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Abstract. We consider transformations between uniformly accelerated systems,

assuming that the Clock Hypothesis is false. We use the proper velocity-time

description of events rather than the usual space-time description in order to obtain

linear transformations. Based on the generalized principle of relativity and the ensuing

symmetry, we obtain transformations of Lorentz-type. We predict the existence of a

maximal acceleration and time dilation due to acceleration. We also predict a Doppler

shift due to acceleration of the source in addition to the shift due to the source’s

velocity. Based on our results, we explain the W. Kündig experiment, as reanalyzed

by Kholmetski et al, and obtain an estimate of the maximal acceleration.
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1. Introduction

Transformations between uniformly accelerated systems in flat space-time may provide

a connection between special and general relativity. In order to study accelerated

systems, A. Einstein introduced the Clock Hypothesis, which states that the “rate of an

accelerated clock is identical to that of the instantaneously comoving inertial clock.” Not

all physicists agree with this hypothesis. L. Brillouin ([4] p.66) wrote that “we do not

know and should not guess what may happen to an accelerated clock.” If we assume the

validity of the Clock hypothesis, then the space-time transformation between accelerated

systems are well known, see [23] and others. Here we present a systematic approach for

transformations between accelerated systems without assuming the Clock Hypothesis.

Our approach to describing transformations between two uniformly accelerated systems

is based on the symmetry following from the general principle of relativity.

To simplify our derivations, we will consider a one dimensional space. To reach

our conclusions, it is enough to consider this simplified case. We will clarify in Section

2 the precise meaning of uniform acceleration and the notion of a system uniformly

accelerated with respect to an inertial system. It is clear that in order to describe

transformations between two systems which are uniformly accelerated with respect to

an inertial system, it is enough to describe the transformation from an inertial system

to a system uniformly accelerated with respect to this system. We will decompose this

transformation into a product of a transformation between an inertial system and a

system comoving with a uniformly accelerated system and a transformation from the

comoving system to the uniformly accelerated system. For the first transformation,

explicit space-time transformations are known.

For the second transformation, we will consider more general transformations

between two comoving systems uniformly accelerated with respect to an inertial system.

The method of solving this problem is based on the method used in [9] and, in

more detail, in [7], for deriving the Lorentz transformation between inertial systems

from the principle of special relativity and the ensuring symmetry. In Section 3, we

introduce a new proper velocity-time description of events, replacing the usual space-

time description. This will make the transformations linear.

In Section 4, we derive general proper velocity-time transformations between

comoving uniformly accelerated systems. The derivation is based on the General

Principle of Relativity and the ensuring symmetry. By careful choice of reference frames,

we derive linear Lorentz-type transformations which depend on a constant κ. If the

Clock Hypothesis is true, κ = 0, and in this case, the known space-time transformations

to the comoving system are also the transformation to the uniformly accelerated system.

Assuming that the Clock hypothesis is not true, we show in Section 5 that the

transformations preserve a proper velocity - time interval. We predict the existence of an

unique invariant maximal acceleration. The proper velocity - time transformations are of

Lorentz type. We obtain an acceleration-addition formula for relativistically admissible

accelerations. The existence of a maximal acceleration has also been conjectured by
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Caianiello [5] and others.

In Section 6, we describe the W. Kündig experiment [19] measuring the transverse

Doppler effect. Kholmetski et al reanalyzed this experiment [17] and showed that in this

experiment, there was a significant deviation of the time dilation predicted by Special

Relativity. Their own experiment [18] shows a similar deviation. Here we show that our

model predicts an additional time dilation in the experiment due to the acceleration of

the absorber. Based on the results of this experiment and our model, we predict that

the Clock Hypothesis is false and that the value of the maximal acceleration am is of

the order 1019m/s2.

We conclude the paper with Discussion and Conclusions. In this paper, we use SI

units. Earlier results of this paper appear in [10].

2. Proper velocity and proper acceleration

The proper velocity u of an object moving with uniform velocity v is defined by

u =
v√

1− v2/c2
= γ(v)v, (1)

where γ(v) = 1√
1−v2/c2

. Recall that u is also equal to dr/dτ , where dτ = γ−1(v)dt is the

proper time of the moving object. For brevity, we will call proper velocity p-velocity.

Note that a p-velocity is expressed as a vector of R3. Conversely, any vector in R3, with

no limitation on its magnitude, represents a relativistically admissible p-velocity. The

p-velocity is the spatial part of the 4-velocity.

