice is not neutral, it is a fundamental
issue. Not only does it fix ways of thinking (the command syntax,
possibility of simultaneous representations or not, etc.), but the choice of
a CAS imposes the teaching/learning of notions, the introduction of more
advanced theorems into the syllabus, as our examples show.

The Jerusalem College of Technology is a College for Engineering. In
certain courses, the weight has been placed on applications of
Mathematics and on the pragmatic side of technology. The introduction
of a pedagogy-embedded CAS has already changed the “institution
culture” in certain classes (e.g., the course in Ordinary Differential
Equations that we mentioned previously), and is susceptible to change
the institution’s culture on a larger scale (e.g., all the first year
Foundation Courses in Mathematics at JCT):

Tools are not passive, they are active elements of the culture into which they are inserted.
(Noss & Hoyles, 1996, p. 58).

Moreover;

As regards the objects of knowledge it takes in charge, any didactic institution develops
specific practices, and this results in specific norms and visions as regards the meanings
of knowing or understanding such or such object. To analyze the life of a mathematical
object in an institution, to understand the meaning in an institution of “knowing/
understanding” this object, one thus needs to identify and analyze the practices which
bring it into play. (Artigue, 2002, p. 248)

Such differences of institutional cultures are evident when considering
institutions with different goals, e.g., Teacher Training and Engineer
Training. They can appear between two institutions of the same kind, if
they chose two different CAS, or did not choose any.
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CONCLUSIONS

Artigue (2002) notes, after (Bosch & Chevallard, 1999), that the
evolution of technology has changed the equilibrium between conceptual
and technical work. The embedding of pedagogical references into a
computer algebra system is a further step in this change, in favor of
conceptual understanding. If, at the beginning, technology was designed
to replace the human being for the purely technical part of the work, now
it is an integral part of the conceptual reflection and theoretical
knowledge.

Techniques that are instrumented by computer technology are changed: new needs
emerge, linked to the computer implementation of mathematical knowledge ... (Artigue,
2002).

We have encountered two such needs, within the same theory. The
implementation of powerful theorems into the CAS does not free the user
from conceptual work. A contrario, the whole power of this implemen-
tation will be revealed by the new task: understanding a new part of the
theory.

. Students encountering a rule with which they are not familiar provide the teacher with
a perfect opportunity to ask the students to verify the rule. It seems to me that the ability
of students to derive general purpose rules is preferable to their re-deriving special cases
of those rules each time a new problem is encountered. Also the recognition that there
are general purpose rules may be enlightening to some. (A. Rich in Béhm, Rich, Dana-
Picard, 2005, p. 37).

The examples studied here show that when a human mind and a CAS
solve the same problem, the solution processes can be very different: the
human mind approach is guided by his previous knowledge and his own
cognitive structures, its own capillary connections (this issue will be
addressed in a subsequent paper by the author), the CAS has its buili-in
features and algorithms. We refer to the diagram in Guin & Trouche
(1999, p. 202). A reasonable analysis of the differences allows two
openings:

1. The acquisition of new concepts and of new techniques for solving
problems

2. A new reflection on the objects already known, and on the novelties
discovered during the CAS assisted process
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#3

#5

#6

APPENDIX 1: DERIVE SESSION FOR THE FIRST EXAMPLE
w/2
/ SIN(x)*dx
0
b
f F(x)dx — SUBST_DIFF ( f F(x) dx, 3, a, b)

SUBST_DIFF ( / SIN(x)%dx, x, 0, g)

SIN(a-x + by’ ~ '-COS(a-x + b)
asp

]SIN(a-x + bfdx — —

+p;l-/SIN(a‘x+b)p-2dx
P

0., —
3 3 » X U,

SUBST_DIFF (_ SIN(x)*-COS(x) | 2 SIN(x)dx ;)

_ COS(asx +b)

a

/ SIN(a*x + b) dx —

2, .
SUBST_DIFF (_ SIN(x)™-COS(x) _ 2-COS(x) w)

3 3 1x301_2'"

SUBST_DIFF(F(x), x, a, b) — F(b) — F(a)

Wi 2
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APPENDIX 2: DERIVE SESSION FOR THE SECOND EXAMPLE

1
1+ TAN(x)

7/2 1
7 . Y
# ~/0. 1 + TAN(x)" &

#1

SIN(z)
TANGE) COS(z)
#3 f S T
SIN(x) \”
g 1+(003(x))

If x>0,
LN(x-z) — LN(x) + LN(z)

wf2 1
#4 A 1 + ¢ GN(1/COS()+INSINGR)) 4
Ifx>=0

-]

LN (-31;) — —LN(x)

w2 1
S fo 1+ er-(_m(COS(x))+w(sm(xmdx

/bF(x) s S (F() +Fla+b - x))dx

2
. ?1'/21
4 fo > ds

/:F(x) dx — SUBST_DIFF (/F(x) dx, x, a, b)

47 SUBST.DIFF ( / % i, %, 0, g)
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V/adx—ﬂl-x

#8 SUBST.DIFF (% x, 0, g)

SUBST_DIFF(F(x), x, a, b) — F(b) — F(a)

#9 :

&3
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