The proper acceleration g is usually defined (see [29] p.71) to be the derivative of

p-velocity with respect to time t, i.e.,

g =
du

dt
. (2)

Note that if an object moves with constant proper acceleration, then its p-velocity

satisfies the equation

d2u

dt2
= 0 . (3)

We will say that an object is uniformly accelerated if its proper acceleration is constant,

or equivalently, satisfies (3). If the velocity of a uniformly accelerated object is parallel

to the acceleration, then it moves with the well-known hyperbolic motion (see [23], [29]

and [11]).

In the one-dimensional case, we have du
dt

= γ3 d2r
dt2

. Moreover, the quantity γ3 d2r
dt2

is invariant under Lorentz transformations between inertial systems (see [29] sec 3.7).

Thus, in the one-dimensional case, a uniformly accelerated motion in one inertial system

is also uniformly accelerated in any other inertial system, implying that this property

is covariant.

By a uniformly accelerated system in this paper, we mean a system that is uniformly

accelerated with respect to a given inertial system. Let K denote an inertial system, and
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let K̃ be a uniformly accelerated system moving parallel to K with uniform acceleration

g. For a given time t, we denote by K ′ an inertial system which is positioned and has

the same velocity (and proper velocity) as K̃ at time t and moves parallel to K. The

system K ′ is called a comoving system to system K̃ at time t.

The space-time transformation between the system K and K ′ is well known (see

[23] p.255). If we assume the validity of the Clock hypothesis, this transformation is also

the transformation between K and the uniformly accelerated system K̃. If we do not

assume the validity of the Clock hypothesis, it is sufficient to describe the transformation

between two comoving accelerated systems K ′ and K̃, meaning that at some initial time

t0 their relative velocity is zero. The inertial system K ′ is also uniformly accelerated

and its acceleration is constant and equals zero.

3. Proper velocity - time description of events

An important step in the derivation of the Lorentz space-time transformations between

two inertial frames is to show that such transformations are linear. For uniformly

accelerated systems, the space-time transformation is not linear. Thus, we introduce

another description of events, called the proper velocity - time description, in which the

transformation of events between two uniformly accelerated systems is linear.

In the p-velocity-time description, an event is described by the time at which the

event occurred and the p-velocity u ∈ R3 of the event. The evolution of an object

in a system can be described by the p-velocity u(t) of the object at time t. The line

(t, u(t)) replaces the world-line of special relativity in this description. To obtain the

position of the object at time t, we have to know the initial position of the object and

then integrate its ordinary velocity (which is readily computed from the p-velocity) with

respect to time.

To obtain the Lorentz transformations in special relativity, it is important that the

relative position of the origins of the frames connected with two inertial systems depends

linearly on time. This linear map expresses the relative velocity between the systems.

For uniformly accelerated systems, if we assume that the systems are comoving at time

t = 0, the uniform acceleration between the systems, defined by (2), is a linear map

from the time to p-velocities.

Denote by T the transformation mapping the time and p-velocity (t, u) of an event

in a uniformly accelerated system Kg to the time and p-velocity of the same event (t′, u′)

measured in the uniformly accelerated system K0. The situation is analogous to that of

the space-time transformations between two inertial systems. In that case, the relative

motion of one system with respect to the other is described by a uniform velocity,

which is a linear map from time to space (or a line in the space-time continuum). For

uniformly accelerated systems, the relative motion one system with respect to the other

is described by a uniform acceleration, which is a linear map from time to p-velocities (or

a line in the p-velocity-time continuum). Since the space-time transformation between

two inertial systems is linear, we will assume that the p-velocity-time transformation T
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between two uniformly accelerated systems is also linear.

4. General proper velocity - time transformations between accelerated

systems

To define the symmetry operator between two uniformly accelerated systems, we will

use an extension of the principle of relativity, which we will call the General Principle of

Relativity. This principle, as it was formulated by M. Born (see [3], p. 312), states that

the “laws of physics involve only relative positions and motions of bodies. From this it

follows that no system of reference may be favored a priori as the inertial systems were

favored in special relativity.” The principle of relativity from special relativity states that

there is no preferred inertial system, and, therefore, the notion of rest (zero velocity)

is a relative notion. From the general principle of relativity, it follows that there is no

preference for inertial (zero acceleration) systems. Hence, when considering accelerated

systems, we no longer give preference to free motion (zero force) over constant force

motion. This makes all uniformly accelerated systems equivalent.

From the general principle of relativity, it is logical to assume that the

transformations between the descriptions of an event in two uniformly accelerated

systems depend only on the relative motion between these systems. Consider now two

uniformly accelerated systems Kg and K0, with a constant acceleration g between them.

We choose reference frames in such a way that the description of relative motion of Kg

with respect to K0 coincides with the description of relative motion of K0 with respect

to Kg. The above principle implies that the transformation T mapping the description

of an event in system Kg to the description of the same event in system K0 will coincide

with the transformation T̃ from system K0 to Kg. This implies that T is a symmetry,

or T 2 = Id.

The choice of the reference frames is as follows. We choose the origins O of Kg

and O′ of K0 of the p-velocity axes to be the same at t = 0, and choose the p-velocity

axes reversed, as in Figure 1. We also synchronize the clocks positioned at the origins

of the frames at time t = 0. Note that with this choice of the axes, the acceleration

g of O′ in Kg is equal to the acceleration of O in K0, and thus the p-velocity-time

transformation problem is fully symmetric with respect to Kg and K0. We will denote

this transformation by Sg, since it is a symmetry and depends only on the acceleration

g between the systems.

Since the p-velocity-time transformation Sg is linear, it can be represented by a

2× 2 matrix with components defined by
(

t′

u′

)
= Sg

(
t

u

)
=

(
S00 S01

S10 S11

)(
t

u

)
. (4)

We explain now the meaning of the components Sij. The component S00 describes

the transformation of the time t in Kg of an event with p-velocity u = 0 (at rest in Kg)
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Figure 1. Two uniformly accelerated systems K0 and Kg, where system K0 moves

with acceleration g with respect to system Kg. The space and proper velocity axes

are reversed in order to preserve the symmetry following from the general principle of

relativity.

to its time t′ in K0, and it is given by

t′ = S00t = γ̃t, (5)

for some constant γ̃. The constant γ̃ expresses the slowdown of the clocks in K0 due

to its acceleration relative to Kg. The value of γ̃ is related to the well-known Clock

Hypothesis. Since Kg and K0 are comoving at time t = 0, they have the same velocity

at time t = 0. Therefore, if the Clock Hypothesis is valid, we have t′ = t, which implies

that γ̃ = 1.

To define S10, consider an event that occurs at O, corresponding to u = 0, at time

t in Kg. Then u′ = S10t expresses the p-velocity of this event in K0. From (5), we get

u′ = S10γ̃
−1t′. Since u′ = gt′ expresses the relative motion of Kg with respect to K0, we

get

S10 = γ̃g. (6)

Now we use the identity S2

g = Id. From the matrix representation (4), we obtain

S10S00 + S11S10 = 0 ⇒ γ̃2g + S11γ̃g = 0 ⇒ S11 = −γ̃ .

We introduce a constant κ such that S01 = γ̃κ. In this notation, the matrix of Sg

becomes

Sg = γ̃

(
1 κ

g −1

)
. (7)

Using S2

g = Id once more, we get γ̃2(1+κg) = 1. Since the time transformation preserves

casuality, we get

γ̃ =
1√

1 + κg
. (8)

Thus, the p-velocity time transformation between systems Kg and K0 is

t′ = γ̃(t+ κu)

u′ = γ̃(gt− u).
(9)
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Finally, by reversing the proper velocity axes in system Kg, we get

t′ = γ̃(t− κu)

u′ = γ̃(gt+ u),
(10)

with γ̃ defined by (8). This transformation is a Lorentz-type transformation .

As mentioned above, if we assume the clock hypothesis, then γ̃ = 1, and, thus,

from (8), it follows that κ = 0 in this case. Hence, if the Clock Hypothesis is not valid,

then κ 6= 0. From now on, we will consider only the case κ 6= 0.

5. Conservation of p-velocity-time interval and maximal acceleration

As mentioned above, the p-velocity-time transformation between the systems Kg and

K0 is a symmetry transformation. Such a symmetry is a reflection with respect to the

set of the fixed points, which are the 1-eigenvectors of this transformation. We want

to determine the 1-eigenvectors of Sg. Denote by w =

(
w0

w1

)
a 1-eigenvector of Sg.

From (7), it follows that this vector satisfies the system of equations

Sg

(
w0

w1

)
= γ̃

(
1 κ

g −1

)(
w0

w1

)
=

(
w0

w1

)
. (11)

This system has infinitely many solutions. Thus, we may choose w1 = gγ̃. From the

second row, we have

w0 = 1 + γ̃, w1 = gγ̃ . (12)

The meaning of this is that all the events fixed by the transformation Sg are on a straight

line through the origin of the p-velocity-time continuum, corresponding to the motion

of an object with constant acceleration w = w1

w0 (see Figure 2) in both frames.

- - -
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Figure 2. Eigenspaces of the symmetry

Similarly, for a -1-eigenvector of w̃ =

(
w̃0

w̃1

)
of Sg, we get

w̃0 = γ̃ − 1, w̃1 = gγ̃ . (13)
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We introduce a metric on the proper velocity - time continuum which makes the

symmetry Sg an isometry. Under the inner product associated with the metric, the

1 and -1 eigenvectors of Sg will be orthogonal. The new inner product is obtained

from a metric of the form diag(µ,−1,−1,−1), where µ is an appropriate weight for

the time component with units of the square of acceleration. The orthogonality of the

eigenvectors means that

< w|w̃ >= µw0w̃0 − w1w̃1 = 0. (14)

By use of (12), (13) and (8), this becomes µ(1+ γ̃)(γ̃− 1)− g2γ̃2 = −µκgγ̃2− g2γ̃2 = 0,

or µκ+ g = 0, implying that

µ =
−g

κ
and κ =

−g

µ
. (15)

From the fact that Sg is an isometry with respect to the inner product with weight

µ, we have

µ(t′)2 − |u′|2 = µt2 − |u|2, (16)

which implies that our p-velocity-time transformation from Kg to K0 conserves the

interval

ds2 = µdt2 − |du|2, (17)

with µ defined by (15).

Note that Sg maps zero interval lines in Kg to zero interval lines in K0. Zero interval

lines correspond to motion with uniform acceleration
√
µ. Thus, for two systems Kg and

K0 with κ > 0, the acceleration
√
µ defined by (15) is conserved. Obviously, the cone

ds2 > 0 is preserved under the p-velocity-time transformation. By an argument similar

to the one in [7], section 1.2.2, it can be shown that κ is independent of the relative

acceleration g between the frames Kg and K0. Thus, there is a universal constant

am =
√
µ, where am is the maximal acceleration.

Substituting µ = a2m into (15), we get κ = −g/a2m. The value of γ̃ from (8) becomes

γ̃ = 1/
√
1− g2/a2m (18)

and the proper velocity-time transformation (10) becomes

t′ = γ̃(t + gua−2

m )

u′

x = γ̃(gt+ u) .
(19)

This is a Lorentz-type transformation. Moreover, in transformations between

accelerated systems, the interval

ds2 = (amdt)
2 − |du|2 (20)

is conserved.
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6. Kündig’s experiment and its consequences

Kündig’s experiment (Kündig (1963)) measured the transverse Doppler effect in a

rotating disk by means of the Mössbauer effect. In this experiment, the distance from

the center of the disk to the absorber was R = 9.3cm, and the rotation velocity varied

between 300 − 35000 rpm. The velocity v = Rω of the absorber is perpendicular to

the radius, the radiation direction. Kündig expected to measure the transverse Doppler

effect by measuring the relative energy shift, which, by relativity, should be

△E

E
≈ −R2ω2

2c2
, (21)

where E is the photon energy as measured from its frequency.

Let us introduce a constant b such that

△E

E
= −b

R2ω2

2c2
. (22)

Kündig’s experimental result was

b = 1.0065± 0.011, (23)

which was claimed to be in full agreement with the expected time dilation.

However, Kholmetskii et al [17] found an error in the data processing of the results

of Kündig’s experiment. They corrected the error and recalculated the results for three

different rotation velocities for which the authors of the experiment provided all the

necessary data. After their corrections, the average value of b is

b = 1.192± 0.03, (24)

which does not agree with (21). They repeated a similar experiment [18] and also

observed a deviation from the usual formula for time dilation.

In [8], it was shown that we can use the above results to show that the Clock

Hypothesis is not valid. This, in turn, leads us to predict the existence of a maximal

acceleration.

The absorber is rotating. Hence, its velocity is perpendicular to the radius, and

its acceleration is toward the source of radiation. Let K denote the inertial frame of

the lab. We can attach an accelerated system K̃ to the absorber. Introduce, as above,

an inertial frame K ′ comoving with the absorber. The frame K ′ moves parallel to K

with constant velocity v = Rω. The time dilation between K and K ′ is given by the

transverse Doppler effect, as in (21). If the Clock Hypothesis, claiming that there is no

effect on the rate of the clock due to acceleration, is valid, then there is no change in

time from system K ′ to K̃. As a result, formula (21) should also hold for time dilation

between K and K̃. However, by (24), this is not the case, with a deviation exceeding

almost 20 times the measuring error. Based on this experiment, therefore, we claim that

the Clock hypothesis is not valid.

In Kündig’s experiment, the system K̃ moves with acceleration a = Rω2 toward

the source. The transformations (19) are similar to the usual Lorentz transformations

if we replace v/c by a/am. Thus, time transformations between the inertial system K ′
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and the accelerated co-moving system K̃ will be given by a longitudinal Doppler type

shift by a factor (1− a/am) due to the acceleration of K̃ with respect to K ′. We have
(
1− Rω2

am

)√
1− R2ω2

c2
≈
(
1− Rω2

am

)(
1− R2ω2

2c2

)

≈ 1− Rω2

am
− R2ω2

2c2
= 1−

(
1 +

2c2

Ram

)
R2ω2

2c2
.

This implies that

b = 1 +
2c2

Ram
. (25)

Notice that the calculated value of b is independent of the speed of rotation. This agrees

approximately with the data [17].

By substituting the observed time dilation in Kündig’s experiment from (24) and

R = 0.093m, we get

b = 1 +
2c2

Ram
= 1.192± 0.03,

implying that

am =
2c2

R(0.192± 0.03)
= (112± 7)c2m−1 = (1.006± 0.063)1019m/s2. (26)

7. Discussion

Space-time transformations between uniformly accelerated systems assuming the

validity of the Clock hypothesis were treated in [23], [29] among others. Within

the context of conformal transformations, they were treated by Cunningham [15] and

Bateman [2], see also [12]. Similar transformations appear also in Page [24] and [25].

As mentioned above, L. Brillouin and others argued against the Clock Hypothesis. For

a long time, B. Mashhoon argued against the Clock Hypothesis and developed nonlocal

transformations for accelerated observers (see the review article [22] and references

therein). Our approach treats the problem differently.

To the best of our knowledge, the transformation between uniformly accelerated

systems described here is the only one which holds if the Clock Hypothesis is not valid.

We have shown that the proper velocity-time transformations for such systems (19) are

of Lorentz type and imply the existence of a unique maximal acceleration am. In this

case, we predict a Doppler shift due to the acceleration of the source in addition to its

shift due to its velocity.

The existence of a maximal acceleration for massive objects has already been

predicted by Caianiello (see Caianiello [5], Papini and Wood [27] and Papini et al. [26]

and references therein). The existence of a maximal acceleration follows also from Born’s

reciprocity principle. Caianiello’s model [5] also supports Born’s reciprocity principle.

From Caianiello’s model, the estimate of the maximal acceleration in Scarpetta [31] is
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am = 5 · 1050g. We are not aware of any previous derivation of the maximal acceleration

from the non-validity of the Clock Hypothesis.

The W. Kündig experiment [19], as reanalyzed by Kholmetski et al [17], is the first

experiment showing that the Clock Hypothesis is not valid. It predicts that the value

of the maximal acceleration am is of the order 1019m/s2.

The Clock Hypothesis was tested in the Muon Storage Ring experiment of J.

Bailey et al. [1] where they claimed “no effects on the particle lifetime are seen in

this experiment where the transverse acceleration is ∼ 1018g.” In the experiment, the

muons were rotating on a ring of radius R = 7m. The transverse proper acceleration in

the experiment was a = γc2/R ≈ 3.77 · 1017m/s2, which, by (18), gives a time-dilation

correction due to acceleration of order a2/(2a2m) ≈ 7 ·10−4. This is significantly less than

the accuracy of the experiment. Thus, this experiment does not contradict our model.

The novel experimental laser research based on the Sagnac effect improved

significantly the accuracy with which non-inertial effects are measured (see [32] and

[21]). Hence, one would expect to observe in these experiments deviations from Special

Relativity, as in (24). However, to the best of our knowledge, no such deviation was

observed. The reason for this is as follows. The deviation of b from 1 in Kündig’s

experiment was caused by the relative acceleration of the source and the absorber. This

acceleration caused a correction in time dilation of the order one in a/am. In the rotating

ring experiments, however, there is no acceleration between the source and the detector.

Thus, the time dilation correction due to the acceleration is of the order two in a/am,

which is hard to detect.

8. Conclusion

In this paper we give a description of transformations (19) between accelerated systems

without the Clock Hypothesis. We established the connection of this hypothesis to the

maximal acceleration. We predict a Doppler shift due to the acceleration of the source.

Based on this, we give a theoretical explanation of the time dilation deviation from SR

in two experiments and give a first experimental estimate of the maximal acceleration.

Kündig’s experiment was not designed to test the maximal acceleration. Thus, it

is only an indication of the existence of a maximal acceleration and an estimate of its

value. On the other hand, an experiment determining the value of maximal acceleration

could be done with currently available technology.
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